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Abstract

Background: Cellular contractility, essential for cell movement and proliferation, is regulated by microtubules, RhoA and
actomyosin. The RhoA dependent kinase ROCK ensures the phosphorylation of the regulatory Myosin II Light Chain (MLC)
Ser19, thereby activating actomyosin contractions. Microtubules are upstream inhibitors of contractility and their
depolymerization or depletion cause cells to contract by activating RhoA. How microtubule dynamics regulates RhoA
remains, a major missing link in understanding contractility.

Principal Findings: We observed that contractility is inhibited by microtubules not only, as previously reported, in adherent
cells, but also in non-adhering interphase and mitotic cells. Strikingly we observed that contractility requires ubiquitin
mediated proteolysis by a Cullin-RING ubiquitin ligase. Inhibition of proteolysis, ubiquitination and neddylation all led to
complete cessation of contractility and considerably reduced MLC Ser19 phosphorylation.

Conclusions: Our results imply that cells express a contractility inhibitor that is degraded by ubiquitin mediated proteolysis,
either constitutively or in response to microtubule depolymerization. This degradation seems to depend on a Cullin-RING
ubiquitin ligase and is required for cellular contractions.
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Introduction

Cellular contractility and the ability of cells to change their

shape are prerequisites for many biological phenomena such as

cytokinesis, movement, differentiation and substrate adherence.

These changes in cell shape are achieved by modulation of the

cytoskeleton, most importantly the actin cytoskeleton, through

forces generated by the actomyosin network. This network is

regulated mainly through the activity of proteins from the Rho-

GTPase family that regulate both actin nucleation and myosin

activity through downstream effectors such as mDia and ROCK

(Rho kinase), respectively (reviewed by [1,2,3]). Cell contractility is

typically achieved by localized activation of Myosin II Light Chain

(MLC) by its phosphorylation on Ser19. This phosphorylation,

which causes contractions of the actin network by Myosin II is

regulated by various MLC kinases and Myosin phosphatase

(MYP). This site is phosphorylated by MLCK and ROCK [4],

ZIP kinase [5] and citron kinase [6]. In addition to direct

phosphorylation of Ser19, ROCK also phosphorylates and

inactivates myosin phosphatase (MYP) enabling the maintenance

of Ser19 phosphorylation. Inhibition of ROCK kinase inhibits

contractility and Ser19 phosphorylation [7].

Less is known about the diverse upstream pathways through

which RhoA acquires information from the cell’s external and

internal environments. It has been known for many years that

depolymerization of microtubules leads to elevation of cell

contractility, suggesting an inhibitory effect of microtubules on

the actin cytoskeleton [8,9]; reviewed by [10,11]). It has also been

shown that the microtubule polymerization inhibitor nocodazole

induces RhoA activation [12]. This inhibition leads to the

activation of MLC through ROCK by the release of the MAP

GEF-H1 [13,14].

RhoA is crucial for cytokinesis, where its local activation at the

cell cortex determines the positioning of the cleavage furrow

[15,16,17]. The major activator of RhoA in cytokinesis is the

proto-oncogene RhoGEF Ect2 [18]. Inhibition of Ect2 leads to

failure of cytokinesis and to binucleated cells ([19] and our

unpublished results). Microtubules have been proven to have a

crucial role in regulating cleavage furrow positioning, but the

mechanism and microtubule effect on this process are still a matter

of debate [20].

This project was initiated by our observation that cells arrested

with nocodazole in prometaphase undergo vigorous contractions.

We used time lapse microscopy to study these contractions and

observed that they are not cell cycle specific and take place in non

adhering cells throughout the cell cycle. These contractions were

indeed sensitive to a variety of inhibitors of the RhoA pathway that

we applied such as treatments with the exoenzyme C3 transferase,

knockdown of Ect2 activity, expression of dominant negative

RhoA and inhibition of ROCK with Y27632. We further showed
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that the RhoA-GEF Ect2, known to play a role in cytokinesis, also

regulates contractions, at least as far as early mitotic cells are

concerned.

The question how microtubule depletion activates the RhoA

pathway remains a major unanswered issue. Given the major role

of ubiquitination in most cellular events, we tested whether

contraction activation requires ubiquitination. We used a

proteasomal inhibitor and a cell line with temperature sensitive

ubiquitin activating enzyme (E1). To our surprise we observed that

ubiquitination and proteasomal degradation are required not for

the activation but for the inhibition of contractility. The largest

group of ubiquitin ligases in the cell constitutes of the Cullin-

RING type. This vast group comprises among others the seventy

different SCF (Skp1, Cul1, F-box proteins) complexes encoded by

the human genome, and possibly more then a hundred Cul3-BTB

based ligases [21]. To test whether such an ubiquitin ligase is

involved in inhibition of contractility we took advantage of a cell

line with a temperature sensitive neddylation pathway [22,23].

Nedd8 is an ubiquitin like protein that gets covalently conjugated

to lysine residues. Unlike ubiquitin it does not seem to form chains

or lead to proteolysis. So far the only known substrates of

neddylation are Cullins, subunits of the Cullin-RING ubiquitin

ligases. Cullin neddylation prevents the binding of the CAND1

inhibitor and is essential for the activity of these ligases [24]. We

show that myosin II light chain Ser19 phosphorylation, the most

direct downstream event required for all types of contractility,

strongly depends on proteolysis, ubiquitination and neddylation.

Results

Depolymerization of microtubules induces contractility
in non-adhering cells

The microtubule cytoskeleton inhibits contractility of adherent

cells in interphase [8,9], probably by sequestering the microtubule

associated protein GEF-H1 [13,14]. Enhanced contractility is

manifested by increased number and size of focal adhesions [25].

We studied the role of microtubules in the inhibition of

contractility of non-adhering cells - cells that grow constitutively

in suspension and adherent cells that were detached artificially or

became detached during mitosis.

