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Abstract

Neuronal voltage-gated Ca2+ channels are involved in electrical signalling and in converting these signals into cytoplasmic
calcium changes. One important function of voltage-gated Ca2+ channels is generating regenerative dendritic Ca2+ spikes.
However, the Ca2+ dependent mechanisms used to create these spikes are only partially understood. To start investigating
this mechanism, we set out to kinetically and pharmacologically identify the sub-types of somatic voltage-gated Ca2+

channels in pyramidal neurons from layer 5 of rat somatosensory cortex, using the nucleated configuration of the patch-
clamp technique. The activation kinetics of the total Ba2+ current revealed conductance activation only at medium and high
voltages suggesting that T-type calcium channels were not present in the patches. Steady-state inactivation protocols in
combination with pharmacology revealed the expression of R-type channels. Furthermore, pharmacological experiments
identified 5 voltage-gated Ca2+ channel sub-types – L-, N-, R- and P/Q-type. Finally, the activation of the Ca2+ conductances
was examined using physiologically derived voltage-clamp protocols including a calcium spike protocol and a mock back-
propagating action potential (mBPAP) protocol. These experiments enable us to suggest the possible contribution of the
five Ca2+ channel sub-types to Ca2+ current flow during activation under physiological conditions.
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Introduction

Pyramidal neurons of layer 5 in the neocortex are the primary

output cells of the cortex [1]. They express a wide variety of

voltage-gated ion channels, such as Na+, K+ and Ca2+ channels,

whose differing distribution and density in the cell membrane

determine the unique functioning of each cell [2,3]. The channels

that modulate many cellular processes are the voltage-gated Ca2+

channels. Voltage-gated Ca2+ channels are involved in electrical

signalling and in converting electrical signals into cytoplasmic

calcium changes [4]. Depolarization of the cell membrane causes

the channels to conduct Ca2+ into the cytoplasm, raising the

intracellular Ca2+ concentration. This increase, in turn, modulates

cellular processes such as regulation of Ca2+-dependent channels,

mediating neurotransmitter release, possibly influencing genera-

tion of action potentials [5], and stimulating intracellular signalling

enzymes and gene expression [6,7,8,9,10,11].

Several types of voltage-gated Ca2+ channels have been

distinguished physiologically and pharmacologically. The channels

can be distinguished physiologically both by the voltages which

activate them and by whether they inactivate rapidly or not. For

example, channels activating at relatively low voltages (low

voltage-activated channels, LVA – T- and R- types (R-type

activates at higher voltages than T-type, but lower than HVA

channels)) inactivate rapidly. Channels requiring high voltages for

activation (high voltage-activated, HVA) may display different

inactivation rates [10,12]. Pharmacological studies of mammalian

brain neurons have revealed 4 types of HVA channels, L, N and

P/Q [13].

Here we analyze the Ca2+ channels that can be found in single

pyramidal cells to determine their possible contribution to the

cell’s physiological properties. Previous studies on cortical

pyramidal cells have revealed 5 sub-types of Ca2+ current

[14,15,16]. However, these experiments were carried out on

dissociated neurons and, thus, possibly described Ca2+ channels in

different types of cortical pyramidal neurons. The results obtained

also depend on the developmental stage or age of the cells. During

development of Layer 5 (L5) pyramidal neurons the density of

Ca2+ channels increases in the apical dendrite, parallel to an

increase of Ca2+ currents in the soma [15]. LVA current density

decreases during the earliest postnatal development and HVA

current density increases [17,18]. Moreover, information about

the activation of the various Ca2+ channels during action

potentials and dendritic Ca2+ spikes is limited.

To unravel the role of voltage-gated Ca2+ channels in the back-

propagating AP and the dendritic Ca2+ spike, we examined the

properties of these channels in visually identified L5 neocortical

pyramidal neurons. We developed recording conditions that allow us

to record these channels in nucleated patches. Visually guided patch-

clamp experiments in the slice preparation allowed us to target only

L5 pyramidal neurons. Using these somatic nucleated patches, we

were able to determine the sub-types, pharmacological properties,

and kinetics of voltage-gated Ca2+ channels present in the soma

membrane of these cells. We show that five Ca2+ channel sub-types
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(L-, N-, R- and P/Q-type) are expressed in the soma of these

neurones. Finally, we applied voltage-clamp protocols that simulate

the shape of the back-propagating AP and dendritic Ca2+ spike

obtaining the activation profile of the various Ca2+ conductances

during these physiological events. The contribution to overall

current differed slightly for each channel sub-type (ranging from

about 14–25%) and was independent of the stimuli used.

Methods

Slice preparation
Sagittal brain slices (300 mm thick) were prepared from the

somatosensory cortex of 12–16 day old Wistar rats killed by rapid

decapitation as described previously [19]. Slices were perfused

throughout the experiment with an oxygenated artificial cerebro-

spinal fluid (ACSF) containing (mM): 125 NaCl, 25 NaHCO3, 2.5

KCl, 1.25 NaH2PO4, 1 MgCl2, 2 CaCl2, 25 glucose, 0.5 ascorbate

(pH 7.4 with 5% CO2, 310 mosmol/kg). All experiments were

carried out at room temperature (20–22uC). Pyramidal neurons

from L5 in the somatosensory cortex were visually identified using

infrared differential interference contrast (IR-DIC) videomicro-

scopy [19].

Solutions and Drugs
The standard pipette solution contained (mM): 125 K-gluconate,

20 KCl, 10 HEPES, 4 MgATP, 10 Na-phosphocreatine, 0.5 EGTA,

0.3 GTP (pH 7.2 with KOH, 312 mosmol/kg). In experiments with

Cs+ K-gluconate was replaced with the same amount of Cs-

gluconate. In experiments with high concentrations of EGTA

(10 mM) or BAPTA (1 mM), the equivalent amount of NaCl was

removed from the pipette solution. The application solution

contained (mM): 110 NaCl, 10 HEPES, 2.5 KCl, 1 MgCl2, 5

BaCl2, 25 Glucose, 5 4-AP, 20 TEA, 0.01 TTX. This application

solution was used in all the nucleated patch experiments and was

applied directly to the patch using a glass pipette. This allowed local

perfusion of the patch with toxins and drugs. In experiments where

the Ba2+ concentration was lower (3 mM) and/or was replaced with

Ca2+ (2 mM), the equivalent amount of NaCl was added to the

application solution to preserve osmotic pressure (TTX, tetrodotox-

in, Alomone Labs, Jerusalem, Israel; TEA, tetraethylammonium,

Sigma; 4-AP, 4-aminopyridine, Merck). The following toxins and

blockers were used: nifedipine (Sigma) was diluted in 95% ethanol

immediately before use and the application solution was protected

from ambient light. Final ethanol concentration was fixed to 10 mM.

