
Listen to Genes: Dealing with Microarray Data in the
Frequency Domain
Jianfeng Feng1,2*, Dongyun Yi3, Ritesh Krishna2, Shuixia Guo4, Vicky Buchanan-Wollaston5

1 Centre for Computational System Biology, Shanghai, Fudan University, Shanghai, People’s Republic of China, 2 Department of Computer Science, Warwick University,

Coventry, United Kingdom, 3 Department of System Science and Mathematics, National University of Defence Technology, Changsha, People’s Republic of China,

4 Department of Mathematics, Hunan Normal University, Changsha, People’s Republic of China, 5 Warwick HRI, University of Warwick, Wellesbourne, United Kingdom

Abstract

Background: We present a novel and systematic approach to analyze temporal microarray data. The approach includes
normalization, clustering and network analysis of genes.

Methodology: Genes are normalized using an error model based uniform normalization method aimed at identifying and
estimating the sources of variations. The model minimizes the correlation among error terms across replicates. The
normalized gene expressions are then clustered in terms of their power spectrum density. The method of complex Granger
causality is introduced to reveal interactions between sets of genes. Complex Granger causality along with partial Granger
causality is applied in both time and frequency domains to selected as well as all the genes to reveal the interesting
networks of interactions. The approach is successfully applied to Arabidopsis leaf microarray data generated from 31,000
genes observed over 22 time points over 22 days. Three circuits: a circadian gene circuit, an ethylene circuit and a new
global circuit showing a hierarchical structure to determine the initiators of leaf senescence are analyzed in detail.

Conclusions: We use a totally data-driven approach to form biological hypothesis. Clustering using the power-spectrum
analysis helps us identify genes of potential interest. Their dynamics can be captured accurately in the time and frequency
domain using the methods of complex and partial Granger causality. With the rise in availability of temporal microarray
data, such methods can be useful tools in uncovering the hidden biological interactions. We show our method in a step by
step manner with help of toy models as well as a real biological dataset. We also analyse three distinct gene circuits of
potential interest to Arabidopsis researchers.
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Introduction

Uncovering the biological meaning embedded in time-series gene

expression data is one of the most challenging problems in the post

genomic era. In comparison with fixed single time point microarray

data, the expression patterns observed over multiple time periods

provide us with a rich set of information detailing the temporal

profiles of the genes. Such profiles when studied at the genome wide

level can help us fully understand the underlying cellular processes

and facilitate the development of potential therapeutic targets.

Temporal analysis of microarray data has not only helped in

identification of functional categories of genes but also in

understanding the behaviour of various gene circuits. Techniques

like Fourier estimations have been used for detection of periodic

signals in various organisms including yeast and human cells [1,2,3].

Claridge-Chang et al. [4] used Fourier components to determine a

set of genes expressed with a robust circadian rhythm in adult

Drosophila head. Similar microarray study on circadian rhythm in

Arabidopsis was carried out by Harmen et al.[5] which empirically

tested for statistically significant cross-correlation between temporal

profile of each gene and cosine wave of definite period and phase.

Temporal microarray data has also been helpful in understanding

the gene circuits using methods like Ordinary Differential Equations

[6] and Dynamic Bayesian networks [7,8]. The present study is

based on the temporal gene expression data available for Arabidopsis

thaliana, but our approach is general and can be directly applied to

tackle other temporal gene microarray data.

The first step in dealing with microarray data is to process the

data using an appropriate normalization technique. The normal-

ization can help us deal with unwanted systematic variations

associated with each biological sample, dye effects, gene selection

bias, experimental conditions, human errors etc. We apply a

normalization method inspired by [9,10] on our custom designed

microarrays. We realized that there was a problem in direct

application of the method on our microarray platforms as it

induced negative correlation among data. This issue can be of

serious statistical concern while processing the data further. To

avoid this bias due to correlation, a further approach is introduced

to achieve a better normalization result. We term this approach

uniform normalization.

