
Metabolomics Reveals Metabolic Biomarkers of Crohn’s
Disease
Janet Jansson1,2., Ben Willing2., Marianna Lucio3., Ages Fekete3, Johan Dicksved2, Jonas Halfvarson4,

Curt Tysk4, Philippe Schmitt-Kopplin3*

1 Ecology Department, Division of Earth Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America, 2 Department of Microbiology,

Swedish University of Agricultural Sciences, Uppsala, Sweden, 3 Helmholtz-Zentrum Muenchen-German Research Center for Environmental Health, Institute for Ecological

Chemistry, Neuherberg, Germany, 4 Department of Medicine, Division of Gastroenterology, Örebro University Hospital and School of Health and Medical Sciences, Örebro
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Abstract

The causes and etiology of Crohn’s disease (CD) are currently unknown although both host genetics and environmental
factors play a role. Here we used non-targeted metabolic profiling to determine the contribution of metabolites produced
by the gut microbiota towards disease status of the host. Ion Cyclotron Resonance Fourier Transform Mass Spectrometry
(ICR-FT/MS) was used to discern the masses of thousands of metabolites in fecal samples collected from 17 identical twin
pairs, including healthy individuals and those with CD. Pathways with differentiating metabolites included those involved in
the metabolism and or synthesis of amino acids, fatty acids, bile acids and arachidonic acid. Several metabolites were
positively or negatively correlated to the disease phenotype and to specific microbes previously characterized in the same
samples. Our data reveal novel differentiating metabolites for CD that may provide diagnostic biomarkers and/or
monitoring tools as well as insight into potential targets for disease therapy and prevention.
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Introduction

Crohn’s disease (CD) is an inflammatory bowel disease (IBD),

characterized by chronic inflammation of the gastrointestinal tract.

The exact etiology of CD is unknown, but both the host genotype

and environmental factors play a role, and it is known that disease

induction requires the presence of bacteria. No specific pathogen

has been defined as a causative agent, but individuals with CD

have an imbalance or ‘dysbiosis’ of their intestinal microbiota, or

microbiome [1], [2]. Dysbiosis in turn leads to a breakdown in the

détente relationship between the microbiome and the host

immune system, through unknown mechanisms.

Diagnostic and monitoring tools for CD are currently

inadequate. Numerous serological biomarkers have been proposed

for the diagnosis of CD. However, for clinical applications, none of

the current markers stand-alone and they are therefore used in

conjunction and as a supplement to endoscopy. Therefore, more

accurate tools are needed for early diagnosis of CD; in particular

non-invasive approaches that can be used in place of endoscopy.

Our aim was to search for metabolic biomarkers of CD as

evidence of microbial functions in the gut. Recent advances in

nuclear magnetic resonance (NMR) and mass spectrometry (MS)

have made it possible to simultaneously assess thousands of

metabolites corresponding to the ‘‘metabolome’’ and to determine

end-points of metabolic processes in living systems [3]. NMR (1H

NMR Spectroscopy) has revealed gut microbial contributions to

metabolite compositions in different body fluids, including blood

[4], urine [5], [6] and fecal extracts [7], [8]; and the latter has

revealed some metabolites that are correlated to CD [7].

Although the information provided using NMR has been very

valuable it is still limited by low resolution and sensitivity that only

enables the annotation and quantification of a limited number of lower

molecular weight molecules. By contrast, ion cyclotron resonance-

Fourier transform mass spectrometry (ICR-FT/MS) with an ultrahigh

mass resolution enables differentiation of very subtle variations in

thousands of mass signals, including higher molecular weight

metabolites [9]. The combination of coupled metabolite separation

technologies to spectrometry and spectroscopy enables a multidimen-

sional approach for the structural identification of new metabolites as

recently exemplified for markers of diabetes and early stage insulin

resistance [10]. Therefore, in this study we used ICR-FT/MS with its

high dynamic range and high mass accuracy (0.2 ppm) to obtain non-

targeted profiles of elementary compositions in fecal samples obtained

from individuals with CD.

