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Abstract

In this paper, we apply both agent-based models and queuing models to investigate patient access and patient flow
through emergency departments. The objective of this work is to gain insights into the comparative contributions and
limitations of these complementary techniques, in their ability to contribute empirical input into healthcare policy and
practice guidelines. The models were developed independently, with a view to compare their suitability to emergency
department simulation. The current models implement relatively simple general scenarios, and rely on a combination of
simulated and real data to simulate patient flow in a single emergency department or in multiple interacting emergency
departments. In addition, several concepts from telecommunications engineering are translated into this modeling context.
The framework of multiple-priority queue systems and the genetic programming paradigm of evolutionary machine
learning are applied as a means of forecasting patient wait times and as a means of evolving healthcare policy, respectively.
The models’ utility lies in their ability to provide qualitative insights into the relative sensitivities and impacts of model input
parameters, to illuminate scenarios worthy of more complex investigation, and to iteratively validate the models as they
continue to be refined and extended. The paper discusses future efforts to refine, extend, and validate the models with
more data and real data relative to physical (spatial–topographical) and social inputs (staffing, patient care models, etc.).
Real data obtained through proximity location and tracking system technologies is one example discussed.

Citation: Laskowski M, McLeod RD, Friesen MR, Podaima BW, Alfa AS (2009) Models of Emergency Departments for Reducing Patient Waiting Times. PLoS
ONE 4(7): e6127. doi:10.1371/journal.pone.0006127

Editor: Rory Edward Morty, University of Giessen Lung Center, Germany

Received February 10, 2009; Accepted May 26, 2009; Published July 2, 2009

Copyright: � 2009 Laskowski et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: mcleod@ee.umanitoba.ca

Introduction

Scope
Hospitals represent a promising area where modeling and

simulation can be effective tools in evaluating patient access and

patient care policies and efficiencies. In many cases, the operations

of an emergency department (ED) are over taxed, as they

represent the necessary compromises between competing priori-

ties. Although policies and practices evolve over time and best

efforts are made to reduce patient wait times and other patient

care parameters, often there is little quantitative analysis or

feedback in the process.

In this paper, we apply both agent-based model (ABM) and

queuing model (QM) techniques to the operations of an ED,

specifically with respect to patient access and patient flow through

the ED. The objective of this work is to gain insights into the

comparative contributions and limitations of each respective

technique. The broader objective of the work is to contribute

empirical input into healthcare policy and practice guidelines

related to patient access and patient flow. Currently, our work has

generated general models (ABM and QM) relative to patient

access and patient flow in EDs. These are currently built on

relatively simple models of the physical layouts and social processes

within EDs. Although derived from input from healthcare experts,

the models represent low-level, coarse-grained models of EDs, as

these are a suitable starting point from which to evaluate the

model’s validity. These general models are presented in this paper,

and they provide an opportunity (within and between the ABM

and QM models) to investigate the relative sensitivities and

impacts of various model parameters on patient access and patient

care indicators.

In addition, several concepts from telecommunications engi-

neering are translated into this modeling context. The framework

of multiple-priority queue systems and the genetic programming

paradigm of evolutionary machine learning are applied as a means

of forecasting patient wait times and as a means of evolving

healthcare policy, respectively.

In general, the ABM approach is applied in this work to

investigate scenarios for resource optimization within the opera-

tions of an ED (for example, staffing scenarios). The QM approach

facilitates quantitative analysis of operational parameters in EDs

(for example, wait times). However, in both cases, the intent is to

carry out predictive modeling with increasingly empirical inputs,

which not only provide greater and more complex insights into the

operations of EDs, but feed into the improvement of the ABMs

and QMs themselves. To that end, this paper discusses the

opportunities and future efforts to refine, extend, and validate the

models with more data and real data (vs. simulated data). Real

data obtained through proximity location and tracking system

technologies is one example discussed. Future opportunities and

efforts will also focus on refining, extending and validating models

with a more complex range of physical (spatial–topographical) and

social models (staffing, patient care models, etc.), such as those

extracted from real time location systems and emergency
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department information systems, respectively. Augmenting the

range of agent behaviours and interactions in an ABM is an

interdisciplinary enterprise, and future efforts will rely heavily on

input from healthcare experts.

Background
Agent-based modeling is systems modeling, approached from

the ground up or from the perspective of its constituent parts, in

order to build an aggregate picture of the whole. Systems are

modeled as a collection of agents, their individual behaviours, and

their interactions. Agents are autonomous decision-making entities

able to assess their situation, make decisions, and compete with

one another on the basis of a set of rules. ABM’s conceptual depth

is derived from its ability to model emergent behaviour that may

be counterintuitive or, at minimum, its ability to discern a complex

behavioural whole that is greater than the sum of its parts. ABM

provides a natural description of a system that can be calibrated

and validated by representative expert agents, and is flexible

enough to be tuned to high degrees of sensitivity in agent

behaviours and interactions. ABMs are particularly well suited to

system modeling in which agent behaviour is complex, non-linear,

stochastic, and may exhibit memory or path-dependence [1].