Nocodazole impairs the capacity of a-tubulin to polymerize and

rapidly shifts the dynamic equilibrium of microtubules to a de-

polymerized state (Movie S1). We chose chicken DT40 B-cells that

grow in suspension (Movie S2A), to test the effect of microtubule

depolymerization on contractility. Movie S2B shows that treat-

ment of these cells with nocodazole rapidly led to contractions of

the entire cell population. This suggested that contractions are not

cell cycle dependent. Indeed DT40 cells synchronized at various

stages of the cell cycle all underwent contractions upon nocodazole

treatment (data not shown).

We wondered how adherent cells that become detached behave

upon microtubule depolymerization. We therefore detached

NIH3T3 cells from tissue culture dishes and observed their

attachment to glass cover slips in the presence or absence of

nocodazole. Without nocodazole the cells attached to the glass

within one hour while in the presence of nocodazole they failed to

attach for more than two hours and underwent vigorous

contractions (Figure 1 and Movie S3).

During mitosis the microtubule cytoskeleton undergoes a radical

change of its shape, composition and dynamics. We thus

wondered if it retains its capacity to inhibit cellular contractions.

Such an observation would be of significance for the capacity of

cells to undergo furrowing in cytokinesis. To follow the behavior of

the spindle we generated a NIH3T3 mouse fibroblast cell line that

stably expresses a-tubulin fused to the mCherry [26] fluorescent

protein (Figure 2 and Movie S1). We treated these cells with

nocodazole and followed them by time lapse microscopy.

Figure 2B and Movie S4B show that as long as cells were in

interphase they remained attached to the matrix and did not

visibly contract. Upon reaching prometaphase they detached from

the matrix, as expected from mitotic cells, and initiated

contractions at multiple random locations. Cells arrested at this

Figure 1. Detached adherent cells contract in a microtubules dependent manner. Unsynchronized NIH3T3 cells were trypsinized and
plated in glass bottom dishes with (bottom panels) or without nocodazole (top panels). While control cells flattened within 30–60 minutes,
nocodazole-treated cells failed to re-attach for more than 2 hours and during this time they continued to contract vigorously.
doi:10.1371/journal.pone.0006155.g001
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stage by the spindle assembly checkpoint (SAC) for several hours.

We thus concluded that microtubule depolymerization induces

contractility throughout the cell cycle.

We next asked whether microtubule stabilization would induce

an inhibitory effect on contractility. This was achieved by

inhibiting a-tubulin depolymerization with Paclitaxel (taxol).

Treated cells exhibited thick and rigid microtubule bundles. Like

in the case of nocodazole, taxol-treated cells arrested in

prometaphase by the SAC. This arrest had either of two

phenotypes. The majority of the cells exhibited rigid spindles,

did not contract but arrested as motionless round mitotic cells for

several hours until they flattened, presumably due to mitotic

slippage [27] (Figure 2C). About a fifth of the cells, however, failed

to assemble spindles and underwent contractions similar to those

demonstrated by nocodazole treated cells (Figure 2D). The reason

for that is unknown but we speculate that this is because taxol

interferes with the dynamic instability of microtubules which in

some cases resulted in the collapse of the microtubule cytoskeleton

(Figure 2D timepoint 3.5 hours).

The cells discussed so far were treated for several hours in

interphase with the indicated drugs until they reached prometa-

phase. Since these drugs arrest the cells at the SAC, we sought an

alternative method to arrest cells later in mitosis, allowing the

spindles to form normally and test the instant effect of their de-

polymerization. To this end we transiently transfected cells with an

expression vector for a destruction box mutant of full length Cyclin

B1-GFP (Cyclin B1-DM-GFP), which is not ubiquitinated by the

APC/C and is thus not degraded. These cells arrested in mitosis

either before metaphase or in anaphase [28,29,30]. Figure 3 and

Movie S5A show that Cyclin B1-DM-GFP expressing cells formed

a normal spindle and maintained it for a very long time (Figure 3

top panel). These cells did not slip through the SAC for at least

48 hours, demonstrating that SAC slippage occurs indeed due to

APC/C specific Cyclin B1 degradation. When Cyclin B1-DM-

Figure 2. Mitotic NIH3T3 cells contract in a microtubule dependent manner. NIH3T3 cells stably expressing mCherry-a-tubulin were treated
with various drugs that affect microtubule dynamics. Left panels phase, right panel mCherry-a-tubulin. A. An untreated cell undergoes mitosis within
an hour (selected time points taken from Movie S4A). B. The effect of nocodazole on the microtubule network in interphase and mitosis. Time 0
shows the microtubule network, which has been disrupted following nocodazole addition (20 minutes, see also Movie S1). At 7 hours the cell entered
mitosis and immediately contracted for the following 6 hours (selected time points taken from Movie S4B). C. Shows a cell with a spindle formed in
the presence of taxol (80% of the treated cells). Taxol was added an hour after time 0. A thick and rigid microtubule pattern was observed within one
hour. Upon mitotic entry (2.5 hours) the cell formed a spindle that was apparent for the next 5.5 hours (arrowhead). During this time the cell did not
contract. Only after 8 hours the cell flattened while the spindle was still visible (arrowhead). D. Represents a less common effect of taxol (20% of the
treated cells), which does not lead to spindle assembly. Taxol was added an hour after time 0 and the cell entered mitosis at 3.5 hours. This cell did
not form a spindle and furrowed for 4.5 hours until it flattened at 8 hours.
doi:10.1371/journal.pone.0006155.g002

Regulation of Contractility

PLoS ONE | www.plosone.org 3 July 2009 | Volume 4 | Issue 7 | e6155



GFP arrested cells were treated with nocodazole they promptly

started to contract, and kept contracting for many hours (Movie

S5B). Strikingly when the spindle in Cyclin B1-DM-GFP arrested

cells drifted to one part of the cell, the part of the cell distal to the

spindle promptly started to contract. When the spindle drifted

back contractions stopped upon approach of the spindle (Figure 3

central and bottom panels and Movie S5A). We observed this kind

of drifting and contractions of the distal part of the cell in 13 out of

the 64 cells. Contractions were never observed in proximity to the

spindle.