Analysis

Patient cohort
The selection criteria and patient information for the twins

studied in this experiment have previously been described [11],
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[12]. Patient information presented in Table S1, including

responses to a questionnaire regarding the usage of antibiotics,

non-steroidal anti-inflammatory drugs during the preceding 12

months, gastroenteritis within the preceding 3 months, and specific

dietary habits have previously been reported [12]. Written

informed consent was obtained and approved by the Swedish

ethical committee. The sample cohort was comprised of 15 twin

pairs, with 7 healthy twin pairs, 4 pairs that were discordant for

predominantly colonic CD (CCD), 2 pairs that were discordant for

predominantly ileal CD (ICD), 2 pairs that were concordant for

ICD, and 2 pairs that were concordant for CCD. There were a

total of 8 individuals with CCD (aged 20–70, mean 48), 6

individuals with ICD (aged 44–53, mean 49.8), 6 healthy

individuals with a sick twin (HD) (ages 20–70, mean 51.8) and

14 healthy individuals with a healthy twin (HH). In the HH group,

5 pairs were children (ages 5–11, mean 7.4) and 2 pairs were of

similar ages to diseased individuals (45–55 mean 50). All diseased

individuals were in clinical remission according to the Harvey-

Bradshaw score [13] with the exception of 2 individuals (10b and

15a). Both of these individuals had endoscopic recurrence scores

below 2 [14] at colonoscopy suggesting that the Harvey-Bradshaw

score did not indicate active CD. Fecal samples were placed in a

freezer at 270 uC within 24 h of collection, until analysis. The use

of human subjects for this study was approved by the Örebro

County Ethical Committee (Dnr; 167/03).

Preparation of fecal water
Fecal samples were diluted 1:60 (weight:volume) in cold (4uC)

50 mM sodium phosphate buffer (pH 8.0). The suspension was

mixed in a gyratory shaker at 120 rpm for 10 min at 4uC and then

centrifuged at 200 x g for 10 min at 4uC to pellet the debris. The

supernatant was removed and centrifuged at 18,000 x g for

10 min to pellet the bacteria. The supernatant was collected and

the pH was lowered to approximately 4.5 by addition of 0.25 mL

of 1% formic acid to each mL of supernatant, with a resulting final

sample dilution of 1:75. The fecal water samples were frozen and

stored frozen at 270uC until analysis. The samples were extracted

20 min after they were thawed at room temperature by solid phase

extraction (SPE) using 1 L cartridges filled with 100 mg of

octadecy-bonded silica packing (Bakerbond, Mallinckrodt Baker,

Griesheim, Germany) for desalination and deproteination of the

sample. The cartridges were preconditioned with 2 mL of

methanol and 2 mL of water acidified with 0.1% formic acid

prior to the application of 0.5 mL of sample. The columns were

washed with 0.5 mL of 0.1% formic acid and metabolites were

eluted with 0.5 mL methanol.

FT-ICR-MS analysis
High-resolution mass spectra (resolution D(m/z)/(m/z) of

500.000 at m/z 500 in full scan mode) were acquired on a

Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

(Bruker, Bremen, Germany), equipped with a 12 Tesla supercon-

ducting magnet and an Apollo II ESI source. Samples were

infused with the micro-electrospray source at a flow rate of

120 mL/h with a nebulizer gas pressure of 20 psi, and a drying gas

pressure of 15 psi at 250uC. Negative and positive electrospray

ionisation was used. Spectra were externally calibrated on clusters

of arginine (m/z of 173.10440, 347.21607, 521.32775 and

695,43943) dissolved in methanol at a concentration of 10 mg/

L; calibration errors in the relevant mass range were always below

0.1 ppm. Four MW time domains were applied in the mass range

of 150–2000 m/z. The ion accumulation time in the ion source

was set to 2 s and 200 scans were accumulated per sample. Before

Fourier transformation of the time-domain transient, a sine

apodization was performed. The raw data were processed with

DataAnalysis 3.4 (Bruker Daltonik, Bremen) software that is hard-

coded in the instrument. Peaks exceeding a threshold signal-to-

noise ratio of 3 were exported to peak lists. The extracted spectra

were aligned though in-house software.