A considerable focus of the applications of ABMs has been on

community-level epidemic modeling in human populations (see,

for example [2]), as this is an important public health and policy

issue with far-ranging health and economic impacts. Within

healthcare settings, a literature exists with respect to applying

ABMs, alone or in complement to other techniques, to the

operations of EDs. In general, this literature addresses system-level

performance dynamics, quantified in terms of patient safety [3],

economic indicators [3,4], staff workload and scheduling [5,6],

and patient flows [7,8]. While this literature addresses system-level

operational concerns during periods of typical operation or stasis,

there is also a literature on modeling of healthcare operations

during critical incidents like disease outbreaks and terrorist attacks

[9,10,11]. However, authors agree that relatively little work exists

in applying ABMs to healthcare policy development [12]. Our

own prior work includes both the development of a large scale

(community-level) agent-based epidemic model [13], and more

recently, an ABM for hospital acquired infections [14].

Complementary to ABMs, queuing-based modeling represents

a well established and vetted methodology in operations research,

with extensive applications in the service industries. Even though

its application to healthcare is not new, this application has grown

more recently, and the need is more recognized. For example, the

forthcoming CORS/INFORMS 2009 conference in Toronto,

Canada has devoted 15 sessions to healthcare applications, of

which at least five are focussed on the applications of queuing

theory. A recent issue of the flagship journals of INFORMS,

Operations Research (Vol. 56(6)), was a special issue on

Operations Research in Health Care. There is a clear recognition

that QM can be applied creatively to understand and estimate the

expected performance of the service processes in a healthcare

system. Applications of QM in healthcare range from using it to

study flows in EDs [15], analysis of delays for medical

appointments [16], and for determining hospital bed requirements

and allocations [17]. Most importantly, the model can be used to

assess the operations of the healthcare system under different

‘design’ scenarios. By identifying the service points in a healthcare

system, the associated topological linkages between these points

and the stochastic processes that characterize the arrival process of

patients and service processes of healthcare staff, one can apply a

QM to quantitatively describe patient flow through the systems as

well as waiting times in the system. QMs allow us to assess different

configurations of service nodes and triage rules. Most of the

existing models for healthcare are strictly queuing models.

In addition, technologies are emerging that can be leveraged by

hospitals to improve patient care. Two of the more obvious

technologies and applications include intra- hospital tracking and

internetworking. These technologies can allow for a more

distributed approach to managing a number of interacting EDs.

This is incorporated into one of the ABM applications described in

this paper, relative to evaluating ambulance redirection or other

patient diversion policies. Previous work by the authors presented

a specific emergency department data collection application and

architecture and extended it to a wide area Hospital/ED/

Ambulance and patient diversion framework [18].

Results and Discussion

Basic ABM Framework
Our work has focussed on an object oriented (OO), open-source

visual simulator which can be used to gather data from a patient

flow monitor information, applied to analyzing and forecasting

patient waiting times. The simulator was written using C++ and

makes use of the Qt4 API for cross platform windowed applications

[19]. By virtue of the open-source nature of both Qt4 and our code,

the Beta stage of the project will benefit from other researchers’

customizations and extensions. This would not be possible with an

off-the-shelf proprietary solution rather than an open-source

paradigm. Qt4 also allows us to deploy the simulator on Windows,

Mac, or Linux. A screenshot of the simulator window is shown in

Figure 1. The spatial aspect of the visualization reflects the spatial

nature of the underlying data sources.

Further details of the ABM simulator are presented in [18]. The

OO paradigm allows for instantiation of EDs and allows for

communication between EDs. In an actual healthcare setting,

patient information could be effectively conveyed on dashboards

within the participating EDs, as well as on a dashboard at a more

centralized control location. The flexibility and reuse of code

facilitated by the OO architecture enables instantiation of multiple

EDs by sub-classing or extending existing classes to allow

communication between instances of EDs. Each ED maintains a

collection of patient generators, agents representing patient care

points (registration, triage, etc.), patient agents, and staff agents. A

special controller agent is used to mediate patient flow through the

ED process. Creating subclasses of the controller is necessary to

handle variations on the basic ED processes, in order to reflect

different policies for individual EDs being modeled. For example,

one could create a subclass of the controller for an ED that allows

for bedside registration for all patients, versus an ED that requires

most patients to register at a desk (as per the current

implementation). While the current model represents coarse-

grained ED operations, the classes that represent staff and patient

care points may also be subclassed to reflect procedures that vary

between EDs. As the model is refined and extended, patients can

also be subclassed.

At every simulated time step, all relevant agents statuses are

refreshed. For example, in the general model, patients move

between nursing, waiting, and treatment areas, as well as tracking

time spent in each activity. Patient care points (e.g. nursing

stations) count down the time required to process patients for the

relevant activity. Patient generators model a Poisson arrival

process for each patient class (i.e. classified by urgency of care

required). At each time step, each decides whether to introduce a

new patient.

In the current model, patient arrival rates and service times are

based on estimates obtained by other researchers [20]. Further

ABM and Queuing Models for EDs
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work will focus on driving the simulations on real world data

collected in real time, such as that proposed in [21], where RFID

or other proximity location system data would be used to augment

the simulator. Further, the current model is able to place

functional areas of the ED at arbitrary locations. Future work

will integrate real spatial–topographical data taken from floor

plans of the EDs wish to simulate. Floor plans from various EDs

are readily available, such as the Halifax QE2 emergency

department available at [22]. This type of topographical

information is becoming more readily available and extremely

useful for modeling purposes.

