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Abstract

Background: Massively parallel sequencing offers an enormous potential for expression profiling, in particular for
interspecific comparisons. Currently, different platforms for massively parallel sequencing are available, which differ in read
length and sequencing costs. The 454-technology offers the highest read length. The other sequencing technologies are
more cost effective, on the expense of shorter reads. Reliable expression profiling by massively parallel sequencing depends
crucially on the accuracy to which the reads could be mapped to the corresponding genes.

Methodology/Principal Findings: We performed an in silico analysis to evaluate whether incorrect mapping of the
sequence reads results in a biased expression pattern. A comparison of six available mapping software tools indicated a
considerable heterogeneity in mapping speed and accuracy. Independently of the software used to map the reads, we
found that for compact genomes both short (35 bp, 50 bp) and long sequence reads (100 bp) result in an almost unbiased
expression pattern. In contrast, for species with a larger genome containing more gene families and repetitive DNA, shorter
reads (35–50 bp) produced a considerable bias in gene expression. In humans, about 10% of the genes had fewer than 50%
of the sequence reads correctly mapped. Sequence polymorphism up to 9% had almost no effect on the mapping accuracy
of 100 bp reads. For 35 bp reads up to 3% sequence divergence did not affect the mapping accuracy strongly. The effect of
indels on the mapping efficiency strongly depends on the mapping software.

Conclusions/Significance: In complex genomes, expression profiling by massively parallel sequencing could introduce a
considerable bias due to incorrectly mapped sequence reads if the read length is short. Nevertheless, this bias could be
accounted for if the genomic sequence is known. Furthermore, sequence polymorphisms and indels also affect the
mapping accuracy and may cause a biased gene expression measurement. The choice of the mapping software is highly
critical and the reliability depends on the presence/absence of indels and the divergence between reads and the reference
genome. Overall, we found SSAHA2 and CLC to produce the most reliable mapping results.
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Introduction

Technological advances have revolutionized the analysis of the

transcriptome, the set of genes expressed in a given tissue.

Currently, a broad range of techniques is widely used for

expression profiling, but each available technique has its specific

limitations.

The first widely used microarrays were based on cDNA

sequences [1]. PCR amplified cDNA fragments are spotted at a

high density (10–50 spots per mm2) onto a microscope slide and

probed against a labelled target. This technique offers the

advantage that it is rather insensitive to mismatches between the

probe and the cDNA sequence. The drawback of these probes is

that they are very sensitive to cross-hybridization; hence it is

impossible to contrast the expression pattern of genes with a

similar sequence (e.g.: members of a multigene family). Micro-

arrays with multiple short oligos per gene are used for most

commercial gene expression platforms (e.g. Affymetrix). While

longer oligos offer the advantage of more reliable hybridization,

they are more prone to cross-hybridization than platforms using

shorter ones.

Despite considerable effort to develop oligos with similar

hybridization properties [2], the hybridization behaviour is very

complex. The same target RNA molecule may hybridize with

different efficiency resulting in different hybridization signals [3].

Hence, due to the sequence specific hybridization behaviour, the

above-mentioned techniques are not well suited for measuring

absolute expression levels and they are mainly used to compare the

expression pattern of different samples relative to each other. As

only relative gene expression levels can be inferred reliably, studies

requiring measures of absolute gene expression are best advised to

rely on different methods for expression profiling.

Expressed sequence tag (EST) sequencing is a very powerful,

but also expensive method to measure gene expression. Building a
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cDNA library and sequencing a large number of clones provides a

good overview on the absolute expression level, as the frequency of

a given transcript is proportional to its expression level. Hence, it is

possible to compare the expression of different genes without

having to rely on the assumption of homogeneous hybridization

behaviour. The high costs of EST sequencing however, make an

extension to many species and tissues impractical. An alternative

to EST sequencing is the Serial Analysis of Gene Expression

(SAGE) technique [4]. Rather than sequencing individual cDNAs,

for SAGE short 14 bp cDNA tags are concatenated and jointly

sequenced. This allows an in depth analysis of gene expression at

significantly lower, albeit still considerable costs.