v-agatoxin IVA (v-AgTx IVA) and v-conotoxin GVIA (v-CgTx

GVIA) (Alomone Labs, Jerusalem, Israel), v-conotoxin MVIIC (v-

CgTx MVIIC) and SNX-482 (Peptide Institute, Japan) were stored

at 220uC as stock solutions in double distilled water. The application

solutions with the different toxins and blockers were applied locally

using perfusion tubing coated with Sigmacote (Sigma) to prevent

binding of the toxins. In experiments with toxins, 0.1 mg/ml bovine

serum albumin (BSA, Sigma) was added to the application solution

to prevent non-specific binding. In current-clamp experiments the

hyperpolarization-activated cation channels (Ih channels) were

blocked by adding ZD7288 (NBT, Jerusalem, Israel) to the ACSF.

Nucleated outside-out patches
Nucleated outside-out patches [20] were extracted from the

soma of visually identified L5 pyramidal neurons. Suction (180–

230 mbar) was applied when recording in the whole cell

configuration and the pipette was slowly retracted. With gentle

retraction it was possible to obtain large patches of membrane

engulfing the nucleus of the neuron. Following the extraction of

the patch the pressure was reduced to 30–40 mbar for the

duration of the experiment. All measurements from nucleated

patches were carried out with the Axopatch-200B amplifier (Axon

Instruments, Foster City, CA). Nucleated patches were held at

260 mV. Linear leak and capacitive currents were subtracted on-

line by a P/6 protocol taken at hyperpolarized voltages (280 to

2100 mV). Currents were filtered with 2–5 KHz and sampled at

10–50 KHz. The average series resistance was 1360.3 MV
(n = 187). The reference electrode was an Ag-AgCl pellet placed

in the experimental chamber. Under these conditions the total

voltage offset due to electrode and liquid junction potentials [21]

was measured as 211 mV. Membrane potential was not corrected

for this potential difference. When kinetic protocols were applied,

the pipettes (4–7 MV) were coated with Sylgard (DOW Corning).

Analysis
All off-line data analysis including curve fitting was carried out

with IGOR (WaveMetrics, Lake Oswego, USA) on a PC

computer. Experimental results were obtained from cells from

two or more animals. All the results for a particular experiment

were pooled and displayed as mean6S.E.M. Groups were

compared using an unpaired t-test. Current traces were analyzed

assuming a Hodgkin-Huxley model [22]. The activation and

deactivation current traces were fitted to the general equation

according to the Hodgkin and Huxley model [22]:
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where t is time, I‘ is the steady-state current, Io is the current at

t = 0, t is the time constant of the exponential relaxation, and n is

the number of gates in the model. Since Io is close to zero at the

holding potential prior to channel activation, the above equation

simplifies to:

I tð Þ~I? 1{e{t=t
� �n ð2Þ

Correspondingly, I‘ is close to zero at the holding potential after

the channels have finished deactivating. So in order to apply to tail

currents equation 1 simplifies to

I tð Þ~Ioe{nt=t ð3Þ

The current-voltage plots recorded from each patch were fitted

to a Boltzmann equation:

I~Gmax
: 1

1ze{
V{V1=2

k
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 !n
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where I/Imax is the current normalized to its maximal value, Gmax

is the maximal conductance, V is the membrane potential, V1/2 is

the voltage at which the conductance is half-maximal (for a single

gate, n = 1), k is the slope factor and ECa and EBa are the Ca2+ and

Ba2+ reversal potential, respectively (when Ca2+ is replaced with

Ba2+, ECa in the equation is replaced by EBa). Using this equation

produced better results than the accepted analysis protocol in

which the conductance is first calculated from the current by

dividing it with the driving force. Due to the positive reversal

potential this traditional analysis method introduces large errors in

the estimated value of the conductance as the voltage approaches

the reversal potential. Fitting the I-V directly with equation 4

Voltage-Gated Ca2+ Channels
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avoids this problem. To average the results obtained from several

patches the I-V recorded in each patch was divided by the Gmax

obtained by fitting this individual I-V to equation 4 and the

normalized I-Vs were averaged. Therefore, the I-Vs presented in

the manuscript are plotted using an axis of I/Gmax.

Results

Recording voltage-gated Ca2+ conductances in nucleated
patches

Pipette solutions substituting Cs+ ions for K+ ions are traditionally

used to measure voltage-gated Ca2+ currents in the patch-clamp

technique [11,23]. Therefore, we first extracted nucleated patches

from the cell using a Cs+ pipette solution. The patch was then

positioned in front of an application solution containing 2 mM Ca2+

ions, 10 mM tetrodotoxin (TTX) to block voltage-gated sodium

currents, 20 mM tetraethylammonium (TEA) and 5 mM 4-

aminopyridine (4-AP) to block K+ currents. No voltage-gated Ca2+

currents were observed using this pipette solution (Fig. 1a, n = 5).

Next, we attempted the same experiment using a pipette solution

containing K+ ions. This procedure revealed voltage-gated Ca2+

currents (Fig. 1b). Although K+ blockers were added to the

application solution, the recording was contaminated by voltage-

gated K+ currents (Fig. 1b). Our initial approach was to block the

Ca2+ current with 50 mM Cd2+ in order to obtain clean Ca2+ traces

by subtraction of the remaining K+ currents from the total current

(Fig. 1b). This approach was not successful due to differences

between the K+ currents recorded before and after the application of

Cd2+. This may be due to the presence of Ca2+ dependent K+

conductances in the patch. Regardless of the cause, this prohibited

simple subtraction of the K+ current.