Basic Analytic Queuing Model
A further aspect of the work is to implement queuing models

(QMs) as a complementary technique to ABM, as a means of

gaining complementary, comparative, and high level insights into

afore-mentioned healthcare applications. In contrast to simulation,

a QM is analytic, able to provide insight expediently but often in

exchange for accuracy. The current application was to develop a

general baseline model of an ED suitable for comparison with the

ABM simulation. Similarly, multiple EDs can be modeled as a

network of queues, augmented with numerical techniques and

assumptions of dependencies. The work fits into the overall

objective of combining the ABM with the analytic QM in a hybrid

that would be both fast and accurate. As the work develops, it may

become evident that one approach is preferable, more applicable,

or more insightful than the other, depending on the results desired.

In applying QMs to healthcare applications, the telecom

analogue remains very applicable, as there is both a vast literature

on simulation as well as on QMs. In addition, networks are

topographically somewhat similar to a network of EDs and similar

to flows within an individual ED. The following example could

represent part of the patient flow through an ED, framed within a

QM: a patient would arrive with an injury, be registered, triaged,

scheduled for diagnostic services and treatment, and discharged.

Figure 2 illustrates an analogous and familiar queuing situation in

a telecom context. A point to note is that although QMs have been

used to improve and analyze a wide variety of processes, the

telecom field is one with close correspondences to many healthcare

scenarios. For example, there are queuing phenomena common in

telecom networks that decrease system performance that would

have a corresponding analogue in healthcare, such as head-of-the-

line blocking. Extending this notion, an analysis of algorithms

applied in telecom networks to optimize system performance may

also have novel applications to healthcare. An example of head of

the line blocking in a healthcare setting may be a patient ready for

Figure 1. Screen Capture of the Basic ABM Simulator.
doi:10.1371/journal.pone.0006127.g001

Figure 2. Queues within Telecom Equipment.
doi:10.1371/journal.pone.0006127.g002
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discharge from the ED, but waiting for an as-yet unavailable bed

on a ward.

Complexities are added to the model in that the arrival rates of

heterogeneous patients are not governed by well-behaved statistics.

In addition, the queues may be pre-emptive, in that if a person

arriving with a serious injury would pre-empt others waiting in

various queues. Available ED resources, including physical

resources (beds, equipment, etc.) and human resources (nursing

staff, diagnostic staff, physician staff, etc.) further add complexity

to the model when compared to a communication or data

network. However, some of the basic and overall performance

measures are similar. For instance, the total service time of a

patient in the system (entry to exit) is a measure of interest in both

a data network as well as an ED. In a network, analogous policies

such as prioritization are used to prevent unbounded delay (time

spend in the ED) from occurring for important traffic (more

serious patients).

In terms of providing information to healthcare staff and

administrators, a queuing figure provides an inherently familiar

visual means of displaying bottlenecks in an ED. In general,

patients in individual queues are often in a common waiting area.

A dashboard display in the ED illustrating the various queues in

real time could be a valuable means of displaying a snapshot of

what is going on in terms of patient flows, routing, and delays.

As an extension to a single ED modeled within a QM

framework, an inter-hospital network of EDs will more closely

resemble a complete graph, as in practice any ED could redirect

patients to any other ED (Figure 3). In reality, there would also be

a hierarchy of EDs, as some may be regionally designated trauma

centres and/or priority centres for specific types of presenting

injuries. In addition, geography may make it more practical to

divert patients to closer EDs, as more distant EDs may add to a

patient’s overall delay or time spent in the system. The complete

graph of a network of EDs contrasts modern telecommunications

networks in that communication networks are sparse graphs

relaying packets of data as they traverse the network. While a

modern telecommunication network does not closely resemble a

network of EDs, the various services on a modern network do.

However, a decided advantage of modeling multiple EDs as

opposed to a telecom network is the feature of central control.

Computer communication networks lack centralized control

(although traditional telephony networks rely on control in

establishing a path through a network on which an actual call

can take place).

To address some of the complexities of networked inter-hospital

QMs, a degree of simplification can be achieved by focusing the

model on patient diversion for high priority patients. This

approach would accurately model the high priority queues within

EDs, with all non priority patients representing background noise

in the system. Information required by the patient diversion

scheduler in a coarse-grained approach to this scenario would

include the patient triage level, the estimated delay at the initial

receiving ED, and estimated transport delay and estimates of delay

at the target ED. By necessity, the system would be a non-

preemptive priority queue, in that, once a lower priority patient is

in transit they would not be pre-empted in transit.

A variation on the above scenario which reduces the degree of

simplification is to explicitly simulate the high priority patients and

aggregate all other patient flow. As such, the explicit, high priority

patients, as well as various policies and protocols would be

modeled in detail. Modeling would not keep track of individual

patients, but only their aggregate impact on delay of high priority

patients at individual EDs. In this scenario, the aggregated

(background) patient traffic would be context (ED) specific.