Identification of differentiating masses and assignment
to metabolic pathways

Different multivariate analysis techniques including principal

component analysis (PCA), hierarchical cluster analysis (HCA) and

partial least square discriminant analysis (PLS-DA) were combined

to reduce the data sets into a series of optimized and interpretable

objects. The study of contribution of the different variables (m/z in

this case) was done though the analysis of the regression

coefficients. The statistical analyses were done with SIMCA-P

11.5 (Umetrics, Umea, Sweden), SAS version 9.1 (SAS Institute

Inc., Cary, NC, USA) and the Statistical package ‘‘R’’ (v 1.8.1) for

the heatmap visualization.

The masses with the highest regression coefficient (an arbitrary

cut off value .0.0004) were chosen to be discriminant. Moreover

these masses have a variable importance in the projection VIP.1

(where a VIP value of $1 is regarded as significant). The VIP is a

computation of the influence of every x term in the model on the y

variable (ICD, CCD, and Healthy). Larger VIP values indicate a

greater influence of a term x on the y variable.

We used a PLS-DA model to evaluate the m/z that contributed

to separation between healthy vs individuals with CCD and ICD.

The model gave good values for Q2(cum) = 0.6 and R2(Y) = 0.9.

However the permutation test applied with 100 permutations

revealed a possible over fitting of the model. Thus the dataset was

reduced excluding the masses with frequencies less than three and

a PLS model with an orthogonal signal correction (OSC) was

applied. The putative masses responsible for the metabolic

differentiation were used to make queries in the KEGG database

(Kyoto Encyclopedia of Genes and Genomes) through the

MassTRIX software [15] including Homo sapiens and Bacteroides

vulgatus as reference species. MassTRIX calls the KEGG/API

(http://www.genome.jp/kegg/soap/) to generate pathway maps,

where the annotated compounds and genes are highlighted using

different colors-thus differentiating between organism-specific and

extra-organism items [15]. The identification of certain metabo-

lites as their exact masses in their given biological context was

strategic in the context of searching for biomarkers for CD.

Correlation of metabolites to microbial profiles
The bacterial community profiles of the same fecal samples

studied here have previously been reported [12]. To determine

correlation between the microbial community composition and the

metabolic profiles, distance matrices using Manhattan distances

[16] for microbial and metabolic profiles were calculated indepen-

dently, then Pearson correlation coefficients between the two

distance matrices were calculated. Significances of the correlations

were tested using the Mantel test with 1000 permutations. Cluster

analysis of microbial and metabolic profiles was performed using

binary data (Jaccard’s similarity index). Moreover the relation

between the metabolites and the microbial profiles was analyzed

with a PLS model with OSC, the metabolites were used as

explicative variables. The relation of the first ten explicative masses

with the different bacteria was expressed with the heatmap.

Discussion

Due to the tremendous individual diversity in the composition

of the gut microbiota in humans and the corresponding

Crohn’s Metabolomics
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anticipated diversity in the metabolites they produce, we expected

it to be challenging to correlate specific metabolites to CD.

Therefore, in this study, we focused on a twin cohort, described

previously [2], [17], that includes healthy twin pairs, concordant

pairs (both twins have CD) and discordant pairs (one twin is

healthy and the matched twin has CD). The patients with CD

were further differentiated depending on whether inflammation

was primarily localized in the ileum (ICD) or in the colon (CCD)

[2], [17]. A particular value of this patient cohort was the

availability of existing data about the microbial profiles in fecal

samples [17] and biopsies [2] from the same individuals that

enabled the possibility of correlation of metabolites to microbial

populations. Our previous studies showed that there were

significant differences in levels of several members of the microbial

communities in the gut of individuals that had ICD compared to

those with CCD or to healthy individuals; in particular

dramatically lower abundances of Faecalibacterium prasnitzii and

higher levels of Escherichia coli in individuals with ICD compared to

the other two groups [2]. However, there was no clear distinction

between the microbial community profiles in healthy individuals

and those with CCD. Although the gut microbial communities of

healthy twins were more similar to each other than to other

individuals in the sample cohort, this similarity was no longer

evident when comparing twin sets where one or both twins were

sick [17].