The next obvious step after normalization is clustering of data to

reduce the data dimension. Three popular methods [11] for
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clustering microarray data are : a) Point-wise distance based

methods [12] b) model-based clustering methods [13] and c)

feature-based clustering methods [14,15]. However to the best of

our knowledge, all clustering methods reviewed above are visual

clustering i.e. a gene is classified into one class according to its

distance from the class centers. Here in this paper, we attempt to

apply the idea of auditory clustering i.e. classifying a gene into one

class according to its frequency profile. One may argue that this

certainly belongs to feature based clustering method. However,

since frequency is one of the most important features we use, it is

clearly distinguishable from visual features, and we also know that

there are huge advantages of dealing with temporal data in the

frequency domain, we call our method auditory clustering approach.

After applying our frequency based clustering approach to the

data, we use Partial Granger causality [16] to infer network

structures for interactions among selected genes from within and

across those clusters. Three gene circuits are analysed in this

paper. The first circuit is the circadian circuit comprising of 7

genes (ELF4, TOC1, CCA1, LHY, PRR7, PRR9 and GI). The

second circuit is the ethylene signalling circuit comprising of 16

genes, and the third circuit is a global gene profile circuit of 9

genes. For the circadian and ethylene circuit, our results are in

agreement with experimental data. For all the circuits, we present

the causality analysis in both the time and frequency domain.

Corresponding to double, triple and quadruple LOF (loss of

function) mutation results, we introduce complex Granger

causality here. In both the circadian and ethylene circuit, we find

that the complex Granger causality plays an important role in

reconciling experimental and computational results. Interactions

in the global circuit is one of the most interesting results. To

answer questions like, if there is a global picture of interactions

among genes, we first simply cluster the genes using the k-mean

method. Then we use the cluster centers (means) as representatives

of each cluster and apply the Partial Granger causality to infer the

interaction pattern. We see a clear hierarchical structure of

interactions among the genes. At the top of the hierarchy are the

genes with a peak in the middle, at the middle level of the

hierarchy there are genes with a decreasing trend, and at the

bottom level the genes exhibit an increasing trend.

Methods

Experimental details
Plant growth and leaf material acquisition: Arabidopsis (COL-0)

was grown in controlled environment at 20uC, 70% relative

humidity, 250 mmol m22 s21 light intensity, 16 h day length. Leaf

7 was tagged on emergence and biological replicates were

harvested both morning and evening (7 h and 14 h into light

period) at 2 day intervals until fully senescent. This resulted in 22

time point samples from before full leaf expansion to senescence.

RNA isolation and probe preparation: RNA was isolated from 4

individual leaves as separate biological replicates using the Triazol

method (Invitrogen) followed by RNeasy column purification

(Qiagen). RNA was amplified using a MessageAmp II (Ambion)

and then labelled with Cy3 or Cy5 using reverse transcriptase

(SuperScript II, Invitrogen). Each amplified RNA sample was

labelled twice with Cy3 and twice with Cy5 giving 4 technical

replicates for each leaf sample. Two Cy3 and C5 labelled samples

(in 25% formamide, 56 SSC, 0.1% SDS and 0.5 mg ml21 yeast

tRNA) were mixed in different combinations for hybridization to

microarray slides.

Microarray analysis: Microarrays (CATMA) carrying 31,000

Arabidopsis gene probes (constructed in house as described in

[17]) were hybridized with labeled samples at 42uC overnight.

Slides were washed and then scanned using an Affymetrix 428

array scanner at 532 nm (Cy3) and 635 nm (Cy5). Scanned data

were quantified using Imagene version 7 software (BioDiscovery,

http://www.biodiscovery.com/). Individual text files quantifying

the output for Cy3 and Cy5 were used in the further data analysis.

Normalizing: uniform normalization
It is basically assumed that the number of up-regulated and

down-regulated genes is about the same, which does not usually

hold for customized arrays due to gene selection biases. With the

increased popularity of customized microarrays, which enables us

to focus only on hundreds of genes of their primary interest with

more reliable measurements, a certain gene bias exists which

requires more sophisticated normalization techniques. The

validation tests are essential for controlling the quality of

downstream statistical data analysis of customized arrays.