A final extension to this work is to consider a network of EDs

with some degree of hierarchy, based on ED capacities, priorities,

and capabilities. In this case, patient diversion would not only

consider queue lengths at various EDs, but also the priority level of

patients. One may see, for example, the diversion of a less critical

patient to a hospital with fewer resources, rather than contributing

to a queue of low priority patients at a regional trauma centre.

Analysis

ABMs for Patient Access to Emergency Departments
Initial efforts have focussed on the modeling basic aspects of an

ED treatment process, as depicted in Figure 4. The current model

is representative of a simple framework, suitable for simulations

that provide insight into the relative sensitivities and impacts of the

simulation parameters without necessarily quantifying them. As

well, the current model can be validated on an ongoing basis,

before and concurrent with adding requisite complexities.

In the current model, patients arrive either by ambulance or

walk in. Patients in need of immediate care are sent directly to a

treatment area. All ambulance arrivals, and a small fraction of

walk-ins are considered to be in need of immediate care. Walk-ins

that do not require immediate care proceed to the registration

desk. If the registration desk is busy with an earlier arrival, the

arriving patient waits in a queue. Once the registration process is

complete, the patient proceeds to the triage station. If the triage

station is busy, the patient again waits in a queue. Nursing staff at

the triage station assign the patient a priority level based on the

severity of their condition. The arriving patient then waits with

other patients in what is effectively a priority queue to be assigned

a treatment room.

This model is similar to many multiple priority queue system

found in many telecommunication technologies, such as 802.11e

Figure 3. A Network of Emergency Departments Connected by
Ambulance Queues.
doi:10.1371/journal.pone.0006127.g003

ABM and Queuing Models for EDs
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[23]. 802.11e proposes wi-fi extensions for improving the more

common 802.11 standard, through the use of priority queues

serving various classes of traffic. When applied to healthcare, the

utility of using analogues from telecom as a benchmark or

reference is that these amendments are usually well vetted and

studied and can be readily leveraged.

Once assigned a treatment room, the patient waits for physician

staff to attend and provide treatment. It is assumed that treatment

staff are physicians, and that they will treat the patients in order of

urgency, then in order of arrival. Upon completion of the

treatment, the patient leaves the system, and both the treatment

room and the doctor become available for another patient.

Model parameters include (but are not limited to) the number

and types of agents, the range of agent behaviours, the range of

agent interactions, the spatial-topographical nature of the

environment, and the nature of the processes being simulated.

In building an ABM from the ground up, the initial simplicities are

necessary to validate the model qualitatively and on an ongoing

basis as it is refined and extended. By its very nature, further efforts

in ABM development focus on expanding the range and nature of

model parameters to better reflect real-life environments and

social processes, and this applies to the range of work described in

this paper.

ABM Simulation of Staff Allocation
A series of simulations was carried out relative to staff allocation

in an ED, to investigate the utility of the ABM framework for

optimizing resources and making informed policy decisions. The

first scenario we investigated, while simple, illustrates the effects of

changing staffing levels, using multiple performance metrics.

In this scenario, we simulated the basic ED scenario described

earlier, with Triage Classes, Service Times, and Patient Arrival

rates based on [20]. We compared three different staffing scenarios

of two, three, and four doctors working in the ED. The simulation

was allowed a ‘‘warm-up’’ period of 24 hours, then observations

were made during the following 24 hours. Ten independent trials

were run; average treatment queue length is shown in Figure 5.

Alternatively, doctor utilization or individual patient waiting times

can also be instrumented. The staffing simulation is qualitative,

but represents one instance of this type of model that can be

investigated at individual hospitals.

Intuitively, the simulation results appear reasonable. Figure 5

shows the average number of patients waiting for treatment as a

function of time (in seconds). The value of the results at this stage

of model development is qualitative: the ED model staffed with

two doctors is understaffed, evidenced by a continually increas-

ingly patient queue. At the other end of the continuum, the ED

staffed with four doctors results in a patient queue of near-zero;

however, corresponding results indicate that the doctors are

underutilized. This allows discussions to occur relative to resource

allocation and optimization, in this case, physician resources.

In refining the simulation, one would seek to apply context-

specific patient, staff, and patient care parameters, as discussed

earlier. Where individual EDs are instances of a regional hospital

authority, further extensions of the work are to model multiple

facilities and thereby provide a means of assessing patient

diversion policy between facilities.

Prediction based on modeling and simulation is extremely

difficult and potentially error prone. Confidence can be enhanced

as the system is in operation and predictions tracked. Our

conjecture is that the model of individual or interacting emergency

departments, augmented with whatever available empirical data is

available, would still be preferable over loop policy decision

making. Sensitivity analysis associated with both the ABM engine

(numerical stability) as well as validating the null hypothesis in

term of a policy’s effectiveness is still required.

In refining the simulation, one would seek context-specific

patient arrival rates. For our purposes, the individual EDs are

Figure 4. Model of Emergency Department Patient Service.
doi:10.1371/journal.pone.0006127.g004
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instances of a regional hospital authority; this facilitates the

opportunity to model multiple facilities and thereby provide a

means of assessing patient diversion policy between facilities.

