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Abstract

Background: The binding of transcription factors to their respective DNA sites is a key component of every regulatory
network. Predictions of transcription factor binding sites are usually based on models for transcription factor specificity.
These models, in turn, are often based on examples of known binding sites.

Methodology/Principal Findings: Collections of binding sites are obtained in simulation experiments where the true model
for the transcription factor is known and various sampling procedures are employed. We compare the accuracies of three
different and commonly used methods for predicting the specificity of the transcription factor based on example binding
sites. Different methods for constructing the models can lead to significant differences in the accuracy of the predictions
and we show that commonly used methods can be positively misleading, even at large sample sizes and using noise-free
data. Methods that minimize the number of predicted binding sequences are often significantly more accurate than the
other methods tested.

Conclusions/Significance: Different methods for generating motifs from example binding sites can have significantly
different numbers of false positive and false negative predictions. For many different sampling procedures models based on
quadratic programming are the most accurate.
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Introduction

Identifying transcription factor binding sites is a key step in the

modeling of regulatory networks. Great advances in our under-

standing would ensue if we could accurately predict the regulatory

sites within a genomic sequence. But very few transcription factors

(TFs) have been experimentally characterized well enough to know

which of the vast number of potential binding sites have sufficient

binding affinity to be used as regulatory sites in vivo. Much more

commonly a small collection of binding sites is obtained and from

them a model for the TF’s binding specificity is determined.

Sometimes quantitative affinity measurements will be made for a

subset of binding sites and then predictions of affinities to all sites are

extrapolated based on a model [1–4]. More recently quantitative

measurements have been applied to many more sequences in high-

throughput approaches [5–8]. But even in those cases it is usually

not practical to measure the affinity to all possible binding sites, of

which there are 4L for an L-long binding site. Rather some model is

employed, such as assuming that the binding energy contributions

for each position are additive and therefore a simple position weight

matrix (PWM) is sufficient to predict the binding affinity of the TF to

any sequence [9]. When simple additive models do not provide

accurate predictions more complex models can be used and a

variety of approaches have been proposed [10–19].

In most cases the specificity of TFs are inferred from collections of

binding sites. Binding site information for several hundred TFs,

based on several types of experimental reports, are available in

databases such as TRANSFAC and JASPAR [20,21]. One can also

apply motif discovery tools to sets of sequences that are expected to

be bound by a common TF to infer its specificity [22]. Those

sequences may be derived from a variety of experimental

approaches, such as genes with coordinated expression patterns

[23], chromatin-immunoprecipitation (ChIP) experiments [24,25]

or even just collections of genes expressed in specific tissues [26–28].

Regardless of how the collection of binding sites is obtained, and

especially important for the use of motif discovery methods, a model

for the TF’s specificity must be used, and usually it is some form of

PWM. But there are several methods for determining a PWM from

a set of binding sites, and they can lead to very different predictions.

The most commonly used method is a log-odds approach in which

the frequencies of bases in the binding sites are assumed to be

proportional to their contributions to binding affinity [9,22].

Another commonly used method is the Match program which is

often used with the TRANSFAC database [29]. More recently two

groups have proposed a method based on quadratic programming

that seeks to minimize the number of unobserved sites that are

predicted to be binding sites [30,31].

In this paper we compare the intrinsic ability of different

approaches to determine an accurate model for TF specificity

from example binding sites. We employ a simulation study so that

the correct model is known and we can generate noise-free
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datasets. We compare the accuracies of the different approaches

while varying the sample sizes and the method for obtaining the

samples. In many cases the quadratic programming method

performs as well as or better than the other methods tested, even

when sites are drawn from a Boltzmann distribution which is the

assumption used in the log-odds approach.