To reduce the contamination by K+ currents and increase the

amplitude of the inward current we replaced Ca2+ ions (2 mM) in

the application solution with Ba2+ ions (5 mM) (Fig. 1c). As in

previous reports, the Ba2+ currents obtained with 5 mM Ba2+

exhibited similar voltage-dependence to those obtained with

2 mM Ca2+ [16]. Figure 1d shows the mean normalized activation

curves of the Ca2+ currents (filled circles, n = 6) and Ba2+ currents

Figure 1. Ca2+ and Ba2+ currents recordings from nucleated patches. a, Currents recorded from a nucleated patch with a Cs-gluconate
pipette solution and a Ca2+ (2 mM) application solution. A 500 ms pre-pulse to 2110 mV was followed by a 100 ms pulse to voltages between 280
and +40 mV at 10 mV increments. The 2110 mV pre-pulse was truncated to facilitate the display of the current. Records were sampled at 20 KHz and
filtered at 5 KHz. Leak was subtracted on-line. The voltage protocol is shown below the current traces. b, Inward and outward currents from a
nucleated patch using a K-gluconate pipette solution and a Ca2+ (2 mM) application solution (see methods). The overlapping traces are marked in red
in order to highlight them. The voltage protocol and scale bar as in a. The voltage protocol is shown below the current traces. c, Inward currents from
a nucleated patch using a K-gluconate pipette solution and a Ba2+ (5 mM) application solution (see methods). The overlapping traces are marked in
red in order to highlight them. The voltage protocol and scale bar as in a. The voltage protocol is shown below the current traces. d, Mean activation
curves of the Ca2+ current in b (N, n = 6) and the Ba2+ current in c (#, n = 5). The currents were normalized to the maximal conductance at a given
series of voltages. The smooth lines are the fit to a Boltzmann function with one gate with a V1/2 of 061 mV, k = 7.260.2 mV, ECa = 4761 mV for the
Ca2+ currents (N) and a V1/2 of 2761 mV, k = 7.360.2 mV, EBa = 6261 mV for the Ba2+ currents (#). Error bars are S.E.M.
doi:10.1371/journal.pone.0004841.g001

Voltage-Gated Ca2+ Channels
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(empty circles, n = 5). The curve was fitted to a Boltzmann fit

function assuming one activation gate (smooth lines) and gave a

V1/2 of 061 mV, k = 7.260.2 mV, ECa = 4761 mV for the Ca2+

currents and a V1/2 of 2761 mV, k = 7.360.2 mV, EBa =

6261 mV for the Ba2+ currents. The V1/2 and the k values of the

Ca2+ and the Ba2+ currents are similar but the Ba2+ reversal

potential was about 20 mV higher. The difference in the reversal

potential can probably be explained by K+ currents contamination

of the Ca2+ current. Because of the similarity of the activation

curves and the fact that Ba2+ increased the current amplitude,

Ba2+ application was used in all experiments.

Runup and rundown of Ba2+ currents
Ca2+ currents have a tendency to decline with time starting with

patch excision (‘‘rundown’’) [23]. This decline was also observed in

the Ba2+ currents (Fig. 2a). However, a current increase occurred

during the first 1–2 minutes of the recordings (Fig. 2a). This

enhancement in the Ba2+ current may result from facilitation of

Ca2+ channels. Previous studies have reported both rapid

facilitation (after only few milliseconds,[24]) and slow facilitation

(ranging from 5–10 minutes [25] to about 1 hour [26]). As our

findings did not match these observations, it is more likely that this

current enhancement was not caused by facilitation but by runup

of these channels, as previously reported [27,28].

Figure 2a displays the peak current of a nucleated patch

obtained using a 50 ms ramp protocol from 2100 mV to +80 mV

that was repeated every 5 seconds. The current increased,

followed by a decline beginning after 50 seconds and terminating

with zero Ba2+ current after 600 seconds. The time for reaching

zero current was defined in each experiment as the time in which

the current amplitude reached 10% of its initial value. Below 10%

of the initial amplitude it was not possible to differentiate between

signal to noise (these rundown kinetics were observed in every

patch with a standard deviation of 200 seconds, n = 21). This

rundown left a time window of about 2–5 minutes in which

quantitative recordings could be performed.

In an attempt to slow the rundown we first increased the time

interval between the pulses from 5 to 10 and 20 seconds, since

stimulation of less than 1 Hz has been reported to reduce rundown

[23]. Next, the EGTA concentration in the pipette solution was

increased from 0.5 mM to 10 mM. Then 1 mM BAPTA was added

to the 10 mM EGTA pipette solution [23,29]. None of these

modifications changed the rate of runup or rundown of the Ba2+

currents (data not shown). We then examined the kinetics of the Ba2+

currents during runup and rundown (Fig. 2b) using voltage-ramps

followed by curve fitting to a Boltzmann function assuming one

activation gate. There were no significant differences in the kinetics

of runup and rundown. Thus, the rundown may result from decrease

in the number of channels available for activation (especially in an

isolated membrane patch) rather than a change in the conductance

of a single channel or in the open probability of the channels.

Kinetics
The activation kinetics of the Ba2+ current were examined with

the voltage-clamp protocols shown in figures 1a–c. Figure 3a

shows the mean normalized activation curves of the Ba2+ current

(n = 5). In many studies the voltage-gated Ca2+ channel kinetics

were described by two activation gates and one inactivation gate

(the m2 h model [22]). Correspondingly, all the kinetic analysis

performed in this study conformed to this model. The use of a

single gate model in the previous sections was performed to allow

visual comparison between the traces and the fit results. A

Boltzmann fit function of two gates was fitted (smooth line), giving

a V1/2 of 214.260.6 mV, k = 9.860.6 mV and EBa = 5962 mV.

Figure 2. Runup and rundown of Ba2+ currents. a, The normalized
current of one nucleated patch as a function of time. t = 0 indicates the
rupture of the membrane separating the pipette solution from the cell
and its positioning in front of the Ba2+ application solution. The pipette
solution contained 0.5 mM EGTA. The currents were recorded using a
ramp protocol from 2100 mV to +80 mV for 50 ms with a time interval
between the protocols of 5 seconds. Records were sampled at 10 KHz
and filtered at 2 KHz. Leak was subtracted on-line. b, Activation curves
of Ba2+ currents obtained at t = 0 (control), t = 47 s (runup) and t = 273 s
(rundown) in the experiment shown in a. The smooth lines are the fit to
a Boltzmann function with one gate to the current obtained at time 0
(control), after 47 seconds (runup) and after 270 seconds (rundown).
This fit gave a mean Gmax of 2.760.3 nS, V1/2 of 361 mV,
k = 7.560.6 mV, EBa = 4362 mV for the control current (n = 15), a mean
Gmax of 3.260.3 nS, V1/2 of 2261 mV, k = 7.760.3 mV, EBa = 4662 mV
for the runup current (n = 17) and a mean Gmax of 2.360.2 nS, V1/2 of
2263 mV, k = 7.660.5 mV, EBa = 4462 mV for the rundown current
(n = 16).
doi:10.1371/journal.pone.0004841.g002

Voltage-Gated Ca2+ Channels
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Deactivation was measured by a pre-pulse of 2100 mV followed

by a depolarization step of +10 mV for 2 ms and 30 ms 10 mV

hyperpolarization steps from 230 mV to 2100 mV. A second

order Hodgkin-Huxley model was fitted to the activation and the

deactivation traces, i.e. to the decay phase of the current and the

rising phase of the current, respectively (Fig. 3b). These fits gave a

time constant (t) for each voltage at which the membrane was

held. Figure 3c shows the mean time constants for the activation

(n = 10) and the deactivation (n = 8). The time constants extracted

from this analysis ranged from 0.3260.08 ms at +30 mV (Fig. 3c,

n = 10) to 0.3260.03 ms at 2100 mV (Fig. 3c, n = 8) and

displayed a bell-shaped dependence on voltage.