ABMs for Inter-hospital Patient Diversion
While the previous sections focussed on ABM simulation of

patient access and patient care within EDs, this section provides an

overview of how a modeling system could be extended between

hospitals and integrated within a regional health authority

informatics system. The discussion is model-agnostic, but for

discussion purposes, an ABM is presented. An ABM of an ED is

useful on its own [3], and we propose that its utility can be enhanced

when combined with real data captured via tracking technologies

and networking capabilities. In this specific application, the ABM is

a distributed model across a number of regional hospitals, with an

emphasis on utilizing data collected and analyzed in near real time.

A novel aspect of the present model is the use of congestion

avoidance algorithms from telecommunications engineering rede-

ployed as a model for evaluating patient diversion policies. Again,

the current models would benefit from the addition of real data in

near-real time; such data is becoming increasingly available,

although in some instances it may have to be inferred or estimated

[21]. Subsequently, this data needs to be shared among regional

hospital and health care facilities. Availability of and access to data

are both technical and political challenges, although they are

optimistically considered to be surmountable.

Figure 6 illustrates a wide area scenario incorporating

participating hospitals and emergency service vehicles. In the

wide area scenario, each hospital ED is equipped with tracking

and queue monitoring and collection systems, where data would

be in turn made available at a decision support center and would

serve as inputs to the ABM support system.

At present, ambulance diversion is principally based on best

effort reporting and good-faith operation based on regional

guidelines, an example of which can be found at [24]. In other

situations, diversions are posted, effectively preventing a patient

from being brought to the posting facility. If these practices are

done in an ad hoc or mutually exclusive fashion, they are unlikely

to be optimal. In addition to these valuable heuristics, ED

modeling can benefit from algorithms associated with conceptually

similar areas such as the Internet and congestion avoidance

schemes that deal with overcrowding of routers. In this

application, we adapted the Random Early Detection (RED)

algorithm [25] as a candidate for consideration when attempting

to optimize ambulance or patient redirection, based on ED

congestion information. This is an ideal initial algorithm for

adaptation, as it has many of the attributes well suited to

improving system throughput. RED accommodates limited bursts

and can be effective, even when there is limited sharing of

information between EDs. The RED patient diversion policy will

serve as a baseline for comparison for machine learnt policy or

optimizations discussed in a later section.

Furthermore, modeling extensions that add intelligence include

the ability to notify and receive information from ambulances and

other emergency vehicles. The actual communication services

would most likely be over GSM or similar communication

Figure 5. Average Queue Lengths for Varying Number of ED Doctors on Duty.
doi:10.1371/journal.pone.0006127.g005
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infrastructures where they exist. In the ABM, these services can be

modeled as messages between agents, and the ABM platform

would assist in optimizing ambulance diversion policies. Other

considerations include estimates of emergency vehicle travel time,

as these factors would be of significance in an effective model.

Although beyond the current scope, the proliferation of GPS and

mapping technologies allows these estimates to become empirical

inputs to the multiple ED simulation. Future extensions will focus

on data sources on vehicular congestion and congestion avoidance,

as additional empirical refinements to the modeling efforts [26].

ABM Simulation of Collaborating ED Data Infrastructure
In addition to simulations relative to staff allocation in an ED,

the work further simulated a collaborating ED data infrastructure

as described earlier. Real-time ED status data collected with RFID

technologies would be disseminated and utilized in real time,

informing ambulance and other emergency services, as well as

individual citizens (perhaps through a web portal), of the near real-

time status of EDs on a community-wide scale. This would allow

patients and care providers to make more well-informed decisions

on which ED to visit, based on current and projected wait-times.

In order to forecast future patient wait times, the simulation can be

run into the future a number of times, keeping track of the wait

times experienced by patients arriving at future times – until some

reasonable level of confidence is reached. During this process, the

visualization can be disabled in order to speed multiple trials.

Since these types of systems are not yet in place, the well-vetted

RED algorithm was used to model this process. As a method of

network congestion management, senders of data over the network

(typically the Internet) are implicitly notified of network congestion

by having their data packets (discrete chunks of data) probabilis-

tically dropped from network queues. To avoid oscillation between

intense bursts of traffic and choking off traffic entirely, the rate at

which these packets are dropped is ramped up gently after a

certain threshold in the queue length is reached. Similarly, in our

ED model, we set a minimum threshold, below which ED queue

lengths are considered acceptable and no dropping occurs. The

rate at which patients are dropped increases linearly with queue

length, until some maximum threshold is reached, past which the

drop rate remains constant. Since we consider ‘‘dropping’’

(turning away patients) as unacceptable, our model instead

considers a drop as a patient redirection to another ED. The

mechanism for this is either self-redirection to another ED or

redirection by a central dispatch/control.

Two modes were considered: first, where patients are redirected

to a random ED with uniform probability, and second, where

patients are probabilistically redirected to an ED based on the

ratio of doctors to patients waiting. The latter case results in EDs

that are less busy assigned a higher likelihood of patients being

redirected there. This reflects an assumed patient preference for

shorter waiting time, and also demonstrates the utility of city-wide

ED status information dissemination. This is contrasted with the

former case, where patients are simply guessing as to which ED is

a more preferable alternative without external guidance.