The greatest challenge for all these methods is the comparison

of gene expression across species. Despite that cDNA arrays

potentially offer the advantage of only minor effects of mismatches,

some studies of closely related species showed that cross-species

expression profiling using one common cDNA array is compli-

cated and may yield spurious results [5]. Furthermore, the well-

known heterogeneity in evolution rates among genes further

complicates the comparison of expression divergence between two

species across genes. Recently, a modification of the cDNA arrays

has been proposed, which requires a cDNA probe for each gene in

every species included in the study [5,6], which makes the

generation of the arrays extremely labour intensive. Oligo arrays

have also been used for cross-species expression profiling by

restricting the analysis to those probes that were perfectly

conserved between the species analyzed [7]. For obvious reasons,

this approach is limited to closely related species for which a fully

sequenced genome is available. In principle SAGE could be

applied to any species, but the identification of the gene

corresponding to a given SAGE tag does not only require a fully

sequenced genome, but also a reliable gene annotation including a

characterized 39 UTR, as a large proportion of the SAGE tags is

located in the 39UTR [8]. Even the modifications of the traditional

SAGE method, which result in longer tags [9] are not sufficient for

poorly annotated genomes. Similar to SAGE, massively parallel

signature sequencing approaches (MPSS), which result in 16–20

bases [10], suffer from the problem to assign the short sequences

unambiguously to incompletely annotated genomes. EST se-

quencing is probably the most general method, but a broad

application is prohibited by the high costs.

The increased read length of the second-generation sequencing

technologies could potentially overcome most of the disadvantages

mentioned above. Depending on the platform used, the read length of

a single sequence is at least 35 bp, which provides a substantial

improvement in the ability to accurately identify the gene correspond-

ing to the short sequence read. Hence, by sequencing random pieces of

cDNA molecules, massively parallel sequencing potentially provides an

enormous potential to quantify gene expression.

Recently, Torres et al. [11] showed that the sequencing of 39

ends of randomly sheared cDNA molecules provides an excellent

tool for quantifying gene expression. Using the 454 sequencing

technology they unambiguously mapped 97% of the sequence

reads and showed that the obtained expression profiles were highly

reproducible. Nevertheless, compared to the competing massively

parallel sequencing technologies (Illumina, SOLiD), the cost per

base with the 454 sequencing technology is about one order of

magnitude higher. This raises the question if the shorter reads

obtained with the more affordable sequencing technologies are

sufficient for gene expression studies – i.e.: could they be mapped

to the corresponding genes with a similar efficiency as longer

sequence reads?

In this report we compare the mapping efficiency of reads of

different length. We show that for smaller genomes, such as yeast

and Drosophila, even the shortest 35 bp reads perform well and

do not result in a major bias. For larger genomes, such as humans,

a considerable bias could be observed for 35 bp reads.

Results

We were interested to study how the accuracy of mapping short

reads is affected by size of the reads, complexity of the reference

genome, and the mapping algorithm used. As quantitative

transcript profiling by massively parallel sequencing is potentially

affected by the accuracy of the mapping of short reads, we

performed an in silico analysis to evaluate this.

We generated in silico reads from Saccharomyces cerevisiae (yeast),

Drosophila melanogaster (fly), Arabidoposis thaliana, and Homo sapiens

(human) transcripts. Some genomic regions are occasionally used

to encode for multiple transcripts, by either overlapping or nested

genes. As this phenomenon would prevent the unambiguous

mapping of reads to one gene, we only used genes that were

encoded by a different genomic stretch of DNA.

Two methods for quantitative expression profiling by massively

parallel sequencing have been described: whole transcript

sequencing or sequencing of randomly broken 39 fragments. We

focus on the latter method, as it does not require an adjustment of

the transcript length. Nevertheless, we obtained qualitatively

similar results for both methods (Figure 1).

For every gene we selected the longest transcript, which was

randomly sheared. After capturing the 39 ends, we obtained the

short reads from the 59 end of the captured fragment. We

generated sequence reads from four species and mapped them

either to the transcriptome or genome using six different

programs: BLAT [12], SSAHA2 [13], Bowtie [14], SeqMap

[15], MAQ [16] and CLC NGS Cell [www.clcbio.com]. Then we

classified the reads in two categories:

N Mapped: reads that mapped to a unique position in the

genome (see Material and Methods)

N Correct: reads that mapped to the correct position.