In this study, we used several multivariate statistical approaches

to analyze the metabolites present in the liquid phase (fecal water)

of the same fecal samples examined earlier [17]. First, using

principal components analysis (PCA) we found that the metabo-

lomes of individuals that had ICD grouped separately from those

with CCD and from healthy individuals (Figure S1). Some of the

healthy individuals were young (Table S1) and their metabolomes

grouped separately from the healthy adults on the PCA plots

(Figure S1). This distinction between healthy young and old was

not evident in our previous analyses of the microbial community

compositions [17]. An example of a discriminating metabolite that

contributed highly to the grouping of the young was 5b-

cyprinosulfate, a bile acid that was more abundant in young

subjects (P,0.003) compared to all other groups. Because there

were no young individuals with CD in this study, we continued

with adults only for further statistical discrimination of diseased

from healthy groups.

Using a partial least squares (PLS) statistical approach on

corrected mass data the separation between disease phenotypes

was even more pronounced than when using the PCA model, with

a clear separation of individuals with ICD from those with CCD

and from healthy individuals (Fig. 1A) and some examples of

differentiating metabolites are shown in Figure 1B. This

differentiation according to disease phenotype that was seen using

both the PCA and PLS approaches provides further support to the

recent hypothesis that ICD and CCD are different disease

phenotypes of CD. The outlier with CCD was the youngest of

our Crohn’s patients (born 1986) and had only had the disease for

4 years at the time of sampling, whereas all the others have had the

disease for .10 years.

The 2nd component of the PLS model also revealed a clear

separation, not only between the individuals with ICD versus

CCD and healthy, but also between CCD and healthy. These data

are the first that we have seen from this sample cohort that

differentiate healthy from CCD individuals. Therefore, the

resolution of separation of the groups was higher for the

metabolite profiles than for the microbial community profiles

[17], thus demonstrating the potential for use of metabolomics as

an approach for accurate disease diagnosis. One reason for the

higher discrimination of the metabolite data compared to the

microbial data could be the direct link of metabolites to function

since they represent the final signature of enzymatic processes

occurring in the gut. By comparison, detection of microbial

presence based on DNA targets may be misleading since many

species in the gut may be dormant, dead, or transient and this

information is not available when assessing DNA alone. Another

explanation for the difference between DNA-based surveys and

metabolite-based surveys could be that some microbes may be

present and active in both diseased and healthy individuals, but

may not have a significant effect on levels of the metabolites that

we are screening for.

Metabolites within a broad range of pathways contributed to

the differentiation of healthy from diseased individuals, as well as

between disease phenotypes (Fig. 2A, Table 1). From the total

number of 18,706 measured masses, we found that 7919 were

discriminating for a specific disease phenotype: 2155 for ICD,

3113 for CCD and 2650 for healthy.

Of the discriminating masses 13.3%, 9.5% and 9.3% for ICD,

CCD and healthy groups, respectively, could be assigned to

metabolic pathways using MassTRIX. However, 89.6% could not

be assigned using MassTRIX software indicating that the available

databases used for the identification of masses are yet limited by

incompleteness. Some of the unassigned masses were interesting,

such as the negative ion at mass-to-charge ration (m/z) of 229.1557

or 391.2853 (see Fig. 1B), that were characteristic for ICD patients.

Pathways with differentiating metabolites included those involved in

the metabolism and or synthesis of amino acids, fatty acids, bile acids

and arachidonic acid and these are discussed in more detail below.

We found numerous masses corresponding to metabolites within

the tyrosine metabolic pathway (Fig. 2B) that discriminated diseased

from healthy groups. For example, dopaquinone, an oxidation

product of dopa and an intermediate in the formation of melanin

from tyrosine, was more abundant (P,0.05) in CD patients (both

CCD and ICD) than in healthy individuals. L-DOPA has been

observed at elevated levels in inflamed mucosa of IBD patients [18].

There is also some evidence that polymorphisms in the dopamine

receptor D-2 play a role in CD [19]. In addition, 4-hydroxyphe-

nylacetylglycine and (Z)-4-hydroxyphenylacetaldehyde-oxime con-

tributed substantially to the separation of CCD individuals. In a

previous study 4-hydroxyphenylacetylglycine in urine was nega-

tively correlated to the abundance of Faecalibacterium prausnitzii in

the gut [5]. We observed the same negative correlation for

healthyIndividuals, but in contrast we found higher levels of 4-

hydroxyphenylacetylglycine levels in the feces of a subset of CCD

patients with elevated F. Prausnitzii abundances previously

published from the same samples [2]. These differences could be

due to the different sample origins in the different studies; i.e. urine

compared to feces. In our previous studies and others F. prausnitzii

was more abundant in healthy individuals and those with CCD

compared to individuals with ICD [2], [20]. These results suggest

there could be a link between F. prausnitzii and the metabolite 4-

hydroxyphenylacetylglycine that warrants further study.