To ground our simulations to the greatest extent possible in real

data, the work drew on a report on ED usage in Winnipeg,

Figure 6. Wide Area Deployment of the Framework Illustrating the Major Stakeholders or Agents.
doi:10.1371/journal.pone.0006127.g006
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Canada released by the Manitoba Centre for Health Policy [27].

There were 185,659 ED visits in Winnipeg among six hospitals,

the breakdown of which by CTAS [28] triage level roughly

corresponded to the triage levels used in [20]. While the data on

actual treatment times are not readily available to date, the

distribution of treatment times were based on triage levels from

[20]. Further, no data on the variation in patient arrival rates

based on time of day, day of the week, time of year, or variation

between individual EDs is available to date, and thus uniform rates

are assumed for these variables. However, it should be noted that

the simulator readily incorporates these variations and ranges in

data, when they become available.

With the information presented, it was possible to estimate

arrival rates of patients for each triage level at each simulated ED.

An arbitrary but reasonable minimum threshold of 10 patients

waiting in the queue was chosen for the RED model. The drop or

redirection rate increases linearly to a maximum of 50%, reached

at a queue length of 20. It is reasonable to assume that staffing

levels at each ED do not match demand. Because arrival rates are

uniform among the simulated EDs and to make the simulation

interesting, two EDs are staffed with two doctors, two EDs have

three doctors, and two EDs have four doctors on staff during the

simulation.

As in the staff allocation simulation, three 24-hour scenarios

were investigated with ten trials each, and a warm up time of

24 hours. For comparison, the first scenario (labeled No

Redirection) assumes that there is no ED status information

available and that patients are better off going to the nearest ED

and remaining there regardless of queue length and wait times.

The second scenario allows redirection based on the RED model,

and the destination ED is chosen from a uniform probability. This

scenario is labeled Random RED. The third scenario, labeled

Guided RED, invokes RED redirection where EDs with lower

expected waiting time are probabilistically chosen more often as

the destination ED.

Un-aggregated patient wait times for these scenarios are not

shown here, as the variation between individual wait times was

very high, likely due to the disparity between ED conditions. As

before, results in Figure 7 have a qualitative value, indicating that

average queue lengths among all hospitals are shortest for the

Guided RED scenario. Also, the overall doctor utilization is

highest in the Guided RED scenario. While the model is not

currently refined enough to test causal relationships, these two

factors appear to be correlated, and it is interesting to note that a

significant queue length reduction (waiting time) was achieved

with only a modest increase in utilization and no additional

resources.

Detailed ED Queuing Models
The following example is a QM of an individual ED, with

potential extensions to a multiple-hospital QM. The example

demonstrates the ability of a QM to generate quantitative data

that can be used to identify system bottlenecks. While the data are

quantitative, the results of this given example should be viewed as

qualitative, highlighting the overall relative sensitivities and

impacts of changing parameter values. As the model is refined

Figure 7. Average Queue Lengths for Various Patient Redirection Policies.
doi:10.1371/journal.pone.0006127.g007
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and extended with data of higher accuracy, range, and precision,

the results become amenable to statistical analysis for hard metrics,

as well as causal and correlational relationships

In the current example, we consider a four-node system

illustrated in Figure 8. Node 1 – Doctors, Node 2 – Diagnostic

1, Node 3 – Diagnostic 2, and Node 4 – Admission to facility.

Every patient enters the facility and is classified into one of three

groups: Class 1 – high priority, Class 2 – next priority and Class 3

– lowest priority. Let s1(n) and s2(n) be the first and second

moments of service times at node n for all patients. These

parameters represent the average service time and the variance

associated with the service. For this illustration, the service times at

all nodes are equal for all classes, although there are differences in

the order of priority in which patients are attended, as well as

differences in how patients move between nodes.

In the example, all patients are assumed to be seen by a

healthcare worker able to assess and prescribe treatment specific to

the condition (physician, physician-assistant, etc.). At that point,

some patients may be discharged, while others are sent to

diagnostic services and/or facility admission. Upon completing

diagnostics, some patients may again be seen by a physician before

discharge. In the QM, let r(k,i,j) be the ratio of class k patients that

go from node i, to node j. For example, r(1,1,2) = 0.1 implies that

after a class 1 patient finishes seeing the doctor there is 0.1

probability that he/she may be sent to X-Ray.

The example used the following simulated data: patients arrived

at the rate of two per hour; 50% of patients are class 1, 25% are

class 2, and 25% are class 3. So the arrival rates are 1,0.5,0.5,

respectively for the three classes. In Figure 8 these are represented

by l, l1, l2, and l3. Service time data were simulated as follows

(in minutes): s1(1) = 20, s1(2) = 5, s1(3) = 10, s1(4) = 60, s2(1) = 500,

s2(2) = 30, s2(3) = 200, s2(4) = 8000. We intentionally selected high

second moments for admission to allow for high variance. As

patients move through the system they are assigned transfer rates.

The transfer rates, i.e. probabilities r(k,i,j) are given as:

r(k,1,2) = 0.1 for all k, r(k,1,3) = 0.2 for all k, r(1,1,4) = 0.3,

r(2,1,4) = 0.2, r(3,1,4) = 0.1; r(1,2,1) = 0.6, r(2,2,1) = 0.5,

r(3,2,1) = 0.4; r(1,3,1) = 0.7, r(2,3,1) = 0.2, r(3,3,1) = 0.2; All other

r(k,i,j) = 0. These transfer rates enable the modeling of patient flow

within the ED.