The steady-state inactivation of the total current was measured

using a 150 ms conditioning pulse to voltages between 290 and

0 mV with 10 mV increments. The patch was then subjected to a

50 ms depolarising step to 0 mV to record the remaining current

(Fig. 4a). Figure 4b shows the steady-state inactivation curve. The

current amplitude was normalized to the maximal current obtained

in each patch, and the control curve is a mean of 7 patches (Fig. 4b).

As we observed two inactivation components a sum of two Boltzman

functions was fitted (smooth line). The fit gave two V1/2 the first one

being 27963 mV and the second one 22362 mV, a

k1 = 2863 mV and a k2 = 2761 mV. It has been shown that T-

type and R-type channels inactivate at low voltages [30,31], but they

both differ in their activation threshold [32]; T-type activates at

260 mV [33,34] whereas R-type activates at 230 mV [35]. In our

experiments, no T-type currents were observed neither in the

activation protocol nor in the ramp protocol at voltages around

260 mV. This suggested that the low voltage component of the

inactivation curve may be due to the R-type conductance. To test

this possibility we measured the steady-state inactivation of the

current when the R-type blocker, SNX-482 (30 nM) was added to

the application solution. At this blocker concentration the first

component of the inactivation was almost completely eliminated and

the remaining current corresponded to HVA channels (Fig. 4b).

Thus, the first V1/2 may correspond to R-type channels [31] and the

second V1/2 probably corresponds to the HVA channels.

The inactivation time constant (Fig. 4c) was measured from the

rising phase of the Ca2+ current obtained by an activation protocol

(Fig. 1b). The inactivation shape with Ca2+ application solution

differed from that obtained with Ba2+ application solution. The

inactivation phase of the Ca2+ current (Fig. 1b) was steeper than the

activation of the Ba2+ current (Fig. 1c). This difference can arise from

the absence of calcium-dependent inactivation in the Ba2+

application, the remaining inactivation being voltage-gated only.

Pharmacology
The results obtained using the inactivation protocol suggested

that the R-type voltage-gated Ca2+ channel sub-type was

Figure 3. Activation and deactivation of Ba2+ currents in
nucleated patches. a, Activation curve of the Ba2+ current. The mean
currents were normalized to the maximal conductance for a given series
of voltages (n = 5). The smooth line is the fit to a Boltzmann function
with two gates with a V1/2 of 214.260.6 mV, k = 9.860.6 mV,
EBa = 5962 mV. Error bars are S.E.M. b, Activation (left) and deactivation
(right) fitting of a second order Hodgkin-Huxley model (thick line). c,
Activation (N, n = 10) and deactivation (#, n = 8) time constants
determined from traces like those in b. The smooth line is the curve fit
to the equation: C1+C2/((V-C3)2+C4), where C1 is the time constant at 0
voltage, C2 is the height of the equation peak, C3 is the voltage at the
center of the peak and C4 is the standard deviation. The fit gave a
C1 = 0.2060.08 ms, C2 = 0.660.2 ms*mV2, C3 = 225.761.7 mV and
C4 = 0.760.2 mV2. Errors bars are S.E.M.
doi:10.1371/journal.pone.0004841.g003

Voltage-Gated Ca2+ Channels
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expressed in the somatic membrane of L5 pyramidal neurons

(Fig. 4b). Next we attempted to pharmacologically dissect out the

relative contribution of the different voltage-gated Ca2+ channels.

Ba2+ currents were elicited by a 50 ms step depolarization to

0 mV from a holding potential of 2110 mV (Fig. 5). L-, N-, R-

and P-type currents were blocked by 10 mM nifedipine (Fig. 5a),

1 mM v-CgTx GVIA (Fig. 5b), 30 nM SNX-482 (Fig. 5c) and

200 nM v-AgTx IVA (Fig. 5d), respectively [36,37,38,39]. Q-type

current was blocked by 1 mM v-CgTx MVIIC [40]. This blocker

is not only Q-type selective but may also block N-, and P-type

currents [41]. To isolate the Q-type current the blockers for L-, N-

, R- and P-type channels were added to the application solution

before blocking the Q-type channel (Fig. 5e). After blocking each

sub-type channel we exposed the patch to an application solution

containing 50 mM Cd2+. This blocked the remaining current in

every patch, regardless to the blocker used (data not shown). In this

study we have not observed currents that were, given the

experimental signal to noise ratio, resistant to Cd2+.

Since T-type Ca2+ channels have a relatively low activation

threshold, T-type currents may be isolated kinetically. No T-type

currents were observed in our kinetic experiments. To confirm

that T-type channels are not expressed in L5 pyramidal neurons,

current-clamp experiments were carried out in the whole-cell

configuration. This was done to test whether the rebound firing in

the cells could be caused by T-type channels that activate at low

voltages [42,43], although this is mostly caused by the hyperpo-

larization-activated cation channels (Ih channels) [44]. The

membrane potential was measured with and without Cd2+.

ZD7288 was then added to the ACSF and the membrane

potential was measured again. The rebound firing vanished only

after addition of ZD7288 (data not shown). This suggests that T-

type channels are not expressed by these neurons, at least not in

the soma membrane nor the membrane near it.