Increased amounts of metabolites involved in tyrosine metab-

olism coincides with earlier reports of increased transcripts of

genes involved in tyrosine metabolism in peripheral blood

mononuclear cells from CD patients [21]. However, it is not

clear what (if any) role increased tyrosine metabolism may play in

CD. Interestingly, protein tyrosine phosphatases have been

associated with autoimmune diseases [22], although such muta-

tions have not been correlated to CD.

The amino acids tryptophan and phenylalanine were also

indicative of the ICD phenotype (Table 1). The presence of

tryptophan in the feces might correspond to a subset of previously

Crohn’s Metabolomics
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described CD patients with a specific depression of blood

tryptophan levels [23]. Interestingly, one ICD individual did not

have detectable levels of tryptophan or phenylalanine, and this

individual also had the lowest abundance of mucosal E. coli [2],

compared to the other ICD individuals. Although other organisms

could also be correlated to these metabolites, it would be of interest

to further investigate any links between E. coli abundance and

amino acids in the gut. Previous studies [24] have shown that E.

coli isolated from CD patients have pathogen-like behavior in vitro,

and may play a role in the inflammatory process. Marchesi et al.

[7] also observed increased levels of some other amino acids in

fecal samples of CD patients with active disease (ours were in

remission), but these were different amino acids than those we

found; i.e. alanine, isolueucine, leucine and lysine. The presence of

amino acids in the feces of ICD patients in general may be the

result of malabsorption resulting from the shortening of the small

bowel or due to subclinical inflammation, or conversely the result

of secretion into the bowel. Regardless of the underlying

mechanism, these results suggest that a special consideration of

amino acid balance should be made for patients with active disease

as well as those in remission.

Many masses corresponding to metabolites within the bile acid

biosynthesis pathway contributed to the segregation of disease

phenotypes. In particular, the mass corresponding to glycocholate

was prevalent in a majority of individuals with CD (Table 1), but

not detected in healthy individuals. Masses corresponding to

taurocholate, 3a, 7a, 12a-trihydroxy-5b-cholanate and cheno-

deoxyglycocholate were also particularly high (P,0.001) in ICD

Figure 1. (A) Score and loading scatter plot of PLS analysis (Q2(cum) = 0.96, R2(Y) = 0.95). (blue N= ICD, red N= CCD and green N= Healthy).
The masses with the highest regression coefficients were considered as discriminant. Coordinates on the figure axes are 6108. (B) Example of a
differentiating metabolite for ICD (assigned at m/z of 391.2853) that is up regulated in the ICD group but the structure is unknown. (C) Mass at m/z of
407.2802 corresponding to 3a, 7a, or 12a-trihydroxy-5b-cholanate within the bile acid biosynthesis pathway. The intensities in B and C were normalized.
doi:10.1371/journal.pone.0006386.g001

Crohn’s Metabolomics

PLoS ONE | www.plosone.org 4 July 2009 | Volume 4 | Issue 7 | e6386



Figure 2. (A) KEGG pathways that discriminated the three groups: ICD CCD and healthy. The m/z were selected after the validation of PLS
model; (B) Tyrosine metabolism pathway, the red metabolites were identified and present in the ICD group. Green shading refers to enzymes that
were annotated in Bacteroides vulgatus.
doi:10.1371/journal.pone.0006386.g002
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patients (Table 1). The majority of bile acids are reabsorbed in the

distal ileum, largely accomplished by an apical sodium dependent

bile acid transporter, and thus ileal resection could explain the

reduced bile acid absorption in ICD patients. However, only 1 of

the 4 CCD patients with glycocholate in the feces had undergone

resection surgery. This is consistent with the finding that patients

with and without ileal resection have altered bile composition [25].