Our study is motivated by the aforementioned fundamental

concerns. We first estimate the various sources of variations in an

experiment and if microarray data have been properly normal-

ized, there should be no systematic biases among estimated values

of genes. Therefore, the residuals associated with genes in a

replicate, standardized by the estimated gene wise variances,

should show a normal distribution. Also, the correlation between

residuals from one replicate to other replicate should be minimum.

A detailed normalization approach is presented in Text S1. The

main difference between our approach and the approach existing

in the literature lies in the fact that the normalized data set is less

negatively correlated (see Results section). In fact, the correlation

matrix of normalized data is much more £at or uniform than the

one without adopting our approach, hence the name uniform

normalization.

Clustering: auditory clustering
The genes were clustered according to their frequency profiles.

The clustering method is different from all existing clustering

approaches for microarray data in the literature. As mentioned

before, this method can be classified as auditory clustering. To fully

illustrate the method, we use a toy model shown in Figure 1. In

order to generate the simulation data, we randomly selected 3000

genes from the original dataset and computed their power

spectrum. Major frequencies present in the system were for day

1 and 22. We used following equations to generate the simulation

data having similar frequency components.

xgt~agzk|cos
2pt 1ð Þ

N

� �
zk|cos

2pt 11ð Þ
N

� �
zt|jt

k~
0:1|U 0,1ð Þ, if 0vgƒ1000

0:5|U 0,1ð Þz0:1, gw1000

(

The term ag is the DC term computed for the gene g from

original dataset after taking the Fourier transform. jt is the

uniform error associated with simulated xgt.

The panel A in the Figure 1 plots the time domain

representation of 3,000 genes. Though it is difficult to see the

grouping of genes in the time domain representation, we transform

the data to the frequency domain and the results are shown in

Figure 1B. Two main, dominant frequencies corresponding to M1

and M11 can be seen in the Figure, M1 and M11 are the first and

the 11th components of the discrete Fourier transformation.

Figure 1C also confirms that two different frequencies are present

in the data, one in the high frequency (M11) and the other being in

Listen to Genes
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the low frequency (M1). The behaviour can also be seen in the

Figure 1D. The functional meaning of the clusters is obvious. The

genes with a higher M11 values are most sensitive to (controller of)

faster changes, whereas the genes with higher M1 values are

responsible for slower changes. In general, we can face a data set

which has multiple frequencies. Each frequency has its own

physiological meaning. For example in HeLa cell, we have

reported that there are three dominant frequencies [16].

Complex Granger causality: Network Analyzing
We have developed a novel approach called Partial Granger

causality (PGC) to analyze network structures in genes, neurons

and brain areas[16]. We adopted PGC approach here. However,

when we examined the actual gene data, we found (see next

section) that the data is definitely not stationary. In order to apply

the PGC, we have to pre-process the data. The first, and also the

simplest, one is to use ARIMA rather than ARMA model to fit the

data and then apply the PGC to the ARIMA model. It is not

difficult to see that the PGC in an ARMA model and PGC

obtained from an ARIMA model is equivalent.

Interactions between two groups of genes (complex) are also

introduced to emulate the multi-gene mutation experiments . The

complex interactions are considerably different from interactions

observed at pair wise level. For example, a pair of nodes may not

have any individual interaction with the third node, but when in

combination with each other, they may interact with the third one.

On the other hand, when two nodes are negatively correlated, each

of them can interact with the third one, but when they are grouped

together, the interaction may disappear. We will direct the readers

to look at the Text S5 for a detailed discussion on this topic.