We further used monastrol, which arrest the cells in mitosis with

mono-astral spindles without interfering with microtubule dynamics

[31]. Monastrol treated cells did not contract but promptly started

to do so upon treatment with nocodazole (table 1). The contractility

we observed is thus not a mere effect of drugs interfering with

microtubule dynamics, but occurs in regions of the cell that have

become depleted of microtubules by other causes as well.

The results we report here show that cells that are not attached

to a matrix will undergo contractions upon microtubule depletion

whether they grow constitutively in suspension, are artificially

detached in interphase, or physiologically in mitosis. We thus

conclude that both the interphase microtubule cytoskeleton and

the mitotic spindle inhibit cellular contractility. A detailed

breakdown of these results and quantitative data is presented in

table 1.

Contractility induced by microtubule depolymerization
depends on the RhoA pathway

Cellular contractility by actomyosin depends on the RhoA

signaling pathway. We wanted to verify that the contractions

induced by microtuble depolymerization also depend on this

pathway. Cells were immuno-stained for RhoA and Myosin.

Figure 4 shows that indeed Myosin and RhoA localized to the

furrows that formed in contracting cells in a manner similar to

their localization to the cytokinetic cleavage furrow. The RhoA

localized to these furrows is likely to be in its active form [32,33].

We used a variety of methods to inhibit the different stages of the

RhoA pathway. RhoA was inhibited by the exoenzyme C3

transferase and ROCK was inhibited by the Y27632 inhibitor. In

both cases contractions in response to nodocazole treatment were

completely eliminated (table 2). We further transfected cells with a

vector expressing the dominant negative RhoA T19N mutant. In

the experiment shown in Figure 5 and Movie S6 an expressing and

a non-expressing cell are shown side by side. The transfected cell

did not contract while its non-expressing neighbor contracted

vigorously. Finally we tested the effect of inhibition of the Ect2

GEF, which is known to activate RhoA in cytokinesis. Both a

dominant negative expression vector and relatively modest siRNA

mediated knockdown of Ect2 (60%, Figure S1A-C) completely

eliminated contractions. Figure S1D shows that this relatively

modest knockdown was also sufficient for perturbing cytokinesis

resulting in many binucleated cells. All these experiments,

summarized in table 2, show that nocodazole induced contractions

fully depend on the RhoA signaling pathway. They also indicate

that these contractions are not ‘‘membrane blebbing’’ events but

cortical contractions involving RhoA and actomyosin activation.

Contractility requires ubiquitin dependent proteolysis by
a Cullin-RING ubiquitin ligase

Ubiquitin mediated proteolysis plays a role in most cellular

events. We observed that ubiquitin is localized to the furrows

formed in the absence of microtubules as well as in the cleavage

furrow during cytokinesis (our unpublished data) and we wondered

whether ubiquitin mediated proteolysis is also involved in

regulation of contractility. We therefore treated cells with

nocodazole together with the proteasome inhibitor MG132.

Figure 6 and Movie S7A show that MG132 treatment completely

abolished contractions of prometaphase arrested cells. Strikingly,

when cells that were already arrested with nocodazole in mitosis

and undergoing contractions were treated with MG132 they

stopped to contract within 7 hours. We wondered whether cells

stopped contracting due to a non specific irreversible harm caused

by MG132. We therefore washed cells that were arrested for

15 hours with MG132 and nocodazole and re-plated them into

fresh medium. Movie S7B shows that these cells resumed

contractility and attached to the matrix within two hours

precluding an irreversible harm. These findings suggest the

Figure 3. The mitotic spindle in cells arrested by nondegrad-
able Cyclin B1 inhibits contractions in a spatial dependent
manner. NIH3T3 cells stably expressing mCherry-a-tubulin were
transfected with Cyclin B1-DM-GFP. This Figure shows frames of three
selected time points taken from Movie S5A. Following mitotic entry and
spindle formation (2 hours, arrow) a part of the cell, which was distal to
the spindles (3.5 hours, arrowhead) started to contract, while a part of
the cell that remained proximal to the spindle did not (5 hours).
doi:10.1371/journal.pone.0006155.g003
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existence of one, or more, proteasomal substrates that inhibit cell

contractility.

Proteasomal inhibition leads to cell cycle arrest at various

phases. The requirement for proteasomal activity for contractions

could thus be due to cell cycle effects. To address this possibility,

we treated unsynchronized DT40 cells with nocodazole together

with MG132. This double treatment completely abolished

contractions regardless of cell cycle stage (table 3). The

Table 1. Cell contractility is induced by microtubule depolymerization.