Increased bile in the feces may indicate that although these

subjects were in remission they were nevertheless experiencing

sub-clinical inflammation as bile acid absorption has been shown

to be inhibited by inflammation [26], or increased mucosal

permeability [27]. A detrimental feedback loop could be created

where inflammation results in reduced bile absorption, therefore

increased bile in the lumen, which in turn causes increased

inflammation.

Masses corresponding to both saturated and unsaturated fatty

acids, including oleic acid, stearic acid, palmitic acid, 6Z-, 9Z-, and

12Z-octadecatrienoic acid, linoleic acid and arachadonic acid,

were also higher in patients with ICD compared to the other

groups (Table 1). Fernandez Baneres et al. [28] previously reported

elevated levels of arachidonic acid and linoleic acid in colonic

mucosa of CD patients, consistent with our results from fecal

samples, but they also found reduced amounts of oleic acid in the

mucosa, contrary to the increased levels we observed.

Arachidonic acid is particularly interesting because it is known

to mediate inflammation and the functioning of several organs and

systems either directly or upon its conversion into eicosanoids.

Arachidonic acid has previously been shown to increase the

expression of the intracellular adhesion molecule (ICAM)-1, which

is involved in the recruitment of leukocytes, suggesting another

role of this molecule [29]. Linoleic acid and arachidonic acid are

also essential for the synthesis of prostaglandins (PG), which are

important immune signaling molecules. However, in our study the

increased abundances of these fatty acids did not correspond to

levels of PG (see below) and further studies are necessary to

determine their possible links and correlations to CD.

Masses corresponding to PG and their breakdown products

including PGF2a and 2,3-dinor-8-iso-PGF2a, thromboxane/6-

Keto-PGF1a/PGI2 and PGE2 were more prevalent in healthy

individuals (including the young group) than those with CCD and

ICD (Table 1). The role of PG as immune signaling molecules is

particularly interesting as CD is associated with disregulated

immune function. CD-associated alleles have recently been

negatively correlated to quantitative expression levels of prosta-

glandin receptor EP4 (PTGER4) [30] and PTGER4 knockout

mice experience more severe colitis in the dextran sodium sulfate

model of colitis. The reduced levels of PGs that we observed may

reflect a reduced absorption of their precursors, arachidonic acid

Table 1. Identified fecal metabolites that contribute to the discrimination of disease phenotypes.

Pathway Metabolite CCD Healthy ICD

Mean1
Detected
(n/8) Mean1

Detected
(n/10) Mean1

Detected
(n/6) P

Tyrosine metabolism 2-Carboxy-2,3-dihydro-5,6-
dihydroxyindole/dopaquinone

202889263a
* 5 133363 b 1 2616539 b 4 .015

4-hydroxyphenyl-acetylglycine 8699313 a
* 5 0 b 0 140068 b 1 .012

(Z)/4/hydroxyphenyl-acetaldehyde-oxime 502918 a
* 4 0 b 0 0 b 0 .006

Amino acids Tyrosine 335531 b 3 86251 b 1 1441491 a
* 6 .001

Tryptophan 208343 b 2 0 0 1087303 a
* 5 .001

Phenylalanine 0 b 0 0 0 1405997 a
* 5 .001

Bile acid metabolism Glycocholate 715048 b
* 4 0 0 1847470 a

* 5 .001

Taurocholate 312872 b 2 179560 b 2 14227172 a
* 5 .002

Trihydroxy-6b-cholanate 20481784 b 8 16410877 b 10 1016307115 a
* 6 .001

Chenodeoxyglycocholate/
Glycochenodeoxycholate

335746 b 2 83591 b 1 1200688 a
* 5 .002

Fatty acid biosynthesis Oleic acid 451036 b 2 580092 b 3 5745324 a
* 5 .010

Stearic acid 661070 b 3 687268 b 5 2658962 a
* 5 .021

Palmitic acid 357430 b 2 184491 b 2 2476141 a
* 5 .006

arachidonic acid 0 b 0 0 b 0 715296 a
* 3 .004

octadecatrienoic acid 0 b 0 0 b 0 568143 a
* 3 .005

linoleic acid 920810 b 3 778285 b 4 5202328 a
* 5 .022

Arachidonic acid prostaglandin F2a 607077 4 1400944* 9 977053 4 .142

metabolism/prostaglandins 2,3-dinor-8-iso-prostaglandin F2a 4002093 8 4048724* 10 1918427 6 .093

prostaglandin F1a 1216394 b 7 2482457a
* 10 812282 b 4 .017

prostaglandin E2a 1726834 8 2662085* 9 1077826 5 .088

Phenylalanine metabolism 3-(4-hydroxy-phenyl)propionic
acid/3-(4-hydroxyphenyl)lactate