Having established the recording conditions and examined the

pharmacology of the Ba2+ currents in nucleated patches, we next

examined the activation of the channels under conditions of more

physiologically realistic voltage-clamp protocols. In the apical

dendrite L5 pyramidal neurons voltage-gated Ca2+ channels are

activated by back-propagating action potentials [45] and dendritic

Ca2+ spikes [5,45]. First, we designed voltage-clamp protocols that

Figure 4. Inactivation kinetics of Ba2+ currents in nucleated
patches. a, Inactivation of inward currents recorded from a nucleated
patch using Ba2+ application solution. Inward current was generated by
a 150 ms pulse to voltages between 290 and 0 mV with 10 mV
increments. The patch was subjected to a 50 ms depolarising step to
0 mV (the voltage protocol is shown below the traces). The voltage was
stepped to 280 mV for 50 ms after every sweep to allow Ca2+ channels
to recover from inactivation (not shown). Records were sampled at
50 KHz and filtered at 2 KHz. Leak was subtracted on-line. b, Mean
inactivation curve of the control current (N, n = 7) and the current
remained after application of the blocker SNX-482 (#, n = 4). The peak
current was normalized to the maximal current obtained from a series
of pulses in the control conditions. The smooth line is the line
calculated using a combination of two Boltzmann functions with one
gate. The fit gave a first V1/2 of 27963 mV and a second V1/2 of
22362 mV, a k1 = 2863 mV and a k2 = 2761 mV. The dash lines are
the separated Boltzman functions fitted to the control current. Errors
bars are S.E.M. c, Mean inactivation time constant calculated from the
rising phase of the activation currents which were recorded using Ca2+

application solution (n$8). The smooth line was calculated using a fit of
the equation C1+C2*exp(-((V-C3)/C4)2), where C1 is the time constant at
0 voltage, C2 is the height of the Gaussian peak, C3 is the voltage at the
center of the peak and C4 is the standard deviation. This fit gave a
C1 = 50 ms, C2 = 22.10 ms, C3 = 20 mV and C4 = 12 mV. Errors bars are
S.E.M.
doi:10.1371/journal.pone.0004841.g004
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simulated the shape of back-propagating AP. It is well known that

there is a high variability in the shape and amplitude of an action

potential that propagates from the soma along the apical dendrite

[3,46,47]. In order to avoid these variances we extracted the

parameters of a back-propagating action potential (amplitude,

half-width and time to peak) from previous studies [46,48] and

generated a protocol that simulates back-propagating action

potential. The protocol was constructed of a rising ramp to

+40 mV from a resting potential of 260 mV and a slower

decaying ramp. Both ramps changed the amplitude and delay

values as the stimuli simulate the action potential that back-

propagate along the apical dendrite. The shape of the dendritic

Figure 5. Pharmacological separation of the 5 Ba2+ current sub-types with Ca2+ channel blockers. a, Currents evoked by a 50 ms step
depolarization to 0 mV from a holding potential of 2110 mV before (control) and after application of 10 mM nifedipine. The nifedipine-sensitive
current (L-type) was obtained by subtraction. b,c,d and e, Same stimulation protocol as in a. b, 1 mM v-CgTx GVIA (N-type blocker) was added to the
application solution. c, 30 nM SNX-482 (R-type blocker) was added to the application solution. d, 200 nM v-AgTx IVA (P-type blocker) was added to
the application solution. e, the control current was recorded with an application solution containing blockers for L-, N-, R- and P-type. In order to
eliminate the remaining current 1 mM v-CgTx MVIIC (Q-type blocker) was added to the application solution.
doi:10.1371/journal.pone.0004841.g005
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Ca2+ spike is even more variable than the shape of the back-

propagating AP [49]. Thus, instead of generating a noise free

mock protocol we used the waveform of a dendritic Ca2+ spike

recorded by us at 550 mm along the apical dendrite as a voltage-

clamp command. Figure 6 shows Ba2+ currents measured applying

a mock back-propagating action potential protocol (mBPAP,

figs. 6a–b) and a Ca2+ spike protocol (Fig. 6d). The Ca2+ spike

recorded from a L5 pyramidal neuron generated a high frequency

burst of four APs at the soma. For comparison of the Ca2+ influx,

the single AP was triggered immediately after the Ca2+ spike. A

series of mBPAPs were used as voltage-clamp commands, the first

having the properties of a somatic action potential in L5 pyramidal

neurons while the following spikes had properties similar to back-

propagating APs at different distances from soma [46,48]. This

protocol was applied before and after application of the different

blockers for the various Ca2+ channel sub-types. Figure 6a shows

the N-type current together with the control current when a mAP

similar to the AP recorded at the soma was used as a voltage-

clamp command. Figure 6b shows the N-type current of the same

patch as in figure 6a when a mBPAP with properties similar to the

back-propagating AP recorded 210 mm from soma was used as a

voltage-clamp command. There was a significant decrease in the

Ba2+ current as the mBPAP simulated back-propagating APs

recorded further from the soma (Fig. 6c). To validate the use of the

mBPAP protocols we recorded one back-propagating AP from

200 mm along the apical dendrite of a L5 pyramidal neuron and

Figure 6. Ba2+ currents recorded using different physiological pulses. a, A mBPAP generated using parameters of somatic AP was used as a
voltage-clamp command in the nucleated patch (bottom, the rise phase of the action potential was simulated by a 0.6 ms ramp from a holding
potential of 260 mV to +40 mV and the repolarization phase of an action potential is simulated by a 2 ms ramp from +40 mV to the holding voltage
potentia). This evoked a Ba2+ current. Shown are the current evoked by the mBPAP before (control) and after 1 mM v-CgTx GVIA (N-type blocker). The
v-CgTx GVIA-sensitive current (N-type) was obtained by subtraction. b, A mBPAP generated to simulate a back-propagating AP at the dendrite about
170 mm from the soma was used as a voltage-clamp command in the same nucleated patch as in a (bottom similar ramps to that described in A were
used to simulate a back-propagating AP. In order to simulate the amplitude decay and the half with increase of a back-propagating AP, the maximal
ramp amplitude was reduced by 6 mV in each step and the time of the rising and decline ramps was increased by 0.1 ms and 0.8 ms in each step,
respectively). As in a, this evoked a Ba2+ current shown here before (control) and after 1 mM v-CgTx GVIA (N-type blocker). The v-CgTx GVIA-sensitive
current (N-type) was obtained by subtraction. c, The net average charge (Q) displayed as a percentage of the first mBPAP (control) (N, n = 14). A back-
propagating action potential measured at 200 mm in these cells was used as a voltage-clamp command applied to the patched and is displayed as a
percentage of the action potential generated at the soma (#, n = 4). The data is plotted as a function of the equivalent distance of mBPAP from the
soma in mm. Error bars are S.E.M. The asterisk indicates a significant difference (p,0.005, one-tail t-test) between the mAP at the soma from the
different mBPAPs along the dendrite. d, A Ca2+ spike as recorded at the distal dendrite (550 mm from the soma) of a L5 pyramidal neuron was used as
a voltage-clamp command in the same nucleated patch as in a, (bottom). The Ca2+ spike was 140 ms long. This evoked a Ba2+ current, shown here
before (control) and after 1 mM v-CgTx GVIA (N-type blocker). The v-CgTx GVIA-sensitive current (N-type, grey) was obtained by subtraction.
doi:10.1371/journal.pone.0004841.g006
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used it as a voltage-clamp command in addition to the mBPAPs.