Cells Treatment Effect Contractions Figure Movie Quantization*

DT40 Nocodazole Microtubule depolymerization Yes S2B 89% n = 70

Detached NIH3T3 1 S3 .97% n<100

Mitotic NIH3T3 2B S4B 85% n = 186

NIH3T3 Taxol Microtubule stabilization With spindle – No 2C 80% n = 57

Without spindle - Yes 2D 20% n = 57

NIH3T3 Cyclin B1-DM Metaphase/Anaphase arrest Close to spindle – No Far
from spindle - Yes

3 S5A 100% n = 64 20% n = 64

Cyclin B1 DM
+Nocodazole

Metaphase/Anaphase arrest+
Microtubule depolymerization

Yes S5B 92% n = 135

NIH3T3 Monastrol Monopolar spindles due to Eg5
inhibition and lack of centrosome
separation

No 89% n = 65

NIH3T3 Monastrol+Nocodazole Monopolar spindles followed by
microtubule depolymerization

Yes 84% n = 71

*The percentage refers to the phenotype declared in the contractions column.
doi:10.1371/journal.pone.0006155.t001

Figure 4. Myosin and active RhoA localize to invaginations formed by contractions. Myosin heavy chain – B (MHC-B) and active RhoA are
localized to the cleavage furrow and midbody as well as to the contraction invaginations of nocodazole-treated mitotic cells (arrowheads). A–D,
DT40 cells; E–H NIH 3T3 cells; A, E, C, G control untreated cells; B, D, F, H, nocodazole-treated cells.
doi:10.1371/journal.pone.0006155.g004
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requirement for proteasomal degradation is thus not restricted to

mitotic cells and does not require arrival at specific cell cycle

phases.

To verify the need for ubiquitin-mediated proteolysis in a non-

drug dependent manner we used the balb/c 3T3 derived mouse

fibroblast cell lines A31N-wt and A31N-ts20. The latter expresses

a thermo-sensitive E1 ubiquitin activating enzyme that becomes

inactive at the restrictive temperature of 39.5uC [34]. Wild type

A31N cells cultured either at 34uC (not shown) or 39.5uC (Movie

S8A) divided normally. Upon addition of nocodazole to the

growth medium the cells arrested at the SAC and started

contracting (Movie S8B). A31N-ts20 cells behaved like wild type

A31N cells at 34uC (Movie S8C). However when A31N-ts20

mutants were grown at 39.5uC for 8–14 hours and treated with

nocodazole the cells that reached mitosis arrested as round cells,

did not contract and did not flatten (Movie S8D). These findings

indicate that the ubiquitination pathway is required for contrac-

tility induced by microtubule depolymerization.

Cullin-RING complexes are the largest group of ubiquitin

ligases and are involved in the regulation of many cellular

pathways [21]. To test whether they are required for contractility

we used the hamster cell line E36-ts41 [23,35], which has a

temperature sensitive neddylation pathway [22]. Nedd8 is an

ubiquitin-like protein that is covalently conjugated to members of

the Cullin subunit of E3 ligases. This modification is essential for

the activation of Cullin-RING E3s [24]. We used the E36-ts41 and

its parental wild type E36-wt line to test if a Cullin-RING E3

mediates the ubiquitination that is required for contractions. Wild

type E36 cells divided normally both at 34uC (not shown) and

39.5uC (Movie S9A). Upon treatment with nocodazole these cells

arrested at the SAC, contracted and flattened within a few hours

(Movie S9B). Mutant E36-ts41 behaved at 34uC like wild type cells

(Movie S9C) and at 39.5u they arrested and did not divide (Movie

S9D). When the incubation temperature for E36-ts41cells was

shifted from 34uC to 39.5uC and nocodazole was added, the cells

that entered mitosis from 8 hours and onwards did not contract

(Movie S9E). Interestingly the minimal incubation time at the

restrictive temperature, required for the elimination of contrac-

tions, was almost identical for both the ts20 and the ts41 cells

(8 hours) and for MG132 (7 hours). The results of these

experiments and quantitative data are summarized in table 3.

These mutant cells enabled us also to test the requirement for

neddylation for contractility in detached interphase cells. We

plated E36-wt and E36-ts41 cells on glass in the presence of

nocodazole at the restrictive temperature of 39.5uC. E36-wt cells

contracted vigorously like the NIH3T3 cells shown in Figure 1 and

Movie S3, and began to flatten after 4 to 8 hours (Figure 7 upper

row and left panel of Movie S9F). E36-ts41 contracted initially for

about 10 hours and then ceased to contract but arrested as round

cells and did not flatten (Figure 7 lower row and right panel of

Movie S9F), demonstrating that these contractions are neddylation

dependent. This observation shows that neddylation is required for

contractions in a cell cycle independent manner. In a control

experiment without nocodazole both E36-wt and E36-ts41 cells

plated on glass incubated at either temperature flattened within 2–

4 hours (data not shown).

Phosphorylation of Ser19 of MLC requires proteolysis,
ubiquitination and neddylation

The most downstream regulatory event of cellular contractility is

the activating phosphorylation of Ser19 of MLC. The data presented

so far suggested that microtubules inhibit contractility and upon relief

the contractility requires ubiquitin mediated proteolysis by a Nedd8

dependent pathway. In order to assess whether this requirement

directly impinges on the phosphorylation of this site we used anti-

phospho Ser19 MLC antibodies. We addressed this issue with all

three treatments. First we analyzed the effect of inhibition of

proteolysis in human HeLa cells. Cells were detached from the tissue

culture dishes and treated with nocodazole for five hours with or

without MG132. Preliminary experiments have shown that detach-

ment induces Ser19 phosphorylation, which gets further enhanced by

nocodazole. Figure 8A shows that Ser19 phosphorylation was almost

completely eliminated by treatment of cells with MG132. Next we

analyzed Ser19 phosphorylation in the mouse A31N-ts20 cell line at

the permissive versus the restrictive temperature. Figure 8B shows

that phosphorylation was drastically reduced in A31N-ts20 cells at the

restrictive temperature. In the wild type control cells, Ser19

phosphorylation was invariant to temperature. Finally we performed

a similar analysis in E36-ts41 cells and here too it is evident that Ser19

phosphorylation is much lower at the restrictive temperature of the

mutant cells and not affected in wild type controls (Figure 8C). These

results clearly show that proteolysis, ubiquitination and neddylation

are required for Ser19 phosphorylation.

Constitutively active RhoA overrides the requirement of
ubiquitination for contractions

We have shown that contractions depend both on the RhoA

pathway and on the activity of a Cullin-RING E3. To establish the

Table 2. Cell contractility requires the RhoA pathway.