Results

We use the half-site for the Mnt protein to illustrate the ability of

different methods to accurately determine binding models based

on sets of example binding sites. Alternative models based on other

DNA-binding proteins give very similar results (data not shown),

so we focus on an in-depth analysis of just this one protein. Mnt is

a repressor from phage P22 for which the binding specificity has

been well characterized [3]. It binds as a tetramer to a symmetric

binding site and, in earlier work, all single base changes to the

consensus site were synthesized and their change in binding

affinity measured. Figure 1A shows those relative affinity

measurements for the 7-long half-site. As with many DNA-

binding proteins, some positions are very specific, such as position

3 where the affinity of a C is reduced over 70-fold compared to the

consensus G. Other positions have much smaller effects on affinity,

such as position 7 where the largest effect is less than 3-fold

between a G and the consensus C. Figure 1B contains the 2log2

of those relative affinities, which are proportional to the difference

in binding energy between the consensus base and each other

base. Although the binding of Mnt to DNA is not strictly additive

[32], in these simulations we assume that the binding energy to

any sequence is the sum of the energy values from the matrix that

corresponds to that sequence. This makes the true model conform

to the assumption of additivity employed by each of the compared

methods and avoids any confounding effects of correlated

positions. If E is the energy matrix of Figure 1B, then the binding

energy of any sequence Sj is E:Sj where Sj is a matrix of the same

form as E that contains a 1 for the base that occurs at each position

and a 0 for all other bases at each position [9]. We further assume

that there is some threshold of affinity that a site must have in

order for it to function as a regulatory site in vivo. Figure 2 shows

the number of sequences, from the total of 16,384 7-long DNA

sequences, below various cutoffs in relative binding energy. As

expected this follows an approximately exponential distribution for

the high affinity (low energy) sites.

For cutoffs between 2 and 7 (affinities within 4-fold and 128-fold

of the highest affinity site) we collected example sites in two

different ways. In one we sampled from the sites below the cutoff

assuming a Boltzmann distribution where the probability of a site

being sampled is proportional to its binding affinity. In the other

we sampled from a step function (an approximation to a Fermi-

Dirac distribution with a steep transition) such that all sites below

the threshold are equally likely to be sampled. The real

distribution of sites in vivo will likely be between these two extreme

cases. For each sampling method, and for each cutoff value from 2

to 7, we randomly selected sites with sample sizes of 20, 50 and

200. This covers the range of binding sites that are typically

obtained experimentally and from which binding site models are

Figure 1. Mnt binding matrices. A. The experimentally observed relative frequency of each type of DNA base at each position in the 7-long Mnt
protein half-site. The highest affinity site is: 59-GTGGACC-39. B. The negative log2 of the values shown in A. Each entry represents the binding energy
contributed by a particular base at that position in the site to the total binding energy. This matrix represents the ‘‘true’’ binding model.
doi:10.1371/journal.pone.0006736.g001
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generated. Each sampling procedure was performed five times and

the mean and standard deviation of the means are reported.

The three methods we use on the sets of example sites (see

Methods) determine three different PWM scoring models, termed

WLO for the log-odds method, WMA for the Match method, and

WQP for the quadratic programming method. For these PWMs we

use the bioinformatics convention that higher scores correspond to

higher affinity, and therefore lower energy, sites (see Methods).

Rather than trying to normalize and scale each model to a

common standard, we compare them by simply choosing an

equivalent cutoff score for each one and determining the number

of false positives (FP) and false negatives (FN) compared to the true

energy model. The cutoff for each model is set to the lowest

scoring sequence in the example set from which the model is built.

This assures that all of the observed binding sites are classified

correctly and the FP (FN) sites are those that are misclassified

because they score higher (lower) than the cutoff although their

true binding affinity is lower (higher) than the cutoff. Figure 3

shows all of the results for the sites sampled using the step function.

Parts A, B and C are the Matthews correlation coefficient (MCC,

see Methods), the specificity and the sensitivity, respectively, for a

sample size of 20 sites. Parts D-F and G-I are the same for sample

sizes of 50 and 200, respectively. Figure 4 shows all of the results

for sites sampled using the Boltzmann distribution, arranged the

same as in Figure 3.

