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Abstract

Background: Here we continue our efforts to use methods developed in the folding mechanism community to both better
understand and improve structure prediction. Our previous work demonstrated that Rosetta’s coarse-grained potentials
may actually impede accurate structure prediction at full-atom resolution. Based on this work we postulated that it may be
time to work completely at full-atom resolution but that doing so may require more careful attention to the kinetics of
convergence.

Methodology/Principal Findings: To explore the possibility of working entirely at full-atom resolution, we apply enhanced
sampling algorithms and the free energy theory developed in the folding mechanism community to full-atom protein
structure prediction with the prominent Rosetta package. We find that Rosetta’s full-atom scoring function is indeed able to
recognize diverse protein native states and that there is a strong correlation between score and Ca RMSD to the native
state. However, we also show that there is a huge entropic barrier to folding under this potential and the kinetics of folding
are extremely slow. We then exploit this new understanding to suggest ways to improve structure prediction.

Conclusions/Significance: Based on this work we hypothesize that structure prediction may be improved by taking a more
physical approach, i.e. considering the nature of the model thermodynamics and kinetics which result from structure
prediction simulations.
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Introduction

In 1961 Anfinsen demonstrated that the native state of a protein

is encoded in its amino acid sequence and hypothesized that the

native state is the lowest free energy state [1]. Since then, many

researchers have dedicated their careers to understanding the

driving forces underlying protein folding in order to 1) predict the

native states of proteins from their amino acid sequences and 2)

understand the mechanisms and pathways by which proteins fold.

Collectively, these components constitute the protein folding

problem [2,3].

The protein structure prediction community has generally

focused on finding a protein’s native state based on its sequence. A

typical approach is to develop a knowledge-based scoring function

to discriminate native structures from non-native ones and to

sample this potential in search of the global minimum [4]. For

example, the Rosetta structure prediction package uses a Monte

Carlo (MC) scheme to sample a series of scoring functions with

increasing levels of chemical detail in order to identify protein

native states [5–7]. In Rosetta and many other structure prediction

schemes, the problem of finding the free energy minimum is

simplified by focusing on the energetic (or score) term [8]. We note

that Rosetta includes a simple implicit solvent and some implicit

accounting for entropy by using information from known

structures but stress that it does not explicitly account for

conformational entropy. This simplification is justified by arguing

that the conformational entropy of the native state is negligible

and, therefore, the energetic term must be the dominant factor

favoring the native state and the energy minimum should be

equivalent to the free energy minimum. This approach has proved

remarkably successful and has resulted in the design of a protein

with a novel fold [9], accurate high-resolution structure predictions

for small globular proteins [10], and the design of novel enzymes

[11]. However, ignoring conformational entropy will have

increasingly deleterious effects on the landscape as one moves

away from the native state and this may ultimately prevent

accurate structure prediction for more complex systems.

In contrast, researchers studying folding mechanisms have

placed less emphasis on predicting native states and focused on

understanding how proteins fold. This work is also based on

potentials, or force fields. However, these potentials have been

designed to reproduce our physical reality rather than to simply

discriminate native and non-native protein structures. Further-

more, much emphasis has been placed on understanding the entire

free energy landscape and the kinetics of traversing this landscape

[2]. To accomplish these objectives numerous advanced sampling

algorithms have been developed [12], as well as methods to

visualize free energy landscapes [13] and determine whether or

not they represent the true equilibrium distribution of the system

under the given potential [14].