Cells Nocodazole+ Microtubule depolymerization+ Contractions Quantization*

NIH3T3 Yes 85% n = 186

NIH3T3 Y27632 Inhibition of ROCK No 91% n = 54

NIH3T3 Exoenzyme C3 transferase Inhibition of RhoA No 70% n = 95

NIH3T3** dnRhoA Inhibition of RhoA No 93% n = 40

NIH3T3 ECT2 knockdown Inhibition of Ect2 No 87% n = 80

NIH3T3 dnECT2 siRNA knockdown Inhibition of Ect2 No

DT40 Yes 89% n = 70

DT40 Y27632 ROCK inhibition No 85% n = 46

DT40 Exoenzyme C3 transferase RhoA inhibition No 74% n = 50

*The percentage refers to the phenotype declared in the contractions column.
**Figure 5 and Movie S6.
doi:10.1371/journal.pone.0006155.t002

Regulation of Contractility

PLoS ONE | www.plosone.org 6 July 2009 | Volume 4 | Issue 7 | e6155



relationship of these two pathways, we transfected E36-ts41cells

with an expression vector for a constitutively active form of RhoA

(Q63L-hRhoA) fused to GFP (caRhoA-GFP) and cultured them at

39.5uC in the presence of nocodazole. Under these conditions

protein degradation, which is mediated by Cullin-RING ubiquitin

ligases, is blocked while the RhoA pathway is active. Figure 9 and

Movie S10 show that untransfected cells did not contract, while

caRhoA-GFP expressing cells vigorously contracted. This suggests

that RhoA activity is downstream to the Cullin-RING E3 and

might be dependent on it for contracting. This experiment also

verifies that loss of contractions in response to neddylation

inhibition is a rather specific event and not a result of ATP

depletion in cells.

We searched for potential candidate proteins that inhibit RhoA

and contractility and that are degraded in response to microtubule

de-polymerization. The RhoA inhibitor p190RhoGAP that is

degraded during the cell cycle [33], could have been a suitable

candidate. We observed however that p190RhoGAP is not

degraded in response to microtubule depolymerization. These

findings thus exclude it from being the inhibitor we are currently

seeking (data not shown).

Discussion

In this study we addressed the regulation of cellular contractility, a

behavior of major importance for cell movement and proliferation.

Contractility in response to microtubule depolymerization has been

observed already 20 years ago [8,9]. Our research has extended these

observations to non-adhering cells and to cells during mitosis. These

observations are in agreement with a recent report of contractions of

non-adhering cells and of cell fragments [36].

We show that movement of the mitotic spindle can induce

contractility also in the absence of drugs. This observation stresses

the importance of the spindle in the inhibition of contractions, and

is reminiscent of the effect observed in response to manual

manipulations of the spindle of echinoderm embryos [15]. Such

observations are of significance for the ongoing debate whether the

cytokinetic furrow is actively induced by the spindle midzone, or

Figure 5. Inhibition of RhoA inhibits nocodazole-induced
contractions. NIH3T3 cells stably expressing mCherry-a-tubulin were
transfected with pEGFP-hRhoA T19N (dnRhoA-GFP) and treated with
nocodazole. The left panel shows the mCherry2a-tubulin pattern and
the right panel shows dnRhoA-GFP expression. Two cells can be seen: a
dnRhoA-GFP transfected cell (arrow) and an untransfected cell
(arrowhead). They both entered mitosis at about the same time
(9.5 hours). While the dnRhoA-GFP expressing cell remained arrested for
5 hours and did not contract, the non transfected adjacent cell
contracted vigorously (see also Movie S6).
doi:10.1371/journal.pone.0006155.g005

Figure 6. Cellular contractility requires proteasome-mediated
degradation. This NIH3T3 cell was treated with nocodazole, entered
mitosis and contracted prior to the addition of MG132 at time 0. The
cell ceased to contracted after several hours (7.5 and 10.5 hours, see
also Movie S7A).
doi:10.1371/journal.pone.0006155.g006
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by relaxation of inhibition of microtubules that take place at a

place furthest away from the microtuble organizing centers

[20,37,38]. While our results support the latter model, they do

not directly contradict the first and the possibility that the

mechanisms that regulates cytokinetic furrow initiation differ from

the mechanism presented in this work.

Niiya et al [39] showed that Cdk1 inactivation in early mitosis

can leads to precocious cytokinesis. Their observations however do

not imply that Cdk1 inactivation is essential for contractions. We

have shown here that contractions can take place anytime during

the cell cycle, some of which will have low others high levels of

Cdk1 activity. As a matter of fact most of the contractions

described here took place in prometaphase arrested cells, which

have high levels of Cdk1 activity.

We confirmed here that cellular contractility induced by

microtubule depolymerization depends, as previously reported

[40,41], on the RhoA-ROCK pathway. The RhoA GTPase

requires also a GEF for its activation. GEF-H1 has been

implicated in contractility in the past [13,14]. The RhoA-GEF

Ect2 is considered to be specific for activation of RhoA in

cytokinesis [18,20]. We observed that Ect2 is essential for

contractility during early mitosis. As Ect2 is present during all

stages of the cell cycle [18] and our data (not shown), it could

indeed control contractility also in interphase.