Overall, we found that the mapping accuracy was high. Even

the short 35 bp reads were mapped with a high precision. BLAT,

Figure 1. Percentage of correctly mapped reads with BLAT,
using reads of 35 bp and 100 bp length, derived from 39-
fragments or whole transcripts. Reads are mapped against the
genome of the corresponding species.
doi:10.1371/journal.pone.0006323.g001
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SSAHA, SeqMap and CLC mapped almost all reads correctly.

Only BLAT had a notable fraction of almost 7% of the 35 bp

reads, which were incorrectly mapped against the human genome

(Figure 2A). In the case of an ambiguous match Bowtie and MAQ

randomly assign reads to one of the targets, which results in a

higher proportion of incorrectly mapped reads (Figures 2C, 2E).

Hence, neither Bowtie nor MAQ should be used for mapping

reads to quantify gene expression.

While for species with a low complexity almost no difference in

mapping accuracy could be noted between short 35 bp and long

100 bp reads, for species with a more complex genome the

mapping improved with longer reads. In humans and Arabidopsis

both the mapping accuracy as well as the number of reads mapped

increased with read length. Furthermore, we found that mapping

against the transcriptome was more effective and reliable than

mapping against the genome.

Nevertheless, we found some notable exceptions to these general

trends. First, in yeast MAQ and CLC mapped a larger proportion

of the reads to the genome than to the transcriptome and we could

not identify the reason for this counter-intuitive result (Figures 2E,

2F). Second, with Bowtie and SeqMap an increase in read length

resulted in a decreased mapping efficiency to the genomic

reference (Figures 2C, 2D). This observation is the result of a

larger proportion of exon-intron junctions included in the longer

sequence reads. As Bowtie and SeqMap do not map reads with

more than three mismatches between the read and the reference

sequence, reads spanning exon-intron boundaries have frequently

more than three mismatches and are therefore not mapped. We

validated this hypothesis by mapping reads that did not span two

exons against the genome of D. melanogaster (see Material and

Methods) and we observed an increase of mapping accuracy as the

read length increases (Table S2).

For expression profiling the incomplete mapping of reads only

becomes a problem if genes are differentially affected. If all genes

have approximately the same number of reads that cannot be

mapped, no bias would be introduced. We evaluated this by using

BLAT, as this mapping tool was found to be sensitive to read

length and genome complexity and should thus show the most

pronounced effect. Figure 3 shows that for the majority of genes

the inferred expression level does not deviate from the expecta-

tions. Nevertheless, a non-negligible number of genes deviated to a

variable degree from the expectations. In D. melanogaster 97% of the

genes deviate less than 10% from the true expression level for

100 bp reads and 91% for 35 bp reads. For humans only 85%

(100 bp reads) and 65% (35 bp reads) of the genes deviate less

than 10%. The differences are even more pronounced by

considering the genes with more than 50% difference in

expression, thus we systematically studied this effect for different

species and mapping tools (Table 1). For yeast and D. melanogaster

no major difference was detected among the read lengths tested.

For humans and Arabidopsis, the bad performance of Bowtie and

SeqMap for long reads is very prominent, but for CLC, SSAHA2

and BLAT the proportion of genes with more than 50% deviation

from the expected expression intensity was substantially decreased

(Table 1).

Interestingly, irrespective of the read length, we found a small

proportion of genes (1.3% in Drosophila) which did not recover a

single mapped read. We reasoned, that this observation could be

attributed to recent gene duplications, which resulted in almost

identical gene copies preventing unambiguous mapping. To test

this hypothesis, we aligned the full transcripts of those genes for

which we did not map a single read against the genome of the

corresponding species. Consistent with the gene duplication

hypothesis, we found two equally good hits for all the genes

Figure 2. Percentage of mapped and correctly mapped reads
with different programs: a) BLAT, b) SSAHA2, c) Bowtie, d)
SeqMap, e) MAQ, g) CLC NGS Cell. In each simulation the labels for
each bar indicate in the order: organism (y = S. cerevisiae, d = D.
melanogaster, a = A. thaliana, h = H. sapiens), mapping against the
transcriptome (t) or the genome (g), read length (35 bp, 50 bp, 100 bp).
doi:10.1371/journal.pone.0006323.g002
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tested. Most importantly, our analysis indicated that even reads

longer than 100 bp would not have improved the mapping

accuracy for these duplicated genes.