For two vectors (groups of genes at time t) (X(t),Y (t)), Y (t) is a

Granger cause of X(t) if

log

P
lX

iP
lX ,Y

i

is significantly greater than zero, where lX
i are eigenvalues of the

residual matrix
P

X

X tð Þ~A Lð ÞXz
X

X

and lX ,Y
i are eigenvalues of the residual matrix

P
X ,Y

X tð Þ~B Lð ÞXzC Lð ÞYz
X

X ,Y

with L as the delay operator and A, B, C being appropriate

polynomials. The 95% confidence intervals are constructed using

Figure 1. Synthesized data. A. Gene intensity vs. time. B. The magnitude of discrete Fourier transform of the data in A. The DC term is not shown.
C. M0 (DC term), M1 (corresponding to the first column in B) and M11 (the 11th column in B). A clear structure of two clusters is shown. D. The
histogram of the magnitude of M11.
doi:10.1371/journal.pone.0005098.g001
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the bootstrap method. An interaction between two genes or two

group of genes is significant if and only if the low bound of the

confidence interval is greater than zero.

Results

Normalization
The correlation matrix of 16 replicates of the normalized data

as mentioned in Method section and Text S1 is shown in Figure 2.

The result obtained after removing the different biases is shown in

x M [1,16]6y M [1,16]. The existence of negative correlation

among the replicates can be seen in Figure 2 (more downward

spikes than upward). After applying our method to the data, the

negative correlation is evenly distributed over all replicates x M [21,

36]6y M [1,16]. This considerably improves the outcome of the

normalization. For a detailed description of the method we refer

the reader to the Text S1.

Frequency analysis
After normalizing the data (Figure 3IA), we turn our attention to

create clusters in the frequency domain. It is important to note that

a successful Fourier analysis depends on a careful design of

experiment and data collection method. Too short data and or a

collection on data points on irregular intervals can miss the natural

cycles present in the system and the Fourier analysis may not be

fruitful. The effect of windowing data for Fourier transformation is

well understood in literature, see for example [18]. We took such

important issues in consideration while collecting the data. First,

our data is long enough and collected over 22 days which allows to

capture lots of changes in gene expression profiles. Second, our

data was collected to capture the cyclic behaviour due to daily

activity (24 hour period) in the plant. Twice a day data collection

also allowed us to monitor the gene expressions due to day and

night effect. Though our data was not collected on smaller

intervals which meant that we missed the smaller frequencies but

the larger frequencies could still be captured and utilized for our

purpose. We find two dominant frequencies in the data as shown

in Figure 3IB; one with a period of one-day and the other with a

period of 22-day (the power corresponding to x = 11 and the

power corresponding to x = 1). In Figure 3IC, we plot M11 (all

genes with M11.5) vs. M1 (all genes with M1.8). The thick line

indicates that the genes with a strong one day rhythm are separate

from the genes which have a rhythm of 22-day (see below in

Figure 3II). Figure 3ID is the histogram of the DC term: it is

interesting to see that it is a two-modal distribution. Most genes

have a 22-day rhythm (Figure 3IE), in comparison with Figure 3IF.

In order to have a clear understanding of the power spectrum

distribution, we plot top 10 and bottom 10 genes in Figure 3 IIA

(according to M1), IIB (according to M11) and IIC (according to

M0). Figure 3IIA plots the genes with a 22-day frequency showing

the biggest jumps for 22 days. All the top 10 genes can be divided

into two classes a) down regulated (6 genes) and b) up regulated (4

genes). One may infer that these genes could be closely related to

senescence. The genes with maximum power of frequency at of

one day are oscillatory genes (circadian genes). They can be

further divided into two classes: in-phase (4 genes) and out-phase

(6 genes) as shown in Figure 3IIB. Finally in Figure 3C, genes

which are £at are plotted. Figure 3IID, IIE and IIF are the

corresponding power of Figure 3IIA, IIB and IIC.

A Circadian Circuit
In Figure 4A, the top most gene ELF4 shows a strong circadian