2945178 ab
* 4 513000 b 4 3632083 a

* 6 .001

*Indicates the group discriminated by the given metabolite in PLS-DA; n, indicates number out of the total number of individuals in each disease category.
1Mean, refers to the mean amount (daltons) of the metabolite detected in all individuals within a given disease category.
P values indicate a significant difference between groups based on Anova; different subscript letters indicate groups that differed significantly (,.05).
doi:10.1371/journal.pone.0006386.t001

Crohn’s Metabolomics

PLoS ONE | www.plosone.org 6 July 2009 | Volume 4 | Issue 7 | e6386



and linoleic acid, as indicated above. While we observed reduced

prostaglandin levels in CD patients that were in remission PG

particularly PGE2, have been observed to be more abundant in

patients with active CD [31]. This is consistent with the fact that

PGE2 is proinflammatory, acting through the EP-2/4 receptor on

dendritic cells inducing the expression of IL-23 resulting in a

TH17 phenotype associated with CD [31]. Therefore, reduced PG

levels in CD patients in remission observed here may make them

susceptible to relapse, although elevated levels during active

disease could be a cause of tissue damage. Intriguingly, 3-(4-

hydroxyphenyl)-propionic acid, that has previously been shown to

suppress PGE2 production [32], was particularly elevated in a

subset of CCD and ICD individuals.

Manhattan distances were calculated from the metabolic

profiles of all individuals to determine whether the gut metabo-

lomes of twins were more similar to each other than to unrelated

individuals. The inter-twin similarity (mean6SE) of healthy twins

(0.51360.035) and concordant twins (0.43160.070) was greater

(P,0.001) than that of discordant twins (0.27660.048). This

coincides with the reduced similarity of microbial profiles

previously observed in the discordant twins [17]. A correlation

between the metabolic and microbial distance matrices (r = 0.348,

P,0.001) coincides with findings from Li et al. [5] correlating fecal

microbial profiles to urinary metabolites, indicating a contribution

of bacteria to overall metabolic profiles in the human host. We

observed a stronger correlation between metabolic and microbial

similarities when making within twin comparisons (r = 0.748,

P,0.001) strengthening the hypothesis that genetics plays a role in

the formation and maintenance of the intestinal microbiome

(Fig. 3). The most striking observation from the cluster analysis

(Fig. 3) was the similar division of clusters according to the disease

phenotype for both the microbial and metabolite data reinforcing

the link between microbial community structure, function and

disease.

Subsequently, we also correlated the metabolomes to the relative

abundances of specific bacterial populations within the same

samples. We used a PLS model with relative abundances of specific

microbial populations as the Y matrix and the m/z data as the

independent variables to correlate the MS data to microbes and

disease status (Fig. 4A). The masses were correlated to predefined

Figure 3. Similarity plot (using Jaccard’s index) of (A) microbial composition based on binary T-RFLP data and (B) ICR-FT/MS data,
respectively, from fecal samples of individuals with ICD (blue), CCD (red) and healthy individuals (green). Individuals were numbered
according to Table S1, and as previously defined (11). Boxes indicate twin pairs that share the most similar metabolic and microbial profiles. Note:
metaproteome data from the same fecal samples for individuals 6a and 6b have recently been published [33].
doi:10.1371/journal.pone.0006386.g003
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key species that we previously found to be significantly more or less

abundant depending on the disease phenotype of the host [2], [17].