When sites are drawn from the step function distribution

(Figure 3) WQP performs the best, by the MCC criterion, at every

cutoff and for every sample size. This is not surprising because the

WQP method essentially assumes that distribution, where all sites

that are ‘‘good enough’’ are equally likely to be selected. It

minimizes the number of sites not in the training set (the example

sites from which the model is built) that are predicted to be sites,

leading to the highest specificity. This results in somewhat lower

sensitivity, although that improves at larger sample sizes.WLO and

WMA are worse by the criterion of MCC because they have lower

specificity.WMA has the highest sensitivity because it makes the most

predictions, many of which are false positives as shown by the lowest

specificity and MCC. Neither WLO nor WMA show much

improvement in MCC at larger sample sizes because they assume

the sites are drawn from a Boltzmann distribution, with higher

affinity sites being more frequent in the observations. If binding sites

in vivo are at or near saturating conditions, as has been suggested

[30], then the Boltzmann assumption is incorrect and we can expect

the WLO and WMA models based on example binding sites to be

misleading even with large sample sizes, as we observe here.

When sites are drawn from a Boltzmann distribution, while still

imposing a cutoff for the minimum affinity allowed (Figure 4), the

results are more complex. For low cutoff values WQP is still the best

by MCC, but at higher cutoffs WLO can be the best, although at

large sample sizes they perform nearly the same. If we went to even

higher cutoffs, WLO would be the best because the distributions

would match more closely to the assumed complete Boltzmann

distribution, but we expect that functional sites in vivo are

constrained to be within some range of the optimum affinity, and

a range of 128-fold lower seems reasonable. WMA again has the

highest sensitivity at every cutoff and sample size, but this is at the

expense of many false positives so that it has the lowest specificity

and MCC which are not improved with larger sample sizes.

The exact number of FPs and FNs depends on what scoring

threshold is used to predict sites as positives and negatives. To

further assess the accuracy of the PWM models when the

prediction threshold is varied, we have plotted them as receiver

operator characteristic (ROC) curves (Figures 5,6). In a ROC

diagram, the TP rate, or sensitivity, is plotted on the y-axis against

FP rate (or false discovery rate) on the x-axis as the prediction

threshold is varied over all possible values. The ROC curve for a

Figure 2. The log2 of the number of sequences in the population of all DNA 7-mers that are below or equal to the relative binding
energy indicated on the x-axis. The ‘‘log2 of cutoff’’ is a DNA-protein binding energy based on the affinity values listed in Figure 1B.
doi:10.1371/journal.pone.0006736.g002
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perfect predictor will go straight up to the point (0,1) and then over

to (1,1), and any form of random guessing will place the curve

along the diagonal of the ROC plot. This plot lets one compare

methods for fixed values of FP or TP.

Figure 5 shows the ROC curves for models based on sites drawn

from the step function. The left column is for a cutoff of 4 and the

right column is for a cutoff of 7. Sample sizes of 20, 50 and 200 are

plotted in the top, middle and bottom rows, respectively. As can be

seen, WQP has the highest sensitivity at nearly every setting of FP

rate for all sample sizes and both cutoffs. WLO is usually somewhat

worse, and WMA is always much worse. Figure 6 shows the same

results for sites selected from the Boltzmann distribution. The

WQP and WLO models are nearly the same for the lower cutoff of

4 (left column). At the higher cutoff of 7 (right column) the WLO

model is slightly better except at the largest sample size (bottom

row) when they are again nearly the same. In all cases the WMA

method performs considerably worse.

Discussion

Since whole genome sequences have become available, one

primary goal has been to identify the regulatory regions that are

responsible for the control of gene expression. This often includes

computational approaches to predict the binding sites of

transcription factors, based on models for their specificity

[22,33–36]. Such methods, by themselves, suffer from high false

positive rates so additional evidence, such as phylogenetic

conservation, is sometimes used to improve the accuracy [37].