Our observation, that contractility requires ongoing ubiquitin

mediated proteasomal degradation, is highly significant. Its

requirement for neddylation suggests that degradation is most

likely mediated by a Cullin-RING ubiquitin ligase. Our results

imply that the cell is continuously synthesizing a protein that

inhibits contractility and that must be degraded for cells to

contract. Potapova et al. [42] have shown that, as long as Cdk1

activity is inhibited, proteasomal activity is not required for

cytokinesis. In their experiments the proteasome was inhibited for

less than an hour. All the approaches we used show that the re-

accumulation and effect of the yet unknown contractility inhibitor

take roughly seven hours. This response is relatively slow

compared to other cellular events. As a matter of fact this time

span is reminiscent of the time it takes tissue culture cells arrested

prior to the restriction point [43] to exit G0 in response to

stimulation by growth factors [44]. Such a prolonged inhibition of

proteasomal degradation could potentially lead to non physiolog-

ical stress and possibly to depletion of ATP. Experiments shown in

Figure 9 and Movie S10 make such an explanation unlikely. Cells

with an inhibited neddylation pathway expressing a dominant

Table 3. Cell contractility requires ubiquitin mediated degradation.

Cells
Treatment
Nocodazole +

Effect Microtubule
depolymerization+ Contractions Figure Movie Quantization*

NIH3T3 MG132 Proteasome inhibition No 6 S7 80% n = 35 88% n = 17

A31N-wt 39.50 Yes S8B 92% n = 48**

A31N-ts20 340 Yes S8C 90% n = 51**

A31N-ts20 39.50 E1 inhibition No S8D 94% n = 48

E36-wt 39.50 Yes S9B 92% n = 50**

E36-ts41 340 Yes S9C 90% n = 48**

E36-ts41 39.50 Neddylation inhibition No S9E 94% n = 46

E36-wt 39.50*** Yes S9F .97% n<100

E36-ts41 39.50*** Neddylation inhibition No S9F .97% n<100

DT40 MG132 Proteasome inhibition No 81% n = 67

*The percentage refers to the phenotype declared in the contractions column.
**Mitotic cells that vigorously furrowed for any length of time.
***Detached cells were seeded on glass bottom culture plate.
doi:10.1371/journal.pone.0006155.t003

Figure 7. Contractility requires neddylation. Trypsinized E36-wt and E36-ts41 (upper and lower panels respectively) cells, normally incubated at
34uC, were treated with nocodazole and plated in glass bottom dishes at 39.5uC. Control E36-wt cells vigorously contracted for 8–10 hours and then,
within the next 13 hours of incubation, and gradually flattened (10, 13, 17, 21 hours). E36-ts41 cells contracted as the control cells for the first
10 hours and then gradually contraction ceased. This 10 hours time point corresponds to the time necessary for the thermosensitive mutation to
become active and reflects the residual neddylation which existed prior to the temperature shift. Moreover, these round and motionless cells failed to
re-adhere the plate (time points 13, 17, 21 hours and Movie S9F).
doi:10.1371/journal.pone.0006155.g007
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negative RhoA do not stop contracting like their untrasfected

neighbors. This indicates that lack of ATP or a non specific effect

are unlikely to lead to the cessation of contractions in these cells.

Movie S7B shows that cells inhibited for a prolonged time in

MG132 recover and resume contractile behavior once they are

washed and transferred to MG132 free medium.

A particular intriguing possibility is that degradation can be

modulated or inhibited by the cell under conditions where cells are

not supposed to contract, to move, or to divide. It would be of

interest to establish whether terminally differentiated cells in tissues

that are neither supposed to divide nor to wander around still

degrade this inhibitor.

The hypothetical model we propose described in Figure 10

suggests that this inhibitor is degraded in response to microtubule

depolymerization. It is however also possible that degradation is

ongoing and that the inhibitory mechanisms act in parallel. We

show that this degradation directly impinges on the phosphory-

lation of Ser19 of Myosin II light chain. As ROCK and other

kinases directly phosphorylate MLC Ser19, it is conceivable that

the inhibitor acts upstream. Indeed expression of constitutively

active RhoA managed to override this inhibition. We don’t have

however evidence that the inhibitor acts directly on the RhoA

pathway.

The search for this inhibitor and the characterization of its

degradation are a major challenge for future studies currently

underway in our lab. Inhibition of such a mechanism by

specifically developed drugs can be a useful and highly specific

approach to inhibit cell movement and division, two hallmarks of

metastasizing cancer cells.

Materials and Methods

Cells, cell culture and reagents
NIH-3T3, E36-ts41, E36, A31N and A31N-ts20 cell lines were

maintained in Dulbecco’s modified Eagle medium (DMEM,

Gibco) containing 10% fetal calf serum, 10 u/ml Penicillin and

100 mg/ml Streptomycin (Biological Industries, Beit-Haemek).

DT40 cells were maintained in RPMI-1640 (Gibco) containing

10% fetal calf serum, 3% chicken serum, 10 u/ml Penicillin,

100 mg/ml Streptomycin and 50 mM 2-mercaptoethanol (Merck).

NIH3T3 and DT40 were grown at 37uC with 5% CO2. E36-wt,

E36-ts41, A31N-wt and A31N-ts20 were grown either at 34uC or

at 39.5uC (as described in Results) in 5% CO2.

The reagents were added to the growing media to reach the

indicated final concentration as follows: nocodazole (Sigma) 2 mM

(0.2 mM for HeLa cells), Taxol (Sigma) 5 mM, MG132 (Sigma)

0.1 mM (0.05 mM for HeLa cells), Cell permeable exoenzyme C3

transferase (Cytoskeleton) 7.5 mg/ml, Y27632 (Sigma) 15 mM.

Ect2 siRNA (Santa Cruz Biotechnology sc-35259), non-specific-

siRNA and siRNA delivery control (Mirus) were transfected using

Lipofectamine 2000 (Invitrogene) according to manufacturer

guidelines.

DNA cloning and plasmid constructs
The pEF-Cyclin B1DM-GFP vector expressing non degradable

full-length mouse Cyclin B1-GFP was previously described [45].

pEGFP-hRhoA T19N (dnRhoA) and pEGFP-hRhoA Q63L

(caRhoA) were a gift from S. Ravid. pEGFP-Ect2-N1 (dnEct2)

[46] was a gift of S. Narumiya.

pEF-mCherry-a-tubulin was made by Y. Oren by cloning a-tubulin

downstream and in frame with the gene for the mCherry fluorescent

protein [26] in the pEF-plink2 expression vector. All vectors were

sequenced and verified. Transient transfections and stable lines were

obtained by the CaPO4 co-precipitation method [47].