The currents measured with this protocol displayed similar current

shape and amplitude to the one obtained with the mBPAP

protocol simulating the action potential at 210 mm (traces not

shown, average response id give in Fig. 6c). A Ca2+ spike measured

from the apical dendrite of cortical L5 pyramidal neurons was

used as a voltage-clamp command to the same patch as in

figures 6a–b. Figure 6d shows the N-type current measured

following this protocol.

The contribution of each channel sub-type was calculated for

the different protocols used (Fig. 7). Further, the net charge (Q) of

the current recorded during the control or during a pharmaco-

logical application was calculated for each protocol. The percent

contribution of each channel sub-type is derived as the mean of

several patches. Figure 7a shows the relative contribution of each

channel sub-type for the square step voltage (black bars) and for

the Ca2+ spike protocol (white bars). Only the Q-type channel

showed a significantly higher relative contribution in the square

step than in the Ca2+ spike protocol (p,0.05, one-tail t-test). There

was no significant difference in the relative contribution of each

channel sub-type under the mBPAP protocol (Fig. 7b); that is, the

relative contribution of each sub-type was similar when the

different action potentials as seen in the soma and along the apical

dendrite were used as voltage-clamp commands.

Discussion

In this study we recorded voltage-gated Ca2+ conductances in the

soma of visually identified L5 pyramidal neurons in acute brain slices

from two-week old rats. We first developed the appropriate protocol

for characterizing the properties of these channels and then

examined the activation kinetics of the general Ba2+ current. No

T-type channels were found but steady-state inactivation protocols in

combination with pharmacology revealed the expression of R-type

channels. Using pharmacological dissection and three different

stimulus protocols – a square step depolarization, a calcium spike

protocol and a mBPAP protocol – we identified 5 voltage-gated Ca2+

channel sub-types expressed in the soma membrane and determined

their contributions to the overall current in the soma membrane.

Kinetic properties of the voltage-gated Ca2+ channels
It is interesting to discuss first the modifications we had to perform

in order to enable stable recordings of calcium currents from

nucleated patches. The traditional pipette solution for recording

Ca2+ currents is based on caesium. It was indeed a surprise to us that

this solution did not work (Fig. 1). Only by replacing the caesium in

the pipette solution with potassium were we able to observe calcium

currents. Differences between the amplitude of the estimated

conductance density of voltage-gated K+ conductances have been

observed between studies performed using nucleated patches [50]

and whole-cell [51]. However, to the best of our knowledge, there is

no other study reporting problems with the caesium solution or

suggested a mechanism for such an effect.

The activation of voltage-gated Ca2+ channels was similar using

either Ca2+ or Ba2+ solutions (Fig. 1d). The Ba2+ solution

eliminated K+ currents and produced sufficiently large and clean

currents that repetition of the same protocol several times for

averaging was unnecessary (Fig. 1c). Although, the activation

properties of the current were not different during the rundown

Figure 7. The contribution of Ba2+ current sub-types for
different pulses to nucleated patch currents in neocortical L5
pyramidal neurons. a, The net average charge (Q) for each channel
sub-type evoked by a square pulse (black bars) and a Ca2+ spike pulse
(white bars) is displayed in the histogram as a percentage of the control
Ba2+ current. The sum of the contribution of all the channel sub-types is
higher than 100%, possibly due to the rundown observed or because
the blockers for each channel sub-type blocked other sub-types as well.
Thus, the contribution of each channel sub-type to the total current in
the different protocols was plotted as the percentage of the sum of the
5 channel sub-type currents which was normalised to 100%. The square
pulse gave a channel distribution of 29.562.4%, n = 7 for L-type;
1765%, n = 3 for N-type; 16.264.3%, n = 4 for R-type; 1763%, n = 3 for
P-type; 20.461.5%, n = 4 for Q-type. The Ca2+ spike pulse gave a
channel distribution of 28.264.4%, n = 6 for L-type; 22.960.7%, n = 2 for
N-type; 1760.1%, n = 3 for R-type; 17.161.6%, n = 2 for P-type;
14.761.6%, n = 2 for Q-type. Error bars are S.E.M. The asterisk indicates
a significant difference (p,0.05, one-tail t-test) between the two
different pulses. b, The contribution (percent) of each channel sub-type
to the current evoked by a mBPAP protocol (calculated as in a). The
percent contribution are displayed for 3 different mBPAP, simulating a

somatic action potential (black bars), a back-propagating AP at 210 mm
(white bars) and a back-propagating AP at 500 mm from the soma (grey
bars). Error bars are S.E.M.
doi:10.1371/journal.pone.0004841.g007
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(Fig. 2b), the rundown interfered with measuring the various

kinetics protocols applied allowing a time window of 5 minutes of

stable recording before the signal to noise ratio became too big.

The activation and deactivation properties of the Ba2+ current

were very similar to those measured in other cells using different

modes of the patch-clamp technique [14,23,52,53]. The voltage

required to activate half of the channel population (V1/2) was

214.260.6 mV and the slope was 9.860.6 mV, with a reversal

potential of 5962 mV (Fig. 3a).

The steady-state inactivation Ba2+ current was measured using

the Ba2+ solution, which produced a slower inactivation than the

Ca2+ solution (Figs. 1b–c), due to elimination of calcium-

dependent inactivation. This phenomenon made it possible to

measure voltage-dependent inactivation in isolation (Fig. 4a). The

steady-state inactivation Ba2+ current revealed two components,

the first with a V1/2 of 27963 mV and the second a V1/2 of

22362 mV (Fig. 4b). The experiments using the R-type blocker,

SNX-482 (Fig. 4b), and the previously reported V1/2 of 282 mV

[31] indicate that R-type channel is expressed in these neurons.

Most of the previous studies on voltage-gated Ca2+ channels in

cortical L5 pyramidal neurons have been performed in dissociated

neurons using the whole cell configuration [14,15,16,54] reporting

similar kinetics and pharmacological properties of the voltage-

gated Ca2+ channels to those obtained here.

According to the steady-state inactivation curve, R-type

channels are ,90% inactivated around the resting membrane

potential. This still allows them to generate current following

depolarization of the neuron. The measurements presented in

figures 6 and 7 suggest that this current forms approximately

15% of the total Ca2+ current recorded in the nucleated patches.

This may indicate that following substantial hyperpolarization

of the neurons a larger current will flow via R-type channels.

This may have implications on the generation and duration of

dendritic Ca2+ spikes. It is tempting to speculate that this

predicted variability in the Ca2+ current may be one of the

factors contributing to the observed variability of dendritic Ca2+

spike shapes in the apical dendrite of L5 pyramidal neurons

[49].