For this example, we obtain the time spent at a node (waiting

and receiving attention) as w(k,n) for class person of Class k at

Node n. For the simulated data outlined, the results are shown in

Table 1.

While hypothetical, the numbers illustrate the qualitative

differences in system behaviour, as experienced by patients of

different priority classes. In the current stage of development, the

model provides insight into the relative sensitivities and impacts of

varying input parameters, and allows a qualitative feel for varying

policies and practices within the ED. Further simulations were

carried out to demonstrate this potential. Table 2 illustrates the

waiting and service time variations for preemptive and non-

preemptive policies.

Table 3 illustrates waiting and service times for preemptive and

non-preemptive policies, as the arrivals rates are changed to (.25,

1.25, .5).

Table 4 illustrates waiting and service times and for preemptive

and non-preemptive policies, as the arrivals rates are changed to

(.25, .25, 1.5).

These simple simulations demonstrate the qualitative impacts in

waiting and service times of patients, which would be difficult to

model otherwise. While based on simulated data, the results imply

Figure 8. A Four Node Emergency Department Queuing Model.
doi:10.1371/journal.pone.0006127.g008

Table 1. Time spent at nodes as patients of various class flow
through the system.

n = 1 n = 2 n = 3 n = 4

k = 1 27.55 5.03 10.39 94.19

k = 2 57.10 5.09 11.00 171.97

k = 3 121.54 5.13 11.42 228.16

doi:10.1371/journal.pone.0006127.t001
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that the waiting times of each patient class is affected by how they

are classified. For example, by placing more patients in the highest

priority class, the waiting times increase for all patients. These

kinds of insights demonstrated by the QM are opportunities for

further investigation.

As with ABMs, future efforts will refine and extend the QM

model with real data, even though real data may carry a degree of

uncertainty to it as well. This encompasses both topological data, a

range of patient and staff parameters, and patient flow parameters

(for example, service and arrival rates). With an increasingly

context-specific data set, considerable studies can be done relative

to investigating efficiencies and performance improvement as a

function of resources. Going further, comparative modeling of

alternative care processes could be carried out as well.

The four-node QM outlined above is extendable to any level of

hierarchy or any number of nodes. Furthermore, extending the

QMs to encompass multiple EDs and/or alternative care practices

is a reasonable extension and does not present significant technical

difficulties. As with all the models discussed, the utility of the

single- or multi-hospital QM is dependent on accurate topological

and flow models with reasonable estimates for all parameters.

With increased real data inputs, hard metrics become reasonable

model outputs. Initial simple models that rely on simulated data

nonetheless provide insight into qualitative relationships between

parameters.

Optimizing Policy: Machine Learning
Optimizing patient access and patient care policies is not

necessarily amenable to either deterministic or ad-hoc approaches,

as the problems themselves are difficult combinatorial problems.

In these cases, significant gains can be made with non-

deterministic algorithms guided by analogues to physical systems

and/or learning systems, which in turn provide a measure of

credibility and confidence in the solution. This final section

discusses a genetic programming (GP) technique that mimics

evolutionary systems in attempting to optimize towards a solution.

The GP approach is one of many possible approaches, but does

closely relate to how actual policy and decisions are made in a very

difficult problem space.

The ABM development to date for the applications outlined in

earlier sections suggested a means to simulate and comparatively

assess policy and practices (‘‘what-if’’ scenarios) prior to imple-

mentation. However, this requires a human to generate a policy

for the ABM to test. Examples of such policies may be ‘‘staff with x

number of doctors instead of y number of doctors’’ or ‘‘begin to

divert patients once the number of waiting patients exceeds a

defined threshold’’.

In addition, ABMs can incorporate evolutionary algorithms that

allow realistic agent learning, and extensions of this work include

the addition of a machine learning (ML) module to the ABM

framework, to facilitate automatic policy generation. The model

generates policies, uses the ABM to evaluate them, and then uses

the best individual policies as the basis for the next generation of

policies. This process is iterated until pre-defined criteria are met.

Genetic programming (GP) [29] is one machine learning

paradigm for the automatic induction of computer programs

through an evolutionary process. The GP paradigm is well

established and includes successful research applications in the

areas of data mining [30], image classification [31], automatic

circuit evolution [32], and robot control [33]. Evolutionary

algorithms (EA), a group of algorithms to which GP belongs,

can improve upon human generated policies, and sometimes in

unexpected ways [34].

Future work will invoke the ABM framework to investigate the

viability of using a GP-based machine learning system to forecast

ED waiting times and to generate policy. As data collection

frameworks such as the one posited in [21] become available, the

ML system could be trained and validated on real data. In this

instance, the ABM becomes a data generator and an input into the

overall ML paradigm.

To develop this extension, refinements to the model parameters

are required. One such refinement is to the model of the agent

(patient), whereby the patient may change its internal state

probabilistically. These internal states may represent, for example,

getting less or more ill, leaving the ED, etc, and one can evolve

(automatically generate) triage policies to optimize patient flow for

these more complex agents. A second refinement may be to

generate an architecture-agnostic patient diversion policy, where

only the policy is evolved, and the means of implementing the

policy is assumed to be in place and is treated as abstract. Third,

an agent class responsible for executing patient diversion policies

generated by the GP-system will have to be added to the ABM.