rhythm. Actually it has the biggest M11 value. The importance of

ELF4 in regulating the circadian activity is also reported in the

literature [19,20]. From the gene annotation (also presented in

Text S2), we found that ELF4 is related to two other genes: LHY

and CCA1. ELF4 is necessary for light-induced expression of both

CCA1 and LHY. Figure 4A plots the time trace of these genes. A

Figure 2. Correlation matrix before and after uniform normalization. For x = 1, 2, ??? , 16 is the correlation matrix before applying the
uniform normalization (see Text S1). For x = 21, 22, ??? , 36 is the correlation matrix after applying the uniform normalization (see Text S1). The
diagonal elements of two matrices are all set to 0.
doi:10.1371/journal.pone.0005098.g002
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Figure 3. I Microarray data of 31,000 genes. IA. Gene intensity vs. time. Only 200 genes are shown. IB. Magnitude of all genes vs. frequency. It is
clear to see that there are two main frequencies in the data, i.e. the one of one day period (M11, the 11th column) and the other of 22 days period
(M1, the first column). The DC term M0 is not shown. IC. Two dimensional plot of M11 vs. M1. ID. The histogram of the DC term. There are two peaks
in the histogram. IE. The histogram of M1, it is a Weibull distribution. IF. The histogram of M11, it is an exponential distribution. II. Time trace of top
ten genes with 22-day, one day period and flat. IIA. Time trace of the first (in red and black) and bottom (in blue) ten genes with the strongest
amplitude of the period of 22 days. There are two classes: one is up regulated (red thick line), the other is down regulated (black thick lines). IIB. Time
trace of the first (in red and black) and bottom (in blue) ten genes with the strongest amplitude of period of 1 day. There are two classes: one is on-
phase (red thick line), the other is off-phase (black thick line). IIC. Time trace of the first top (in red) and bottom (in blue) ten genes without rhythms.
IID, IIE, IIF, the power corresponding to IIA, IIB and IIC respectively.
doi:10.1371/journal.pone.0005098.g003
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circadian circuit related to LHY and CCA1 has been reported in

the literature [21,22]. The circuit comprises of three loops; PRR9,

PRR7 and LHY/CCA1 in one loop (morning loop or loop III),

TOC1 and GI as another loop (night loop or loop II), and a loop

of LHY/CCA1, TOC1 and an unknown gene as loop I.

We therefore consider a gene circuit of 7 genes (see Text S2).

Four genes (ELF4, TOC1, LHY and CCA1) show a strong

circadian rhythm as plotted in Figure 4B. We see that all genes

have very strong magnitude on the period of 11 days. We applied

partial Granger causality on those genes and the resulting network

is shown in Figure 4C. The inferred structure is broadly in terms

with the existing literature[23]. ELF4 plays an important role in

regulating the circadian activity and is the most upstream genes. It

interacts with both the loop III and the loop I. Loop III genes are

closely interconnected via the interactions between PRR9, LHY

and CCA1, and the interaction between CCA1 and PRR7.

Similarly, in the loop I , TOC1 modulates LHY and CCA1. There

are also links between loop III and loop I: PRR9 exerts influence

on TOC1. TOC1 and PRR7 have a feedback loop. GI is an

isolated gene in our structure, without having any interactions with

other six genes. In fact, this also coincides with the experimental

findings. On page 4 [23], it is mentioned that The gi single mutant had

a relatively weak phenotype, whereas our assays of the triple gi; lhy;cca1

mutant demonstrate GI’s importance. This naturally leads us to

introduce the notation of interactions between complexes as

defined in the Method section. Fig. 4D tells us that all single genes

ELF4, TOC1, LHY, CCA1 and (LHY, CCA1) have very little

influence on GI. However, ELF4, TOC1, LHY and CCA1

together exhibit a significant interaction with GI. This is an

example of how complex causality between sets of genes can be

useful for deriving meaningful conclusions. A GO annotation table

describing the discussed genes for circadian rhythm is presented in

Table 1.

We then analyse the interactions in the frequency domain. Not

surprisingly, almost all the interactions show a 24 hour periodic

behaviour by exhibiting a peak at one day period.