There can be many contributing factors to the high false positive

rates, including the fact that many predicted sites may not be

accessible in vivo and that TFs often function coordinately so that

only sites in the correct context will be functional. But one

significant contribution to false positives may arise from using a

model, such as a PWM, that does not represent well the specificity

of the TF. Since models for TF specificity are primarily generated

from example binding sites, using optimal methods to estimate the

specificity can be crucial in maximizing the accuracy of the

predictions. In this paper we show that methods which minimize

the total number of predicted sites, such as by the quadratic

programming approach, can be much more accurate than other

popular methods. If the example sites are drawn from a

Boltzmann distribution, where sites are sampled in proportion to

their affinity, then log-odds methods have similar accuracies. But it

seems likely that the high affinity sites will be saturated, at least

Figure 3. Performance of the position weight matrix models with step-function sampling. A–C. Alignments containing 20 sites. D–F.
Alignments containing 50 sites. G–I. Alignments containing 200 sites. The log-odds, Match, and quadratic programming results are denoted by the
red open-square, yellow open-diamond, and blue filled-oval markers respectively. Each data point is the mean of five replicates. Error bars denote the
standard deviation of the mean.
doi:10.1371/journal.pone.0006736.g003
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under some conditions [30], in which case the quadratic

programming method provides the highest accuracy predictions.

One characteristic that was not tested in this study is the sensitivity

of the different methods to noisy data. The quadratic program-

ming approach, because it finds the center of the example sites,

can be very sensitive to erroneous data and even a single outlier in

a large sample can have a large effect on the resulting model.

Therefore it may be worthwhile to filter example sites to remove

extremes that may be erroneous, but with that comes the risk of

underestimating the true variability of the model. Because their

models are based on the average of the example sites, in different

ways, the log-odds and Match methods will be much less sensitive

to erroneous data, especially at large sample sizes.

Materials and Methods

Binding site model
As a model for the specificity of a transcription factor we use the

quantitative binding data obtained for the Mnt protein of phage

P22 [3]. Mnt binds as a tetramer to a palindromic binding site. To

keep the sites small for our simulations we only use the 7-long half-

site. Figure 1A shows the binding affinities for all possible base

substitutions at each position relative to the consensus site

GTGGACC. Figure 1B shows the negative logarithms (to base

2) of the relative affinities, which are proportional to the binding

energy differences. Although the actual Mnt protein has a modest

amount of non-additivity [32,38], for these simulations we assume

that binding is completely additive. Therefore the energy matrix of

Figure 1B allows us to calculate the change in binding energy,

relative to the consensus sequence, for all possible 7-long

sequences. Of course in real TFs we expect that there will be a

plateau for non-specific binding at some low affinity value [39,40],

but since we are only interested in the high affinity sites, which

could serve as regulatory sites in vivo, we ignore that and consider

the energies determined by the matrix to be the true binding

energies for all potential binding sites. Figure 2 shows the number

of 7-long sites that are below a cutoff of binding energy for the full

range of energies.

Sets of example binding sites
Two different types of sets of example binding sites were

generated for each cutoff score from 2 to 7. They correspond to

sequences drawn from a step-function distribution or a Boltzmann

distribution, in each case using a maximum energy cutoff for

Figure 4. Performance of the position weight matrix models with Boltzmann sampling. A–C. Alignments containing 20 sites. D–F.
Alignments containing 50 sites. G–I. Alignments containing 200 sites. The log-odds, Match, and quadratic programming results are denoted by the
red open-square, yellow open-diamond, and blue filled-oval markers respectively. Each data point is the mean of five replicates. Error bars denote the
standard deviation of the mean.
doi:10.1371/journal.pone.0006736.g004
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selected sites. In the step-function distribution all sites that fall

below the cutoff are equally likely to be sampled. In the Boltzmann

sampling the probability of a site being sampled is proportional to

its relative affinity (Figure 1A). Therefore the sites with the highest

affinity will be sampled most often, and those just below the cutoff

will be sampled the least.