Here we continue our efforts to use methods developed in the

folding mechanism community to both better understand and

PLoS ONE | www.plosone.org 1 June 2009 | Volume 4 | Issue 6 | e5840



improve structure prediction. Our previous work demonstrated

that Rosetta’s coarse-grained potentials may actually impede

accurate structure prediction at full-atom resolution [7] and this

result has been confirmed by other researchers [15]. Based on this

work we postulated that it may be time to work completely at full-

atom resolution but that doing so may require more careful

attention to the kinetics of convergence. To explore this possibility,

we have used Generalized Ensemble (GE) algorithms [12] to

generate projections of the landscape defined by Rosetta’s full-

atom scoring function. We find that these scoring functions are

capable of recognizing the native states of both protein G and

engrailed homeodomain, an a/b and all a-helix protein,

respectively. Furthermore, the score has the desired correlation

with Ca RMSD to the native state. However, there is a huge

entropic barrier to folding and the hydrogen bonding potential

does not provide any significant bias towards the native state,

slowing the kinetics of convergence. Based on these insights, we

believe that further advances in structure prediction may be made

by taking advantage of methods and ideas developed in the folding

mechanism community.

Results and Discussion

General Approach
In order to gain a deeper understanding of Rosetta’s full-atom

resolution scoring function we have implemented a variant of the

Simulated Tempering (ST) algorithm [16,17] in Rosetta. ST was

originally intended to induce the system of interest to perform a

random walk in temperature space so that broad sampling at high

temperatures would improve mixing at lower temperatures.

However, ST may be generalized to other spaces [17]. Here we

define an RMSD space consisting of a number of umbrellas

constraining the system to a given Ca RMSD from the native state.

ST is then used to induce the system to perform a random walk in

RMSD space without making any alterations to the temperature

[18]. Furthermore, we only use MC moves rather than the

combination of MC and minimization moves used in the standard

Rosetta protocol. Thus, the system can move back and forth

between the folded and unfolded states while remaining at

equilibrium. Exchanging between umbrellas also allows the system

to access all the possible conformations in a given RMSD range

[19]. By performing many simulations in parallel we hope to

explore all the relevant folding pathways. Figure 1 shows that this

procedure results in reversible folding (i.e. multiple folding and

unfolding events), confirming that our simulations have reached

convergence [20]. The Multistate Bennett Acceptance Ratio

(MBAR) method [21], a statistically optimal variant of the

Weighted Histogram Analysis Method (WHAM) [22], is used to

determine the unbiased average values of thermodynamic

properties such as energies and conformational entropies as a

function of the RMSD. All the thermodynamic measurements in

this work are dimensionless. That is, energies and free energies are

given in units of the thermal energy kT and entropies are given in

units of the Boltzmann constant k.

We have applied this method to two systems: protein G (PDB

code 1igd) [23] and engrailed homeodomain (PDB code 1enh)

[24]. Protein G has an a/b fold while engrailed homeodomain

(EH) is a 3-helix bundle. Because these systems contain both major

protein secondary structure motifs our conclusions should be

applicable to most protein systems.

Figure 1. Time evolution of the Ca RMSD of the current umbrella center for five representative simulations demonstrating the
presence of reversible folding.
doi:10.1371/journal.pone.0005840.g001
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A Thermodynamic Perspective
The average energy (or score), conformational entropy, and free

energy as a function of the RMSD for both protein G and EH are

shown in Figure 2. The average score has a clear correlation with

the RMSD and the native state is at the scoring function’s global

minimum for both systems. Thus, Rosetta’s full-atom scoring

function is indeed able to recognize diverse protein native states.

However, the conformational entropy of the native state is

extremely low for both proteins. In fact, at the temperature used

during full-atom Rosetta structure prediction during the CASP

competitions (0.8 in arbitrary units, internal to the Rosetta code)

the entropy dominates the free energy. As a result, the native state

is the free energy maximum instead of the desired minimum.

This observation gives some insight into the limitations

currently observed with Rosetta structure prediction. Rosetta uses

a hierarchical approach in which coarse-grained structure

predictions are made and then used as starting points for full-

atom refinement [7]. A number of recent works have noted that

for full-atom refinement to be successful, i.e. reach RMSD values

less than 2 Å, the initial configuration must be within a ‘‘radius of

convergence’’ of about 3 Å from the native state [6,8]. Our results

show that the free energy difference between 3 Å and 2 Å is about

5 kT and, therefore, sampling a 2 Å structure when starting from

a 3 Å structure is extremely unlikely. The improbability of moving

to lower RMSD structures is consistent with the fact that one to

ten thousand independent runs must be performed in order to find

a few accurate full-atom structures with Rosetta’s ab initio structure

prediction protocol [10].