For example, Bacteroides vulgatus (BV), B. ovatus (BO) and E. coli (EC)

were present at significantly higher levels in the ICD group, whereas

F. prausnitzii (FP) and B. uniformis (BU) were more abundant in the

healthy and the CCD groups. The 10 masses with the highest

regression coefficient value for each of the 5 bacteria indicated

above were assigned in MassTRIX (Table S2). The correlation

Figure 4. PLS loading plot (A) where bacterial abundance defined the Y matrix and ICR-FT/MS data were plotted as predictors of
differentiating bacteria based on their regression coefficients. Masses with the greatest regression coefficients for specific bacterial
populations that were more abundant [B. ovatus (BO), B. vulgatus (BV), and Escherichia coli (EC)] and less abundant [Faecalibacterium prausnitzii (FP)
and Bacteroides uniformis (BU)] in the feces of individuals with ileal Crohn’s disease (ICD) compared to individuals with colonic Crohn’s disease (CCD)
and healthy (H) individuals are identified in the heat plot (B). The heat plot indicates the abundance of masses, the predicted metabolite, the bacteria
that were positively correlated to that metabolite and whether the metabolite was positively (+) or negatively (2) associated with ICD. The clustering
on the x-axis is according to disease and that on the y-axis is according to the relative abundances of the same bacterial populations selected in (A)
and corresponding abbreviations are given on the first column to the right of the heat plot. Individuals on the x-axis are coded according to [17].
Each cell is colored based on the detected level of the predicted metabolite.
doi:10.1371/journal.pone.0006386.g004
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coefficients were computed using bacterial and MS abundances and

these data were expressed in a heat map for visualization of the data

clustering (Fig. 4B). In this analysis the individuals clustered mainly

into two groups: 1) ICD and 2) healthy + CCD, similar to what we

found with the PCA plot of the original metabolite data (Figure S1).

Bacteria that were more abundant in individuals with ICD (BV, BO

and EC) were those that were most strongly correlated to bile acids,

including taurocholic and cholic acids, and fatty acids, including

stearic, and docosapentanoic acids. Conversely, bacteria that were

more abundant in healthy or CD phenotypes (BU and FP) were

correlated to phospholipids and flavin mononucleotide (FMN). The

correlation of these metabolites to specific bacterial groups merits

further attention, such as the causality of the relationship between E.

coli and elevated levels of taurocholic acid. It should be kept in mind,

however, that other bacteria that weren’t specifically included in this

screening could be contributing to the metabolite profiles seen.

In summary, this study demonstrates the potential of metabo-

lomics to provide a means to differentiate disease phenotypes and to

give new insights into the etiology of Crohn’s disease. Our study also

emphasizes the importance of metabolites produced by the gut

microbiota for a healthy gut environment. The analysis procedure

was rapid to perform and resulted in highly accurate mass data.

Several masses were found that differentiated healthy, ICD and

CCD individuals. Interestingly, the similarity of metabolite profiles

in healthy monozygotic twin pairs underscores the importance of

genetics in determining the nature of the gut environment, including

the bacterial species that are most dominant and the metabolites

they produce. Further investigation of those masses that were

important in differentiation of disease phenotypes, but that could

not be assigned to structures, will be an aim for the future using

structure identification tools involving hyphenated multidimension-

al separation, spectrometric and spectroscopic tools.

Our results pinpoint significant differences in the types and

number of metabolites within specific pathways, including tyrosine

and phenylalanine metabolism and bile acid and fatty acid

biosynthesis that could be of key importance for different Crohn’s

Disease etiologies. Thus, not only the identified individual

metabolites, but also the pathways they belong to, could lead to

future therapeutic biomarkers or drug targets.

Supporting Information

Figure S1 Principal component analysis (PCA) scatter plot of

fecal metabolites from healthy adults (green filled squares), healthy

young (green filled circles), individuals with ileal Crohn’s disease

(blue), or colonic Crohn’s disease (red). The total variance

absorbed was 23% and the Eigen values are 6.7 for the first

component and 3.38 for the second component.

Found at: doi:10.1371/journal.pone.0006386.s001 (0.54 MB TIF)

Table S1 Clinical data for twins and responses to a question-

naire

Found at: doi:10.1371/journal.pone.0006386.s002 (0.20 MB

DOC)

Table S2 Masses defined through the analysis presented in 5a)

and assigned in MassTRIX

Found at: doi:10.1371/journal.pone.0006386.s003 (0.11 MB

DOC)
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