Antibodies and fluorescent labeling
Rabbit anti-pMLC (Cell Signaling) and Goat anti-actin (Santa

Cruz Biotechnology sc-1616) were used for western blotting.

Mouse anti-RhoA (26C4) (Santa Cruz Biotechnology sc-418)

diluted 1:200, Rabbit anti-mMHC-B (S. Ravid) diluted 1:200,

Figure 8. Proteolysis, ubiquitination and neddylation are
required for MLC phosphorylation. A, HeLa cells were suspended
by trypsinization and grown for five hours in suspension in plastic tubes
in the presence of nocodazole with or without MG132. Cells were
harvested and analyzed by western blot with anti-phosoho-myosin
antibodies. B, A31N-wt and A31N –ts20 cells were grown over-night at
the indicated temperatures. They were subsequently trypsinized and
grown in suspension in plastic tubes for an additional 2 hours in the
presence of nocodazole at the same temperatures. Cells were harvested
and analyzed by western blot with anti-phosoho-myosin antibodies. C,
E36-wt and E36-ts41 cells were grown over-night at the indicated
temperatures. They were subsequently trypsinized and grown in
suspension in plastic tubes for an additional 2 hours in the presence
of nocodazole at the same temperatures. Cells were harvested and
analyzed by western blot with anti-phosoho-myosin antibodies.
doi:10.1371/journal.pone.0006155.g008
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Donkey anti-Mouse IgG (H+L) Cy2 conjugated diluted 1:500,

Donkey anti-Rabbit IgG (H+L) Cy2 (Jackson Immunoresearch).

RhoA immunofluorescent labeling was done as recently described.

For mMHC-B labeling, cells were fixed in 4% formaldehyde in

PBS for 20 minutes and blocked with PBST. The slides were

visualized either on an inverted IX70 Olympus microscope and

Figure 9. Neddylation is upstream of the RhoA pathway. E36-ts41 control cells or E36-ts41 mutant cells transfected with an expression vector
to the constitutively active RhoA mutant Q63L-hRhoA fused to GFP (caRhoA) (upper and lower rows respectably) were grown at 39.5uC in the
presence of nocodazole. While control cells did not contract, caRhoA-expressing cells contracted for 22 hours.
doi:10.1371/journal.pone.0006155.g009

Figure 10. Hypothetical model of regulation of cell contractility. The model shows how microtubule stability is upstream of the inhibitor.
Once microtubules are broken down or removed the inhibitor is degraded enabling the activation of the RhoA cascade. We included all the inhibitors
and mutants we used to test this hypothesis.
doi:10.1371/journal.pone.0006155.g010
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captured with a CoolSnap HQ (Photometrics) digital camera, or

on an Olympus FV1000 confocal microscope. The images were

analyzed and assembled with Image pro plus 5.0 (Media

Cybernetic), ImageJ (http://rsb.info.nih.gov/ij/) and Photoshop

7 (Adobe) software. Movies were assembled by Premier-Pro

(Adobe).

Time lapse microscopy
Cells were seeded on 35 mm tissue culture plates (Nunc) a day

prior of filming. The cells were observed by an Axiovert 200 M

microscope (Zeiss) equipped with a CO2 and temperature-

controlled incubator (EMBL GP168) and SM1 motorized stage

(Luigs & Neumann). Images were captured with LD32X/0.4 air

or 40X/1.3 oil objective lenses using a SensiCam QE (PCO)

digital camera and CompiC Inject (Cell Biology Trading)

software.

Supporting Information

Figure S1 Knockdown of Ect2 results in binucleated cells. A. Ect2

siRNA reduce Ect2 levels in NIH3T3 total protein extract. Extracts

from mock, Ect2 siRNA and non-specific siRNA (NS-siRNA)

transfected cells analyzed by Western blotting. Only Ect2 siRNA

transfected cells show reduction in protein level. B–D, Immunos-

taning with anti-a-tubulin and anti ECT2 antibodies show that

while in the mock and the siRNA non-specific transfected cells

ECT2 level was not affected, ECT2 siRNA transfected cells had

much lower levels of ECT2. Commonly, these cells were also bi-

nucleated as they fail to undergo cytokinesis.

Found at: doi:10.1371/journal.pone.0006155.s001 (2.15 MB TIF)

Movie S1 Nocodazole leads to almost instantaneous microtu-

bule de-polymerization. NIH3T3 cells stably expressing mCherry-

a-tubulin subjected to nocodazole treatment. Microtubule disrup-

tion occurs within 4–8 minutes of nocodazole addition (108–

116 min).

Found at: doi:10.1371/journal.pone.0006155.s002 (1.29 MB AVI)

Movie S2 Non adherent DT40 cells contract throughout the cell

cycle in a microtubule-dependent manner. A. DT40 cell undergo

mitosis. B. Asynchronous culture treated with nocodazole

contracts vigorously.

Found at: doi:10.1371/journal.pone.0006155.s003 (3.49 MB AVI)

Movie S3 Detached adherent cells contract and fail to re-attach

in a microtubules- dependent manner. NIH3T3 cells detached by

trypsinization and allowed to re-adhere on a glass cover slip.

Control cells (left panel) flatten within 30–60 minutes. Nocodazole-

treated cells (right panels) contract and fail to re-adhere for at least

2 hours and usually flatten only after 4 hours.