Pharmacological properties of the voltage-gated Ca2+

channels
The presence of the R-type voltage-gated Ca2+ channel in the

kinetic experiments led us to determine pharmacologically which

of the different Ca2+ channel sub-types were present. Using the

specific blockers for each channel sub-type (see methods) and a

square depolarizing voltage step protocol (Fig. 5), we could show

that these neurons express all the 4 HVA Ca2+ channels and the

R-type channel but lack the T-type channel. These results agree

with previous reports that cortical pyramidal neurons displayed an

increase of HVA current density after the first period of postnatal

development [17,18].

We then tested the contribution of each channel sub-type to the

overall Ba2+ current under varying stimulation protocols. The first

protocol applied was a mBPAP (Figs. 6a–b); that is, a series of

mBPAPs were used as voltage-clamp commands, the first having

the shape of the action potential measured at the soma and the

following potentials simulating an action potential back-propagat-

ing along the apical dendrite [55]. The measured Ba2+ currents

decreased as the stimulating mBPAP ‘‘occurred’’ further along the

dendrite (Fig. 6c). This phenomenon was observed for all the Ba2+

current sub-types and may be simply explained by the amplitude

decrease of the mBPAP. This decrease was also observed when a

back-propagating action potential measured from a L5 pyramidal

neuron was used as a voltage-clamp command (Fig. 6c). The same

contributions were obtained from the various mBPAP stimuli that

simulated a back-propagating spike at different distances from the

soma. While the normalized contribution of the L-type channels

was close to 30%, that of the other 4 channel sub-types ranged

between 14–25%. The same contributions were found under all

three stimulation protocols (Fig. 7).

These results are consistent with Ca2+ imaging studies

[48,55,56] that show a decrease in the rise of intracellular Ca2+

concentration during an action potential that back-propagates

along the apical dendrite [54]. It has been argued that the decrease

in the peak Ca2+ concentration along the apical dendrite may be

due to surface to volume ratio or to a decrease in the density of

voltage-gated Ca2+ channels as a function of distance from the

soma along the apical dendrite. Currently, the spatial distribution

of the various voltage-gate Ca2+ channels along the apical dendrite

is unknown. Once a conductance gradient of these important

channels will be established it may be possible to provide a better

model for dendritic Ca2+ spike initiation. Given the similarity

between the results presented in Figure 7 and Ca2+ imaging studies

[48,55,56] it may be possible to speculate that the Ca2+ channel

sub-types are homogenously distributed over the apical dendrite of

the L5 pyramidal neurons and the soma membrane. Thus, the

decrease in the Ca2+ influx may only be the result of the smaller

activation of voltage-gated Ca2+ conductance by a progressively

smaller back-propagating AP. Clearly, further exploration of the

dendrites of the L5 pyramidal neurons to pharmacologically and

kinetically determine the distribution of the different Ca2+ channel

sub-types is required in order to test this currently experimentally

un supported speculation.
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8. Sjöström PJ, Rancz EA, Roth A, Hausser M (2008) Dendritic excitability and

synaptic plasticity. Physiol Rev 88: 769–840.

9. Süudhof TC (2008) Neurotransmitter release. Handbook Exp Pharmacol 184:

1–21.

10. Tsien RW, Lipscombe D, Madison DV, Bley KR, Fox AP (1988) Multiple types

of neuronal calcium channels and their selective modulation. Trends Neurosci

11: 431–438.

11. Wu LG, Westenbroek RE, Borst JG, Catterall WA, Sakmann B (1999)

Calcium channel types with distinct presynaptic localization couple

differentially to transmitter release in single calyx-type synapses. J Neurosci

19: 726–736.

Voltage-Gated Ca2+ Channels

PLoS ONE | www.plosone.org 10 April 2009 | Volume 4 | Issue 4 | e4841



12. Tsien RW, Ellinor PT, Horne WA (1991) Molecular diversity of voltage-

dependent Ca2+ channels. Trends Pharmacol Sci 12: 349–354.
13. Zhang JF, Randall AD, Ellinor PT, Horne WA, Sather WA, et al. (1993)

Distinctive pharmacology and kinetics of cloned neuronal Ca2+ channels and

their possible counterparts in mammalian CNS neurons. Neuropharmacology
32: 1075–1088.

14. Brown AM, Schwindt PC, Crill WE (1993) Voltage dependence and activation
kinetics of pharmacologically defined components of the high-threshold calcium

current in rat neocortical neurons. J Neurophysiol 70: 1530–1543.

15. Lorenzon NM, Foehring RC (1995b) Characterization of pharmacologically
identified voltage-gated calcium channel currents in acutely isolated rat

neocortical neurons. II. Postnatal development. J Neurophysiol 73: 1443–1451.
16. Lorenzon NM, Foehring RC (1995a) Characterization of pharmacologically

identified voltage-gated calcium channel currents in acutely isolated rat
neocortical neurons. I. Adult neurons. J Neurophysiol 73: 1430–1442.

17. Tarasenko AN, Isaev DS, Eremin AV, Kostyuk PG (1998) Developmental

changes in the expression of low-voltage-activated Ca2+ channels in rat visual
cortical neurones. J Physiol 509: 385–394.

18. Zhu JJ (2000) Maturation of layer 5 neocortical pyramidal neurons: amplifying
salient layer 1 and layer 4 inputs by Ca2+ action potentials in adult rat tuft

dendrites. J Physiol 526: 571–587.

19. Stuart GJ, Dodt HU, Sakmann B (1993) Patch-clamp recordings from the soma
and dendrites of neurons in brain slices using infrared video microscopy. Pflugers

Arch 423: 511–518.
20. Sather W, Dieudonne S, MacDonald JF, Ascher P (1992) Activation and

desensitization of N-methyl-D-aspartate receptors in nucleated outside-out
patches from mouse neurones. J Physiol 450: 643–672.

21. Neher E (1992) Correction for liquid junction potentials in patch clamp

experiments. Methods Enzymol 207: 123–131.
22. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current

and its application to conduction and excitation in nerve. J Physiol 117:
500–544.

23. Fenwick EM, Marty A, Neher E (1982) Sodium and calcium channels in bovine

chromaffin cells. J Physiol 331: 599–635.
24. Zamponi GW, Snutch TP (1998) Decay of prepulse facilitation of N-type

calcium channels during G protein inhibition is consistent with binding of a
single Gbc subunit. Proc Natl Acad Sci U S A 95: 4035–4039.