So far, we only considered sequence reads generated from

published genomes, thus no mutations were expected, which could

further complicate the mapping of the reads. Nevertheless, many

expression analyses focus on individuals with unknown genotypes.

Hence, we evaluated the influence of base substitutions and

insertions on the mapping accuracy. For simplicity, this analysis

was conducted only in D. melanogaster. We mutated 3, 6 and 9% of

the bases in a read and mapped the mutated reads to the original

genome/transcriptome (Figure 4). The mapping of 100 bp reads

was almost not affected by mutations. Even with 9% mutations,

only a very limited effect on the mapping accuracy was noted. We

point out that for 100 bp reads with 9% of mutation the

comparison is possible only within the programs BLAT, SSAHA2

and CLC, because the mapping was not feasible with other

programs due to high divergence of the reads. For 50 bp reads up

to 6% of mutation did not have an effect on the mapping accuracy

for all programs, except for Bowtie, which could not deal well with

the divergent reads. The most pronounced effects were seen for

35 bp reads. While 3% mutations did not affect the mapping, 6%

and 9% mutations had a substantial effect. Interestingly, we noted

a marked difference in the performance among the programs used.

BLAT could only map about 50% of the reads and SSAHA2

mapped more than 20% of the reads incorrectly. The best results

were obtained by MAQ and SeqMap, which still mapped a very

high proportion (.90%) of the reads correctly.

We also tested the effect of insertions by mapping D. melanogaster

reads containing a single insertion of variable size (3, 6, 9% of the

read length) in a random position. This analysis could be only

conducted with BLAT, SSAHA2 and CLC (Figure 5), because the

other programs cannot perform gapped alignments. While Bowtie

also allows insertions, the high demand on CPU time prevented us

from a systematic evaluation of this software. Already the insertion

of a single base dramatically lowered the mapping efficiency of

Figure 3. Cumulative distributions of the observed expression with 35 bp, 50 bp and 100 bp reads of D. melanogaster and H. sapiens
mapped against the corresponding genomic sequence.
doi:10.1371/journal.pone.0006323.g003

Table 1. Percentage of genes showing a reduction in
observed gene expression by more than 50% when mapped
against a reference genome.

Genome
Read
length BLAT SSAHA2 Bowtie SeqMap MAQ CLC

Yeast 35 bp 3.8% 3.8% 2.5% 4.2% 2.5% 4.2%

50 bp 3.3% 3.4% 2.2% 3.8% 2.3% 3.8%

100 bp 2.6% 2.7% 1.8% 3.1% NA 3.0%

Drosophila 35 bp 2.5% 2.5% 2.0% 3.0% 2.0% 3.0%

50 bp 2.7% 2.4% 2.0% 2.9% 2.0% 2.8%

100 bp 2.1% 2.1% 5.9% 6.4% NA 2.6%

Arabidopsis 35 bp 3.1% 3.0% 2.0% 4.1% 1.9% 3.6%

50 bp 2.4% 2.4% 2.6% 5.4% 1.6% 2.9%

100 bp 1.7% 1.7% 17.1% 19.7% NA 2.0%

Human 35 bp 11.5% 7.6% 6.1% 10.0% 5.8% 9.2%

50 bp 12.8% 5.9% 5.6% 9.0% 4.7% 7.3%

100 bp 5.5% 4.5% 13.8% 16.2% NA 5.5%

doi:10.1371/journal.pone.0006323.t001
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BLAT (from 97% to 67%). SSAHA2 and CLC were almost not

affected by the presence of insertions, irrespective of their length.

Nevertheless, SSAHA2 performed slightly better than CLC, which

showed a small proportion (9.8% for a 9% insertion in 100 bp

reads) of incorrectly mapped reads.