Temperature Dependence of the Free Energy
The relative importance of the energetic and entropic

contributions to the free energy may be tuned by adjusting the

temperature (DF~DE{TDS). Namely, the energetic term will

dominate at sufficiently low temperatures while the entropic term

will dominate at higher temperatures. By assuming that the

average energy and conformational entropy are independent of

temperature we are able to predict the temperature dependence of

the free energy. We can then predict what temperature one would

have to use in Rosetta structure prediction in order for the free

energy landscape to have the desired correlation with the RMSD.

We find that the free energy landscape has the desired shape

(i.e. stable native state, unstable unfolded state) at temperatures

below 0.5, as shown in Figure 3. At temperatures above 0.5 the

free energy landscape still has a maximum at the native state. At a

temperature of about 0.5 there are still non-trivial barriers

between the native and unfolded state but the free energy

landscape is essentially flat relative to other temperatures.

Exploiting the Temperature Dependence
While the projections of the thermodynamic landscapes shown

in Figures 2 and 3 appear to be smooth, the true landscapes are

actually quite rugged due to energetic terms like hydrogen

bonding and Van der Waals interactions. In order to explore this

space the standard Rosetta full-atom refinement protocol uses a

combination of MC and minimization moves [7]. The minimiza-

tion moves are intended to guide the protein towards the native

state at the energy minimum while the MC moves are intended to

help the protein overcome small barriers. For the MC moves to

perform this function they must use a sufficiently high temperature

to overcome small barriers but a low enough temperature to avoid

mitigating the effectiveness of the minimization moves. Simply

running the standard protocol at a lower temperature is likely to

destroy this balance and prevent the system from overcoming even

trivially small barriers, thus drastically slowing the dynamics.

However, using our insights into the temperature dependence of

the free energy landscape it may be possible to devise a

temperature ST protocol that could overcome this roughness

and reach the native state.

To test this hypothesis we have implemented a temperature ST

version of the full-atom Rosetta refinement protocol, as well as a

variant of the standard protocol that runs at a temperature of 0.1.

For the ST variant we used a temperature range of 0.1 to 0.5 and

a purely MC move set in order to obey detailed balance. Broad

sampling should be possible at a temperature of 0.5 because of the

relative flatness of the landscape, while at lower temperatures the

native state should be favored. Temperatures above 0.5 are not

used because they would favor unfolding. The low temperature

variant allows us to ensure that any improvements seen with the

ST variant over the standard protocol are not simply the result of

running at lower temperatures. Both the standard and low

temperature variants use the full set of MC and minimization

moves available in Rosetta.

Our ST variant is found to outperform both standard Rosetta

and the low temperature variant. For each of these three protocols

we performed 100 runs starting from a 5.7 Å structure, well

beyond the radius of convergence, drawn from our umbrella

sampling simulations. Figure 4 shows our 5.7 Å starting structure

alongside protein G’s native state as a reference. Figure 5 shows

histograms of the lowest RMSD found in each run. One ST run

reached an RMSD value of 4.8 Å and 37% of the ST runs found

structures with RMSD values lower than the initial configuration.

However, neither the standard protocol nor the low temperature

variant were able to find any structures with RMSD values less

Figure 2. Average energy (,DE.), conformational entropy
(,DS.), and free energy (,DF.) as a function of Ca RMSD for
protein G and engrailed homeodomain (EH).
doi:10.1371/journal.pone.0005840.g002
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than that of the initial configuration. The increased ability of our

ST protocol to move towards the native state demonstrates that

utilizing explicit knowledge of the entropic contribution to the free

energy may improve structure prediction, even when the physical

conformational entropy is not of interest.