An Ethylene Signalling Pathway
Ethylene signalling pathway [24,25] is one of the most well

studied circuits in the literature due to its importance in myriad

developmental processes and fitness responses. Here we selected a

group of genes (16, see Text S3) which have been reported in the

literature to play a central role in the pathway. Ethylene is

perceived by a family of integral membrane receptors. In

Figure 4. One gene circuit controlling circadian activity. A. Time trace of four genes, ELF4, TOC1, LFY and CCA1. ELF4 and TOC1 are in-phase
oscillators, LFY and CCA1 are in-phase oscillators, but they are off-phase oscillators with respect to ELF4 and TOC1. B. Magnitudes vs. frequency for
the four genes. They have highest magnitude at the frequency of one-day period. C. The gene circuit obtained in terms of PGC (see annotation in
Text S2). D. Complex interactions between different group of genes and GI. E. Gene interactions in the frequency domain. The y-axis represents the
strength of causal interactions.
doi:10.1371/journal.pone.0005098.g004
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Arabidopsis, at least five family members are involved: ETR1,

ETR2, ERS1, ERS2 and EIN4. ETR1 and ERS1 belong to type 1

receptors whereas EIN4, ETR2 and ERS2 are type 2 receptors.

The receptors are hypothesized to be in a functionally active form

that constitutively activates CTR1. It is reported that the

interaction of type 1 receptors with CTR1 is stronger than type

2 receptors. CTR1 is an upstream gene, and has been reported as

the regulator of the pathway [25]. In our inferred circuit, we

obtain interactions of CTR1 with ERS2 and CTR1 with ETR1.

Both are biologically verified [25]. Though EIN2 is an important

component in the Ethylene circuit, its function is not completely

understood [26]. It has been suggested that in the downstream of

Table 1. GO annotations for the genes discussed for circadian rhythm.

Gene Number Gene Name GO Identifier GO Term

At2g40080.1 ELF4 (EARLY FLOWERING 4) GO:0042753 Positive regulation of circadian rhythm

At1g01060.1, At1g01060.2,
At1g01060.3, At1g01060.4

LHY (LATE ELONGATED HYPOCOTYL) GO:0048574 Long-day photoperiodism, flowering

At2g46830.1, At2g46830.2 CCA1 (CIRCADIAN CLOCK ASSOCIATED 1) GO:0007623 Circadian rhythm

At5g61380.1 TOC1 (TIMING OF CAB1 1) GO:0007623 Circadian rhythm

At5g02810.1 PRR7 (PSEUDO-RESPONSE REGULATOR 7) GO:0007623 Circadian rhythm

At2g46790.1, At2g46790.2 PRR9 (PSEUDO-RESPONSE REGULATOR 9) GO:0007623 Circadian rhythm

At1g22770.1 GI (GIGANTEA) GO:0007623 Circadian rhythm

doi:10.1371/journal.pone.0005098.t001

Figure 5. A circuit of ethylene pathway. A. An ethylene gene circuit with around 16 genes. Only genes with interactions are shown here. The
thick arrow is the complex interaction between {CTR1, ETR1 and ERS2} and EIN2. B Interactions in the frequency domain calculated in terms of PGC.
Only 14 significant interactions are shown.
doi:10.1371/journal.pone.0005098.g005
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CTR1 and on the upstream of EIN2, a SIMKK-MPK6 pathway

exists which may be regulated by CTR1, but this is yet to be

verified biologically. So, we directly focus on the interactions

between CTR1 and EIN2 and check whether CTR1 regulates

EIN2 or not. To understand the interactions between CTR1 and

EIN2, we chose to use complex causality by grouping together

CTR1, ETR1 and ERS2; and analysing the interaction of the

group with EIN2. We found that CTR1 does have a relationship

with EIN2 and this is shown in the Figure 5A (thick arrow). EIN3

is most closely related to EIL1 [25] and this interaction can be

found in the inferred network. Except two genes (EIN4 and EIL2)

which are isolated and have no interactions with the rest of the

genes, we see that the pathway shows a clear hierarchical

structure. Interactions in the frequency are shown in 5B. Some

interactions, for example ETR2 R ERS1, EIN6 R EIL4 etc.,

exhibit a strong daily rhythm.

A Global Circuit
Finally we turn our attention to a global picture: to analyze the

interaction network of all genes. In other words, to analyze how

leaf senescence is turned on. All genes are clustered into clusters

using the K-mean approach with a total number of different

clusters (32, 20,??? etc). After clustering, we then pick up one gene

or the centre to represent each cluster. The time trace of the

representative gene is plotted in Fig. 6A (see Text S4 for examples

of genes belonging to different clusters), together with their

causality.