We were interested to test if some genes are more prone to suffer

from the lower mapping accuracy of mutated reads than others, as

this would result in a further bias in gene expression. Panel A in

Figure 6 shows the variance in the observed eobs by two

independent ‘‘sequencing runs’’, for which we generated two

independent sets of fragments and mapped them to the genome

with BLAT, as this mapping algorithm was found to be highly

sensitive to mutations. The remaining panels show the comparison

of eobs for no mutations to reads with 3%, 6% and 9% mutated

bases respectively. Interestingly, eobs for reads with 3% and 6%

mutations were highly correlated with eobs from reads without

mutations. Only reads with 9% mutations showed a pronounced

reduction in the correlation coefficient. Thus, up to 6% sequence

divergence no pronounced gene specific effects could be detected,

suggesting that we found no evidence for heterogeneity in the

effect of mutations on the mapping efficiency.

As our data set only contained non-overlapping genes, we

repeated the mapping with CLC, using for each organism a cDNA

database in which overlapping genes are not removed, in order to

quantify the impact of overlapping genes. As expected we obtained

a decrease in mapping efficiency (Figure 7). This is caused by more

ambiguities in the mapping, as there are more genes that share

partially the sequence. The impact was marginal for Drosophila,

Arabidopsis and yeast, but for human there is a decrease of more

than 2% in the genome mapping analysis).

Given that expression analyses produce a large number of reads,

we evaluated not only the mapping accuracy, but also in the

mapping speed of the programs used. For each program we

determined the required CPU time on a 262.8 GHz Quad-Core

Intel Xeon Mac Pro computer for 100,000 reads (100 bp), mapped

against the three different species. The fastest mapping software is

Bowtie, followed by CLC and SSAHA2. BLAT and SeqMap are

the slowest ones (Table 2). Additionally, we report in table S3 a

summary of all the relevant features of the mapping tools used.

Discussion

Massively parallel sequencing offers an enormous potential for

gene expression profiling. With the number of sequence reads

being proportional to the transcript abundance, it is possible to

make reliable absolute quantification of transcripts. Hence, the

comparison of gene expression between species should be possible

by massively parallel sequencing. Currently, researchers are facing

the decision between more economic short reads and longer reads.

The goal of this study was to compare both approaches with

respect to their potential for accurate expression profiling. Apart

from technological problems [11], the major challenge is the

accurate mapping of the sequence reads to the corresponding

gene.

Consistent with previous results [11], we showed that 100 bp

reads produce highly accurate mapping results, almost indepen-

dent of the mapping software used. Even mutations and indels did

not show a major effect on the mapping accuracy. If adequate

mapping software is used, 50 bp reads produce already highly

reliable results for species with a small genome. For humans,

however, sequence reads of 35 bp and 50 bp do not yield

trustworthy results. Even without mutations, a considerable

fraction of the reads were not mapped and more than 10% of

the genes differed more than 50% for the true expression level.

Figure 4. Percentage of mapped and correctly mapped reads
with different levels of mutation (3%, 6%, 9% of the total
length of each read are mutated).
doi:10.1371/journal.pone.0006323.g004
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The influence of sequence divergence on mapping accuracy is

conceptually more difficult to handle. As genes differ in their

sequence conservation, this will generate heterogeneity in mapping

accuracy among genes that is difficult to predict. Hence, we

restricted our analysis to a more general analysis of the impact of

mutations and insertions on the mapping accuracy. To do so, we

mutagenized each sequence read independently from the others.

For 100 bp reads, sequence divergence had almost no effect on the

mapping accuracy, even if up to 9% of the bases in the read were

mutated. Also a single mutation in 35 bp reads or 3 mutations in

50 bp reads had almost no effect on the mapping accuracy. This

suggests that even for polymorphic species, such as D. melanogaster,

which has about 3% silent site polymorphism [17], short 35 bp

reads will be sufficient to cover intraspecies variation without the

loss of mapping accuracy. Interspecific comparisons are more

problematic when the genome of one of the species is not known.

The silent sequence divergence of the two closely related species D.

melanogaster and D. simulans is slightly above 13% [17], suggesting

Figure 5. Percentage of mapped and correctly mapped reads with a single insertion of length equal to 3%, 6% or 9% of the total
length of each read.
doi:10.1371/journal.pone.0006323.g005
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that even the availability of a reference sequence from a close

relative does not guarantee a reliable gene expression measure-

ment with short reads. If the right software tool is used, insertions

were not found to affect the mapping quality. Nevertheless,

clustering of substitutions and indels [18] will probably further

reduce the mapping efficiency of a large number of reads.