To facilitate these extensions, the machine learning paradigm

we most closely follow is supervised or reinforcement learning (RL)

[35]. Figure 9 illustrates the general nature of how the ABM

provides feedback to the GP-based ML system, essentially acting

as a data generator until real data can be used to validate, for

example, a wait-time forecasting function.

Finally, a further research direction is to utilize ABMs not only

for policy shifts within an existing ED, but to develop ABMs for

modeling alternative forms of ED care. EDs necessarily function

Table 2. Time spent at nodes for preemptive (non-
preemptive) for arrivals.

n = 1 n = 2 n = 3 n = 4

k = 1 27.55 (34.67) 5.03 (5.06) 10.39 (10.76) 94.19 (110.33)

k = 2 57.10 (52.97) 5.09 (5.06) 11.00 (10.80) 171.97 (150.84)

k = 3 121.54 (96.59) 5.13 (5.06) 11.42 (10.84) 228.16 (179.86)

doi:10.1371/journal.pone.0006127.t002

Table 3. Time spent at nodes for preemptive (non-
preemptive) for arrivals (.25, 1.25, .5).

n = 1 n = 2 n = 3 n = 4

k = 1 21.30(29.89) 5.00 (5.05) 10.10 (10.72) 66.17 (89.52)

k = 2 38.28 (41.50) 5.05 (5.05) 10.67 (10.76) 105.17 (105.57)

k = 3 112.21 (88.73) 5.12 (5.06) 11.39 (10.81) 162.76 (130.13)

doi:10.1371/journal.pone.0006127.t003

Table 4. Time spent at nodes for preemptive (non-
preemptive) for arrivals (.25, .25, 1.5).

n = 1 n = 2 n = 3 n = 4

k = 1 21.30(29.84) 5.01 (5.05) 10.10 (10.72) 66.17 (81.65)

k = 2 25.18 (32.05) 5.03 (5.05) 10.28 (10.73) 77.24 (85.12)

k = 3 62.58 (58.09) 5.08 (5.05) 10.97 (10.78) 102.35 (92.72)

doi:10.1371/journal.pone.0006127.t004
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with competing objectives. In many EDs, the objective is to

maximize the flow of patients; improvements are derived through

staff levels, bed numbers and utilization, hours of operation,

diversion policies etc. More recently, there have been aggressive

efforts to reconceptualize the ED entirely, around its main

function of addressing emergencies (vs. maximizing patient flow)

[36]. This has follow-on effects in multiple directions, including

but not limited to staff configurations (teams vs. individuals) and

the layout of the physical facility. Here ABMs offer a useful tool in

guiding decisions around such paradigmatic shifts within an

individual institution.

Summary
This concept paper presented two modeling methodologies

applied to investigating patient access and patient waiting times in

hospital EDs, within the objective of developing tools that can help

guide policy and practice improvements. The first model is an

agent based modeling framework, oriented to the simulation of

EDs in either stand-alone mode, as multiple interacting EDs, as

well as technologies well suited to enhance simulation with

statistical empirical data collected in real time. The second model

is a more traditional queuing model, whose suitability is discussed

for similar applications. Analogues from telecommunications

engineering were introduced, selected for their conceptual

parallels to the patient access and patient wait time cases, and

because the telecommunications analogues have been well vetted

within the community, albeit for difference purposes.

The work is developmental, currently relying on coarse-grained

approximations, relatively simple general scenarios, and to a large

degree on simulated data. At their current stage of development,

the models’ utility lies in their ability to provide qualitative insights

into the relative sensitivities and impacts of model parameters, to

illuminate scenarios worthy of more complex investigation, and to

iteratively validate the models as they continue to be refined and

extended. With an increasing proportion of real data inputs

(spatial-topographical as well as agent parameters), accurate and

precise system metrics amenable to statistical processing become

reasonable model outputs. Both the agent based and the queuing

model frameworks are oriented to augmenting simulation with

empirical data when available. In this context, the work also

presented opportunities in which emerging technologies such as

RFID, which carry a high potential as tracking data sources,

would significantly enhance the modeling efforts by provisioning

the models with context-specific empirical inputs as close to real

time as possible. These sources can be mined in a statistically

significant manner and provide real world input for the simulation.

The models under development are also open source and rely

on open source components. They are extendable and can be

ported or tailored to a variety of hospital IT applications, several of

which were identified here. Eventually, these tools may be more

closely coupled to commercial hospital information systems,

thereby providing better optics as to refining and optimizing

hospital processes. The final section of the paper provided an

overview of future work in augmenting the policies with machine

learning, which may be the closest means of simulating decision-

making in a complex problem space. Finally, although the

emergency department was the main focus of this research, the

frameworks discussed are amenable to the study of intra-hospital

wards, as well as inter-hospital and hospital-community interac-

tions.

An example of a multiple ED simulation is available on

YouTube [37].

Figure 9. Genetic Programming and Agent Based Model Integration.
doi:10.1371/journal.pone.0006127.g009
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