In Fig. 6A, it is clearly shown that the upstream genes exhibit a

typical concave shape. All genes in the middle layer in the leaf

senescence hierarchy have a peak at the beginning and then

decrease. Finally the bottom layer genes increase their intensity

during leaf senescence. The result fits our intuition very well.

During the life time of a leaf, senescence associated genes are first

expressed at a relative low intensity. Their intensity increases to

their peak level, as an indication of the initiation of leaf senescence.

It is certainly surprising to see the stable global circuit

underlying the all 31,000 genes. Its biological meaning is clear:

leaf senescence is a stable process and is independent of a single or

even a group of genes. Whether this is also true for other genomes

(aging in mammals, for example) is a challenging and interesting

issue. On the other hand, results in Fig. 6A also show us the power

of our Granger causality approach. Intuitively, one would not

expect that gene 1, for example in 6A, is the cause of gene 3 since

the down-regulation of the gene 3 starts at an early time (day one).

Figure 6. Causal relationship between genes: a global circuit. A. A total of 11 genes are shown and a clear hierarchy structure is
demonstrated. B. The interactions in the frequency domain.
doi:10.1371/journal.pone.0005098.g006
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In Fig. 6B, the interactions in the frequency domain are plotted.

We can see that the interactions at the frequency domain are

different between the top and middle layer and the middle layer

and bottom layer. In general, we have a peak in the middle

frequency between the top and the middle layer: see for example,

1 R 3. But the interactions between the middle and the bottom

layer are concentrated on either the high or the low frequencies.

Discussion

We have presented a complete work-flow for temporal

microarray data processing. A fresh approach has been taken to

accomplish each step in the work-flow ; from processing of raw

data to gene network inference. This paper breaks new ground in

normalization and clustering methods for highly replicated

temporal microarray data. The normalization method allows each

gene to be represented as identical and independent stochastic

process, and the auditory clustering reduces the data dimension by

applying simple but powerful frequency based approach. We have

shown in the paper that the clustering method not only categorizes

the genes according to their functionality but also allows a purely

data driven natural ranking of genes based on their power

spectrum profile. Two important concerns, namely, the optimal

number of clusters in a dataset and ranking of each gene within

each cluster are naturally handled using our method. We describe

in the Frequency Analysis section that how the natural ranking of

genes allowed us to select the genes involved in the circadian

circuit of Arabidopsis. Encouraged by these results, we decided to

study the circadian circuit in more detail and analyse it. We used

our method of complex partial Granger causality to infer the gene

interaction network for the circuit. Our time and frequency based

analysis show that the computationally inferred network structure

is in agreement with the experimental findings.

We further applied Partial Granger causality in time as well as

frequency domain to selected genes involved in the ethylene

pathway. In the end, we clustered the complete dataset of 31,000

genes with a standard k-mean clustering method to detect any

pattern among the genes. After selecting a representative gene

from each cluster, we applied Partial Granger causality to obtain a

global interaction circuit. A clear hierarchical communication

pattern emerged for the genes involved in the global circuit.

These are the first steps in applying a frequency domain

approach to deal with temporal microarray data. There remain

many issues to be further explored on the lines of frequency

domain analysis. Is there any random gene (white signal) or a

group of random genes having a flat PSD? The PSD is distributed

according to Weilbull distribution. Is there an link between the

life-span distribution of genes and PSD distribution? Here we only

checked for the frequency domain interactions at an identical

frequency. For a complex system, we expect that an interactions at

different frequencies exists (see for example, [27]. In the frequency

domain analysis, it is known that the most efficient way to nullify

an input signal at a given frequency is by applying a filter. Can we

develop biological filter to fulfil certain purposes, for example, to

prolong the life span of a leaf? We have also microarray data of the

Arabidopsis leaf respond to infection with the plant pathogen

Botrytis cinerea available, with a time interval of 2 hours. A direct

application of our approach seems very encouraging.
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