Found at: doi:10.1371/journal.pone.0006155.s004 (2.26 MB AVI)

Movie S4 Microtubules inhibit contractility in NIH3T3 mitotic

cells. A, NIH3T3 cells stably expressing mCherry-a-tubulin

undergo normal mitosis within an hour. B, Nocodazole was

added one hour after the beginning of the movie. Seven hours

later the cell detached from the plate, entered mitosis and

immediately started to contract for more than 7 hours.

Found at: doi:10.1371/journal.pone.0006155.s005 (8.07 MB AVI)

Movie S5 The mitotic spindle in cells arrested by nondegradable

Cyclin B1 inhibits contractions in a spatial dependent manner. A,

NIH3T3 cells stably expressing mCherry-a-tubulin were trans-

fected with Cyclin B1-DM-GFP. Following mitotic entry and

spindle formation (arrow) a cell portion, which was distal to the

spindles (arrowhead) started to contract. When the spindle

approached the distal part the contractions stopped (224–

280 min). Phase (left panel), mCherry-a-tubulin (central panel),

Cyclin B1-DM-GFP (right panel). B, NIH3T3 cells stably

expressing mCherry-a-tubulin were transfected with Cyclin B1-

DM-GFP, as described in A. The part of the movie presented here

starts 20 hours after mitotic entry. After an additional 8.5 hours

the cells were treated with nocodazole, which led to prompt

spindle depolymerization and to vigorous contractions.

Found at: doi:10.1371/journal.pone.0006155.s006 (5.97 MB AVI)

Movie S6 Inhibition of the RhoA-ROCK signaling pathway

stops nocodazole induced contractions. NIH3T3 cells stably

expressing mCherry-a-tubulin were transfected with dnRhoA-

GFP and treated with nocodazole. A dnRhoA expressing cell

(arrow) entered mitosis as indicated by the nuclear envelope

breakdown (620 min), remained arrested for 5 hours and did not

contract. Note the non transfected adjacent cell that entered

mitosis earlier (568 min) and vigorously contracted.

Found at: doi:10.1371/journal.pone.0006155.s007 (6.23 MB AVI)

Movie S7 Nocodazole induced contractions depend on protea-

some activity. A. NIH3T3 cells stably expressing mCherry-a-tubulin

were treated with both nocodazole and the proteasome inhibitor

MG132. Nocodazole was added 4 hours before the beginning of the

movie. MG132 was added at the beginning of the movie while the cell

was already arrested and contracting. The cell continued to contract

for an additional 7.5 hours and then ceased and remained as an

arrested round mitotic cell. B. NIH3T3 cells where arrested for

15 hours with MG132 and nocodazole. They were subsequently

washed and released into fresh medium without inhibitors. The cells

seem to recover well and attach within about 2 hours.

Found at: doi:10.1371/journal.pone.0006155.s008 (7.43 MB AVI)

Movie S8 Nocodazole induced contractions depend on ubiqui-

tination. A31N-wt and A31N-ts20 cells were subjected to

nocodazole at the permissive and restrictive temperatures. A,

A31N-wt control cells undergo normal mitosis at 39.5u. B, An

A31N-wt cell grown at 39.5u was treated with nocodazole and

contracted upon mitotic entry. C, An A31N-ts20 cell grown at 34u,
was treated with nocodazole. The cell contracted for 7 hours

before it flattened. D, An A31N-ts20 cell was grown at 39.5u in the

presence of nocodazole for 13 hours before it entered mitosis

(788 min). During the next 14 hours the cell remained arrested,

did not contracted and did not flatten.

Found at: doi:10.1371/journal.pone.0006155.s009 (10.08 MB

AVI)

Movie S9 Nocodazole induced contractions depend on neddyla-

tion. E36-wt or E36-ts41 cells were treated with nocodazole at the

permissive and the restrictive temperatures. A, E36-wt control cells

undergo normal mitosis at 39.5uC. B, An E36-wt cell grown at

39.5uC was treated with nocodazole and contracted upon entry into

mitosis. C, An E36-ts41 cell grown at 34uC was treated with

nocodazole. The cell arrested and contracted for 4 hours before it

flattened. D, E6-ts41 cells undergo cell cycle arrest at 39.5uC. The

movie started at 34uC and the cell (arrow, 44 minutes) underwent

normal mitosis. Fifteen hours later the temperature was shifted to

39.5uC for an additional 11 hours. The cell was overall arrested for

at least 26 hours. The cell cycle time of these cells at 34uC is about

16 hours. E, Temperature shift to 39.5uC of nocodazole-treated,

mitotic E36-ts41 cells stopped their contractions. At the beginning

of the movie the temperature was shifted to 39.5uC and nocodazole

was added. Upon mitotic entry the cell (arrow, 52 minutes)

contracted for 14.5 hours (944 minutes), and then stopped for an

additional 4 hours. F, Detached control E36-wt (left panel) and

E36-ts41 (right panel) were allowed to re-adhere on a glass cover

slip. Nocodazole was added and the temperature was shifted to
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39.5uC at the beginning of the movie. While control cells contracted

and re-adhered within 4–8 hours, E36-ts41 cells contracted for

10 hours and then ceased. These cells failed to adhere the matrix.

Found at: doi:10.1371/journal.pone.0006155.s010 (10.17 MB

AVI)

Movie S10 Neddylation is upstream of the RhoA pathway. E36-

ts41 cells were transiently transfected with constitutively active

form of RhoA Q63L fused to GFP(caRhoA-GFP), grown at

39.5uC and treated with nocodazole. While the non-transfected

control cell on the left panel did not contract (see also movie 9E)

the transfected cell on the right panel vigorously contracted for

over 14 hours. This indicates that the neddylation process

required for contractility is upstream to the RhoA signaling

pathway. Moreover, this suggests that prolong blocking of

neddylation does not result in ATP depletion or in over activation

Myosin phosphatase.

Found at: doi:10.1371/journal.pone.0006155.s011 (5.42 MB AVI)
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