Physical Perspective on Energetic Terms
A physical perspective may also be taken in order to evaluate

and improve individual energetic terms. For example, Rosetta’s

hydrogen bonding term [25] is seen as a critical component of the

full-atom scoring function [8]. While this term agrees with

quantum calculations [26], it has been found empirically that

the hydrogen bonding potential only helps discriminate between

models within about 3 Å of the native state [25].

We find that the hydrogen bonding term actually impedes the

kinetics of convergence while providing only a minor energetic

advantage to near-native states and, therefore, ultimately impedes

rapid and accurate structure prediction. Figure 6 shows that the

average hydrogen bonding energy is somewhat lower within about

3 Å of the native state for protein G but not for EH. For both

systems, however, the average hydrogen bonding energy is

basically flat relative to the total energy. Because the average

Figure 3. Average free energies (,DF.) as a function of Ca RMSD for temperatures of 0.5 and 0.1 for protein G and engrailed
homeodomain (EH). The black lines are the hypothesized free energy at the given temperature and the dash-dot lines are the free energy at
temperature 0.8 shown for reference.
doi:10.1371/journal.pone.0005840.g003

Figure 4. (A) The native structure of protein G and (B) the 5.7 Å starting structure used for comparing the ST and Standard Rosetta
variants.
doi:10.1371/journal.pone.0005840.g004
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hydrogen bonding energy is flat, it does not necessarily provide

any guiding force to bias the system towards the native state.

Shmygelska and Levitt have reported that Rosetta’s hydrogen

bonding potential is better able to discriminate native from non-

native states than the low-resolution potentials [15]. The most

likely explanation for this apparent discrepancy is that they

weighted the hydrogen bonding term more heavily. During our

simulations the long-range hydrogen bonding term was weighted

by a factor of one while the short-range term was weighted by a

factor of 0.5, following the protocol used by the Baker group in

CASP 7. If these terms were weighted more heavily relative to the

rest of the potential a stronger bias towards the native state could

arise. For example, the small dip we observe in the hydrogen

bonding term for protein G could become quite substantial.

Comparing our results with those of Shmygelska and Levitt is also

complicated by the fact that they sampled the hydrogen bonding

term in the context of Rosetta’s less accurate low-resolution

potentials while we have sampled it in the context of the more

accurate full-atom potential. A more extensive comparison of our

methods in the context of the full-atom potential is an interesting

future direction.

We suggest that structure prediction potentials could possibly be

improved by avoiding such flat terms or reweighting them such

that they provide a substantial biasing force towards the native

state. We note that proteins can have surprisingly fast kinetics, with

some small proteins folding on the microsecond time scale [27].

One outstanding question is whether it is even feasible to design a

knowledge based potential that can accurately identify protein

native states and have kinetics that are faster than physical kinetics.

If not, physics based methods may actually be the fastest

algorithms for complex systems as they may be able to take

advantage of the evolutionary optimization or the physical

processes for kinetics present in the natural kinetics of protein

folding. Even if this is not the case, our results show that structure

prediction may benefit by taking advantage of ideas developed to

better understand folding mechanisms. Informatics approaches

that incorporate more physical insights into protein folding

mechanisms are thus an interesting direction [28–30].

Conclusions
Our results demonstrate that explicitly accounting for confor-

mational entropy and considering the kinetics of convergence may

improve structure prediction even if physical conformational

entropies and kinetics are not of interest. For example, by

understanding the interplay between energy and conformational

entropy one can choose an optimal temperature or set of
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Figure 5. Distribution of the minimum Ca RMSD values reached by 100 Simulated Tempering (ST) and 100 standard Rosetta runs
started from a 5.7 Å structure. Results for both the low temperature and standard Rosetta variants were identical so only a single plot is shown.
doi:10.1371/journal.pone.0005840.g005