Methods of model determination
We used three different methods to determine an energy matrix

from the set of example binding sites. The most commonly used

methods define the position weight matrix (PWM) as the log-odds

of the observed frequencies of each base at each position

compared to that expected by chance [9]. In these simulations

we assume that the background is equiprobable, 0.25 for each of

A, C, G and T. The PWM by this method takes the aligned

binding sites and is calculated as:

WLO b,ið Þ~log2

f b,ið Þ
0:25

where f(b,i) is the frequency of each base, b, at each position, i, in

the aligned binding sites. We add a pseudocount of 1 to observed

counts to avoid frequencies of 0.

The second method we tested is from the Match program which

is commonly used with the TRANSFAC database [29]. In this

case the PWM is calculated as:

WMA b,ið Þ~I ið Þ f b,ið Þ{fmin b,ið Þ
fmax b,ið Þ{fmin b,ið Þ

Where I(i) is the ‘‘information content’’ [41] at position i,

defined as:

Figure 5. Receiver operator characteristic curves of the position weight matrix models with step-function sampling. The log-odds,
Match, and quadratic programming results are denoted by red, yellow, and blue markers respectively. Each data point is the mean of five replicates
and points are allowed to overlap. Error as standard deviation of the mean extends from each curve by the size of a single marker. A. Alignments
containing 20 sites; cutoff = 4. The log-odds, Match, and quadratic programming curves attain TP = 1 at FP = 0.013, 0.099, and 0.019, respectively. B.
Alignments containing 20 sites; cutoff = 7. The log-odds, Match, and quadratic programming curves attain TP = 1 at FP = 0.329, 0.495, and 0.200,
respectively. C. Alignments containing 50 sites; cutoff = 4. The log-odds, Match, and quadratic programming curves attain TP = 1 at FP = 0.014, 0.057,
and 0.011, respectively. D. Alignments containing 50 sites; cutoff = 7. The log-odds, Match, and quadratic programming curves attain TP = 1 at
FP = 0.151, 0.437, and 0.070, respectively. E. Alignments containing 200 sites; cutoff = 4. The log-odds, Match, and quadratic programming curves
attain TP = 1 at FP = 0.009, 0.038, and 0.006, respectively. F. Alignments containing 200 sites; cutoff = 7. The log-odds, Match, and quadratic
programming curves attain TP = 1 at FP = 0.061, 0.253, and 0.013, respectively.
doi:10.1371/journal.pone.0006736.g005
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I ið Þ~2z
X

b

f b,ið Þ log2f b,ið Þ

and fmin(b,i) and fmax(b,i) refer the minimum and maximum

frequencies, respectively, that occur at position i. This method

adds the frequencies of the bases at each position, scaled between 0

and 1 for the least to most frequent, and weighted by the

information content of the position.

The third method is based on a quadratic programming

approach presented recently by two different groups [30,31]. In

this method the PWM is found that scores all of the observed

sequences above some constant (set to 1 here) while minimizing

the total length of the PWM vector:

min
Wj j

WQP b,ið Þ:Sz
j §1

where Sz
j is the set of example binding sites (the positive dataset).

Since the dot-product is related to the angle between the vectors,

h, by:

WQP b,ið Þ:Sj~ WQP

�� �� Sj

�� ��cosh

and since all of the sequence vectors are of the same length,

minimizing |WQP| means maximizing cos h, or minimizing h, the

angle between the PWM vector and all of the sequence vectors.

Essentially this method is finding the PWM vector that is in the

center of set of sequence vectors. This method is similar to training

a support vector machine using only positive training data, to

minimize the volume of sequence space that is allotted to positive

scoring vectors [30,31].