Based on these results, we conclude that gene expression studies

in yeast and Drosophila could be reliably performed with 50 bp

reads, even when some sequence divergence between the reference

genome and the transcriptome is expected. For humans, and to

some extent for Arabidopsis as well, 100 bp reads are preferable.

One important result of our study is the highly heterogeneous

performance of the different mapping software tools. While Bowtie

was undoubtedly the fastest mapping program, it performed very

poorly with mutations and could not deal with insertions. Like

Bowtie, SeqMap cannot deal with indels and the limitation to

three mismatches strongly affects the mapping of 100 bp reads to

genomic DNA. MAQ cannot map reads with indels. One further

limitation of Bowtie and MAQ is the random assignment of

equally well mapped reads to the corresponding genes. Unless,

both genes are expressed at a similar level, this procedure will

cause wrong expression estimates and should thus avoided. BLAT

is a more general program, which could deal with insertions, but in

the presence of mutations the mapping accuracy was only

reasonably good for 100 bp reads. CLC and SSAHA2 were

found the two programs that produced the most accurate results

for most parameters tested. The relatively high rate of incorrectly

mapped 35 bp and 50 bp reads with 9% mutations detected for

SSAHA2, renders CLC the most versatile and accurate program

in our comparison. Nevertheless, we would like to point out that

Figure 6. Stochastic variability between observed expression profiles (D. melanogaster, short reads mapped with BLAT against the
genomic sequence); a circle represents each gene. A) Two independent runs of 35 bp reads without mutations, B) 1 mutation vs. no mutation,
C) 2 mutations vs. no mutation, D) 3 mutations vs. no mutation. r indicates the correlation coefficient between the observed expression levels.
doi:10.1371/journal.pone.0006323.g006
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mapping performance of all programs is severely affected by the

choice of mapping parameters. As we tested a broad range of

species and read lengths, we typically used only the recommended

parameter settings. We cannot rule out that some optimization of

the mapping parameters would have altered our conclusions about

the mapping performance of the software tested.

Irrespective of the software used, we found that a given fraction

of genes recovered fewer reads than expected. This under-

representation of mapped reads is caused either by gene

duplication or repetitive sequences in the transcript. While longer

reads reduce this problem to some extent, for genes that were

duplicated very recently even reads longer than 100 bp will not

improve the situation. We propose a simple correction, which

should account for the gene specific recovery of sequence reads.

The expected eobs could be determined in a similar procedure as

reported here. If the observed counts are weighted by eobs it is

possible to account for the bias.

The results of our study are more general than just expression

profiling by massively parallel sequencing. Recently, it has been

suggested that massively parallel sequencing could also be used to

estimate allele frequencies from DNA pools [19]. The accurate

genome wide estimate of allele frequencies depends also on a

highly accurate mapping of sequence reads. Our results show that

the mapping accuracy will be highly dependent on the choice of

the software, but also read length and genome complexity will

have an effect. While paired end reads, substantially improve the

mapping accuracy, our results also suggest that for species with a

compact genome, such as D. melanogaster, a very high mapping

accuracy could be obtained with 50 bp reads.

It is important to keep in mind that all our simulations used tags

generated from the sequence to which the reads were mapped.

Experimental data, however, may also contain reads for which no

reference sequence is known. This could be either due to an

incomplete genomic sequence or the presence of other organisms,

such as Wolbachia and Viruses. In such cases fewer reads will be

mapped and more reads may be incorrectly mapped.

Finally, we would like to point out that our analyses did not

account for sequencing errors, as we do not think that they have a

severe effect on expression profiling, as the position of the reads is

governed by random breakage of the cDNA. Thus, even

preferential mutations at the end of a read will not result in a

systematic bias. Nevertheless, other biases caused by the

sequencing process, such as a GC-content dependent production

of reads [20], could also have a substantial effect on the estimated

gene expression levels and these are not considered here.