Figure 6. Relative magnitude of the average hydrogen bonding energy (solid line) versus the total average energy (dash-dot line)
as a function of Ca RMSD for protein G and engrailed homeodomain (EH).
doi:10.1371/journal.pone.0005840.g006
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temperatures to use for exploring conformational space. By

considering the kinetics of convergence one can ensure that this

space can be explored rapidly, resulting in computationally

efficient structure prediction protocols. An outstanding question

is whether it is possible to design knowledge-based potentials with

better entropic and kinetic properties than our physical reality. If

not, physics based structure prediction may ultimately be

necessary for more complex systems. Whether or not this is the

case, our results show that structure prediction may benefit by

taking advantage of ideas developed to better understand folding

mechanisms.

Materials and Methods

All structural representations were generated using VMD [31].

Temperature ST
Temperature ST [16,17] simulations perform a random walk

within a pre-determined temperature set {Tn}. This is accom-

plished using an expanded Hamiltonian

H Xð Þ~biE Xð Þ{gi

where bi~1=kTi, E Xð Þ is the energy (or score) of the current

configuration (X), and gi is the weight corresponding to Ti. At

regular intervals the simulation attempts to move either up or

down in temperature space with equal probability. The probability

of accepting a given move is

P i?jð Þ~ min 1,e{ bj{bið ÞE Xð Þzgj{gi

� �

where P(iRj) is the probability of moving from Ti to Tj.

Our temperature ST simulations used a temperature list of 0.1,

0.15, 0.2, 0.3, 0.4, and 0.5 in arbitrary units internal to the Rosetta

code and temperature exchanges were attempted every 50 steps.

All weights were determined using the Simulated Tempering

Equal Acceptance Ratio (STEAR) method [7]. This method

obtains an initial estimate of the weights from short constant

temperature simulations at each temperature and then refines

these weights in subsequent ST simulations before holding them

constant in the final data collection phase. Two iterations of weight

refinement consisting of 100 runs of 600,000 steps were performed

for temperature ST simulations, followed by 100 runs of 600,000

steps for data collection. In order to maintain detailed balance the

ST simulations only used MC moves in torsion space.

RMSD ST
RMSD ST simulations perform a random walk amongst a

predetermined set of umbrellas constraining the system to a given

RMSD from the native state without changing the system’s

temperature. In this case the expanded Hamiltonian and

probability of accepting a move are

H Xð Þ~b E Xð Þza RMSDcurrent{RMSDið Þ2
h i

{gi

P i?jð Þ~

min 1,e{ba RMSDcurrent{RMSDjð Þ2{ RMSDcurrent{RMSDið Þ2
� �

zgj{gi

� �

where b~1=kT , E(X) is the energy of the current configuration

(X), RMSDcurrent is the current RMSD from the native state,

RMSDi is the center of umbrella i, and ‘‘a’’ determines the

strength of the spring constraining the system to a given umbrella.

Our RMSD ST simulations used umbrellas centered at RMSD

values from 0.5 to 10 Å at 0.5 Å intervals and jumps between

neighboring umbrellas were attempted every 50 steps. The ‘‘a’’

parameter was set to three. All weights were determined using the

Simulated Tempering Equal Acceptance Ratio (STEAR) method

[7]. This method obtains an initial estimate of the weights from

short umbrella simulations at each umbrella (without any jumps

between umbrellas) and then refines these weights in subsequent

RMSD ST simulations before holding them constant in the final

data collection phase. Three iterations of weight refinement

consisting of 100 runs of 1,700,000 steps were performed for

RMSD ST simulations, followed by 100 runs of 900,000,000 steps

for data collection. In order to maintain detailed balance the

RMSD ST simulations only used MC moves in torsion space.

Rosetta
For an overview of the Rosetta structure prediction algorithm

and the command-line options used in this study see reference [7].

The full Rosetta move set was used for standard Rosetta runs. The

same number of moves was used when comparing standard

Rosetta runs with ST.
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