Figure 6. Receiver operator characteristic curves of the position weight matrix models with Boltzmann sampling. The log-odds,
Match, and quadratic programming results are denoted by red, yellow, and blue markers respectively. Each data point is the mean of five replicates
and points are allowed to overlap. Error as standard deviation of the mean extends from each curve by the size of a single marker. A. Alignments
containing 20 sites; cutoff = 4. The log-odds, Match, and quadratic programming curves attain TP = 1 at FP = 0.026, 0.072, and 0.026, respectively. B.
Alignments containing 20 sites; cutoff = 7. The log-odds, Match, and quadratic programming curves attain TP = 1 at FP = 0.238, 0.445, and 0.326,
respectively. C. Alignments containing 50 sites; cutoff = 4. The log-odds, Match, and quadratic programming curves attain TP = 1 at FP = 0.011, 0.045,
and 0.009, respectively. D. Alignments containing 50 sites; cutoff = 7. The log-odds, Match, and quadratic programming curves attain TP = 1 at
FP = 0.107, 0.306, and 0.143, respectively. E. Alignments containing 200 sites; cutoff = 4. The log-odds, Match, and quadratic programming curves
attain TP = 1 at FP = 0.008, 0.018, and 0.003, respectively. F. Alignments containing 200 sites; cutoff = 7. The log-odds, Match, and quadratic
programming curves attain TP = 1 at FP = 0.035, 0.209, and 0.065, respectively.
doi:10.1371/journal.pone.0006736.g006
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Assessing the accuracy of the models
Each method for determining a PWM based on example sites

has different score ranges and distributions, but their accuracies

can be measured by determining the number of false positive and

false negative predictions. E:Sj is the true binding energy for every

sequence, and the predicted energy is Ex
:Sj~a{cWx

:Sj , where a

and c are offset and scaling factors and x refers to each different

type of PWM. The important point is that ranking binding sites by

their predicted energy from lowest to highest is equivalent to

ranking them by their scores from highest to lowest. For a given

cutoff of true binding energy we can determine every sequence

that exceeds that cutoff and every sequence that falls below it. For

each of the PWMs we set the cutoff to be the lowest scoring of the

observed sequences, and then for all of the remaining sequences

determine if they are above or below that cutoff. Sequences whose

true value is above the cutoff but whose predicted value is below

are false negatives, FN, and sequences whose true value is below

the cutoff but whose predicted value is above are false positives,

FP. The remaining sequences are correctly predicted true

positives, TP, and true negatives, TN.

The Matthews correlation coefficient is a convenient method for

combining all of the predictions into a single value:

MCC~
TP:TNð Þ{ FP:FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FPzTPð Þ TPzFNð Þ TNzFNð Þ TNzFPð Þ
p

The value of MCC ranges from 1, where all predictions are

correct, to 21, where all predictions are incorrect. Any type of

random assignment leads to MCC = 0. Specificity is defined as

TP/(TP+FP) and sensitivity is defined as TP/(TP+FN).

Receiver operator characteristic curves
ROC curves were prepared with Microsoft Excel. The

population of all 7mers was ranked by the true model from the

lowest energy site to the highest. Similarly, a ranked list was

prepared for each PWM model from highest to lowest scoring

sites. Sites that had the same scores were allowed to be sorted by

Excel and no modification of this ranking was attempted. The

position of each PWM-ranked site in the true-ranked list was

located and this information was saved as a ‘‘where is’’ list; see

Figure 7. From Figure 2, the number of sites ranked at or above

the threshold was known in each case and this value, K, was used

in a comparison. Specifically, starting from the origin, points in

ROC space were generated by moving down the ‘‘where is’’ list

(column 4 in Figure 7) and executing this statement: if the ‘‘where

is’’ number is greater than K, increment the x column by one,

otherwise increment the y column by one. The x-axis was

normalized by dividing through by 47 –K; the y-axis was

normalized by dividing through by K. The FP rate is represented

by the x-axis, while the TP rate is represented by the y-axis.

Availability of Software
All of the programs developed for this paper are available at

ural.wustl.edu/QPLOMA. These include the programs for

generating the samples, for generating each different type of

model from the sampled sites, and for analysis based on MCC,

specificity, sensitivity and ROC.
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