Materials and Methods

Data
Sequences of transcripts and chromosomes were obtained for S.

cerevisiae and H. sapiens from the Ensembl database (www.ensembl.

org), A. thaliana from the Arabidopsis Information Resource

(http://www.arabidopsis.org/) and D. melanogaster from FlyBase

release 5.4 (http://flybase.bio.indiana.edu/).

From the transcripts files we selected the longest isoform for all

the protein coding transcripts (mRNA). To avoid the complication

of overlapping genes, we removed all the genes that overlap at

least with another gene. The number of transcripts before and

after filtering is shown in Table S1.

Figure 7. Percentage of correctly mapped reads with CLC NGS Cell. Reads are generated from a transcript database in which the longest
isoform is chosen, but overlapping transcripts are not removed.
doi:10.1371/journal.pone.0006323.g007

Table 2. Times (in seconds) for mapping 100,000 reads of
100 bp vs genome with different programs in the four
organisms analyzed.

Program Yeast Drosophila Arabidopsis

BLAT 287 2868 1721

SSAHA2 29 107 76

Bowtie 50 6 8

SeqMap 16 1260 958

MAQ 50 470 376

CLC NGS Cell* 376 1232 856

*typically the speed is improved by the parallel use of all processors of the
computer.

doi:10.1371/journal.pone.0006323.t002
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Generation of sequence reads
We mimicked the generation of sequence reads from cDNA

sequences as described in Torres et al. [11]. In brief, Torres et al.

[11] randomly sheared the double stranded cDNA molecules,

recovered the 39 fragments and sequenced them from their 59 end.

They observed a pronounced bias against fragments shorter than

80 bp and longer than 300 bp. Thus, we used the experimentally

derived distribution of 39 fragment size distribution to generate

200 sequence reads from each transcript. We generated reads with

three size classes, 35, 50 and 100 bp.

We also used a uniform distribution between 38 bp and

1000 bp to measure gene expression and obtained almost identical

results (not shown). Hence, the results based on the experimental

distribution of 39 fragment sequences obtained by 454 sequencing

could be generalized to any transcription analysis.

Sequence divergence
We studied the effect of sequence divergence by randomly

mutating 3%, 6%, and 9% of the bases in a read following a Jukes-

Cantor model of sequence evolution [21]. It should be noted that

each read differed, thus our analysis does not reflect the effect of

specific mutations in the genome. Rather we were interested in the

general effect of mutations in the sequences. At the same way we

evaluated effect of insertions introducing a single insertion in

random position of each read, which size is 3%, 6% and 9% of the

read length.

Mapping of the reads
The in silico generated reads were mapped either to the

transcriptome or the complete genome using different programs:

BLAT [12] (parameters –oneOff 1), SSAHA2 [13] (parameters –

skip 2, -diff 0, -kmer 13, -solexa for 35 bp and 50 bp reads; -454

for 100 bp reads), Bowtie [14] (parameters –k 1, -n 3, -e 2000),

SeqMap [15] (number of mismatches = 3), MAQ [16] (parameters

–n 3, -e 2000) and the commercial tool CLC NGS Cell [www.

clcbio.com] (algorithm: clc_ref_assembly_long, parameters: -r ignore).

To keep the results most comparable as possible we set for each

program only the essential parameters and assigned 3 mismatches

to the programs that needed this parameter (Bowtie, SeqMap,

MAQ), which is also the maximum number of mismatches allowed

by these three programs.

Then we mapped the reads first against the transcriptome and

then against the genome of the species considered. For each

program, we used the coordinates of the best unique hit to

determine if each read is mapped to the correct gene.

The proportion of correctly mapped reads eobs was determined

for each gene and we produced, for each program, the percentage

of genes that recover less than 50% of the expected expression

(eexp = 200).

Exon analysis
This was done to confirm that Bowtie has difficulties mapping

reads that span two exons. Rather than generating sequence reads

from transcripts, we only used exons of genes with two exons.

Hence, the reads did not contain exon junctions. We generated for

each exon 100 reads of lengths 35, 50 and 100 bp. These reads

were mapped with Bowtie against the transcriptome and the

genome of D. melanogaster.

PERL scripts have been used for filtering the transcripts,

generating the reads and counting the number of correctly

mapped reads. They are available in the supplementary Material

S1.
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