25. Taverna E, Francolini M, Jeromin A, Hilfiker S, Roder J, et al. (2002) Neuronal
calcium sensor 1 and phosphatidylinositol 4-OH kinase beta interact in neuronal

cells and are translocated to membranes during nucleotide-evoked exocytosis.

J Cell Sci 115: 3909–3922.
26. Ikeda SR (1991) Double-pulse calcium channel current facilitation in adult rat

sympathetic neurones. J Physiol 439: 181–214.
27. Scamps F, Valentin S, Dayanithi G, Valmier J (1998) Calcium channel subtypes

responsible for voltage-gated intracellular calcium elevations in embryonic rat

motoneurons. Neuroscience 87: 719–730.
28. Schnee ME, Ricci AJ (2003) Biophysical and pharmacological characterization

of voltage-gated calcium currents in turtle auditory hair cells. J Physiol 549:
697–717.

29. Johnson SL, Marcotti W (2008) Biophysical properties of CaV1.3 calcium
channels in gerbil inner hair cells. J Physiol 586: 1029–1042.

30. Serrano JR, Perez-Reyes E, Jones SW (1999) State-dependent inactivation of the

a1G T-type calcium channel. J Gen Physiol 114: 185–201.
31. Wu LG, Borst JG, Sakmann B (1998) R-type Ca2+ currents evoke transmitter

release at a rat central synapse. Proc Natl Acad Sci U S A 95: 4720–4725.
32. Randall AD, Tsien RW (1997) Contrasting biophysical and pharmacological

properties of T-type and R-type calcium channels. Neuropharmacology 36:

879–893.
33. Takahashi K, Akaike N (1991) Calcium antagonist effects on low-threshold (T-

type) calcium current in rat isolated hippocampal CA1 pyramidal neurons.
J Pharmacol Exp Ther 256: 169–175.

34. Takahashi K, Ueno S, Akaike N (1991) Kinetic properties of T-type Ca2+

currents in isolated rat hippocampal CA1 pyramidal neurons. J Neurophysiol 65:
148–155.

35. Li L, Bischofberger J, Jonas P (2007) Differential Gating and Recruitment of P/

Q-, N-, and R-Type Ca2+ Channels in Hippocampal Mossy Fiber Boutons.

J Neurosci 27: 13420–13429.

36. Bourinet E, Stotz SC, Spaetgens RL, Dayanithi G, Lemos J, et al. (2001)

Interaction of SNX-482 with domains III and IV inhibits activation gating of a1E

(CaV2.3) calcium channels. Biophys J 81: 79–88.

37. Cox DH, Dunlap K (1992) Pharmacological discrimination of N-type from L-

type calcium current and its selective modulation by transmitters. J Neurosci 12:

906–914.

38. Tanabe M, Gahwiler BH, Gerber U (1998) L-Type Ca2+ channels mediate the

slow Ca2+-dependent afterhyperpolarization current in rat CA3 pyramidal cells

in vitro. J Neurophysiol 80: 2268–2273.

39. Wang G, Dayanithi G, Newcomb R, Lemos JR (1999) An R-type Ca2+ current

in neurohypophysial terminals preferentially regulates oxytocin secretion.

J Neurosci 19: 9235–9241.

40. Mermelstein PG, Foehring RC, Tkatch T, Song WJ, Baranauskas G, et al.

(1999) Properties of Q-type calcium channels in neostriatal and cortical neurons

are correlated with b subunit expression. J Neurosci 19: 7268–7277.

41. Birnbaumer L, Campbell KP, Catterall WA, Harpold MM, Hofmann F, et al.

(1994) The naming of voltage-gated calcium channels. Neuron 13: 505–506.

42. Huguenard JR (1996) Low-threshold calcium currents in central nervous system

neurons. Annu Rev Physiol 58: 329–348.

43. Aizenman CD, Linden DJ (1999) Regulation of the rebound depolarization and

spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum.

J Neurophysiol 82: 1697–1709.

44. Gasparini S, DiFrancesco D (1997) Action of the hyperpolarization-activated

current (Ih) blocker ZD 7288 in hippocampal CA1 neurons. Pflugers Arch 435:

99–106.

45. Larkum ME, Kaiser KM, Sakmann B (1999) Calcium electrogenesis in distal

apical dendrites of layer 5 pyramidal cells at a critical frequency of back-

propagating action potentials. Proc Natl Acad Sci U S A 96: 14600–14604.

46. Stuart GJ, Schiller J, Sakmann B (1997) Action potential initiation and

propagation in rat neocortical pyramidal neurons. J Physiol 505: 617–632.

47. Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials

into neocortical pyramidal cell dendrites. Nature 367: 69–72.

48. Schiller J, Helmchen F, Sakmann B (1995) Spatial profile of dendritic calcium

transients evoked by action potentials in rat neocortical pyramidal neurones.

J Physiol 487: 583–600.

49. Larkum ME, Zhu JJ, Sakmann B (2001) Dendritic mechanisms underlying the

coupling of the dendritic with the axonal action potential initiation zone of adult

rat layer 5 pyramidal neurons. J Physiol 533: 447–466.

50. Korngreen A, Sakmann B (2000) Voltage-gated K+ channels in layer 5

neocortical pyramidal neurones from young rats: subtypes and gradients.

J Physiol 525 Pt 3: 621–639.

51. Schaefer AT, Helmstaedter M, Schmitt AC, Bar-Yehuda D, Almog M, et al.

(2007) Dendritic voltage-gated K+ conductance gradient in pyramidal neurones

of neocortical layer 5B from rats. J Physiol 579: 737–752.

52. Bargas J, Howe A, Eberwine J, Cao Y, Surmeier DJ (1994) Cellular and

molecular characterization of Ca2+ currents in acutely isolated, adult rat

neostriatal neurons. J Neurosci 14: 6667–6686.

53. Magee JC, Johnston D (1995) Characterization of single voltage-gated Na+ and

Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J Physiol 487:

67–90.

54. Ye JH, Akaike N (1993) Calcium currents in pyramidal neurons acutely

dissociated from the rat frontal cortex: A study by the nystatin perforated patch

technique. Brain Res 606: 111–117.

55. Gulledge AT, Stuart GJ (2003) Action potential initiation and propagation in

layer 5 pyramidal neurons of the rat prefrontal cortex: Absence of dopamine

modulation. J Neurosci 23: 11363–11372.

56. Markram H, Helm PJ, Sakmann B (1995) Dendritic calcium transients evoked

by single back-propagating action potentials in rat neocortical pyramidal

neurons. J Physiol 485: 1–20.

Voltage-Gated Ca2+ Channels

PLoS ONE | www.plosone.org 11 April 2009 | Volume 4 | Issue 4 | e4841


