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Autónoma de México, Distrito Federal, México

Abstract

Searching for generic behaviors has been one of the driving forces leading to a deep understanding and classification of
diverse phenomena. Usually a starting point is the development of a phenomenology based on observations. Such is the
case for power law distributions encountered in a wealth of situations coming from physics, geophysics, biology,
lexicography as well as social and financial networks. This finding is however restricted to a range of values outside of which
finite size corrections are often invoked. Here we uncover a universal behavior of the way in which elements of a system are
distributed according to their rank with respect to a given property, valid for the full range of values, regardless of whether
or not a power law has previously been suggested. We propose a two parameter functional form for these rank-ordered
distributions that gives excellent fits to an impressive amount of very diverse phenomena, coming from the arts, social and
natural sciences. It is a discrete version of a generalized beta distribution, given by f(r) = A(N+1-r)b/ra, where r is the rank, N its
maximum value, A the normalization constant and (a, b) two fitting exponents. Prompted by our genetic sequence
observations we present a growth probabilistic model incorporating mutation-duplication features that generates data
complying with this distribution. The competition between permanence and change appears to be a relevant, though not
necessary feature. Additionally, our observations mainly of social phenomena suggest that a multifactorial quality resulting
from the convergence of several heterogeneous underlying processes is an important feature. We also explore the
significance of the distribution parameters and their classifying potential. The ubiquity of our findings suggests that there
must be a fundamental underlying explanation, most probably of a statistical nature, such as an appropriate central limit
theorem formulation.
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Introduction

During the past decade or so, a considerable amount of research

has been devoted to power law behaviors, particularly with regard

to complex networks [1,2]. However, when real data is analyzed,

in most of the cases the power law trend holds only for an

intermediate range of values; there is a power law breakdown in

the distribution tails [3,4]. Both the breakdown point and the tail

functional forms are of interest [5]. Several explanations have been

provided for this phenomenon, such as finite size effects (e.g.

insufficient data for good statistics) [6,7,8], network dilution,

network growth constraints [3,7] and different underlying

dynamical regimes, leading to power law corrections (sometimes

referred to as scaling corrections) in the form of exponential,

Gaussian, stretched exponential, gamma and various types of

extreme value distributions [9,10]. In this work we focus on rank-

ordered distributions, often related to cumulative distribution

functions, which show the way in which a given property of a

system is ordered decreasingly according to its importance (rank).

Our main result is that a surprising amount of situations follow a

two parameter distribution which incorporates the product of two

power laws defined over the complete data set, one measured from

‘‘left to right’’ and the other from ‘‘right to left’’. The fit holds for

the full range of values, tails included, with correlations that rival

with, or generally improve on, power law correction schemes

proposed in the literature.

In our work a functional universality is revealed for rank-

ordered distributions, encompassing apparently unrelated phe-

nomena coming from music, painting, ecology, urbanism,

neuroscience, genetics and social networks, amongst others. In

the following we develop a phenomenology based on a selection of

the vast number of cases where we have encountered this

functional form. Prompted by some of these observations we

implement a conflicting dynamics model that generates this

distribution and contributes to the identification of relevant

underlying features of processes leading to it, as well as to a
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characterization of its parameters. From our exploration we also

detect that the convergence of multiple heterogeneous processes

appears to be an important factor. Overall, our findings suggest

that there must be a deep underlying explanation, possibly of a

statistical nature.

Results

Phenomenology
Rank-ordered relations show how given property of a process

decreases [1,2,7,8]. A well studied instance of this is the so called

Zipf law [11] which originally referred to the frequency with which

words are used in a specific language. Zipf showed that the

logarithm of the frequencies with which words appear in the novel

Ulysses by James Joyce, when plotted in decreasing order against

the logarithm of their rank, fall on a straight line with slope 21,

thus indicating a power law behavior. However, in general, this

straight line behavior with negative slope holds only within an

intermediate rank range [12,13]. Here we show that for this

phenomenon of common occurrence, the power law corrections

have themselves universal features, further more, a surprising

amount of systems of very diverse nature which do not follow

power laws at all, present a common statistical behavior expressed

by a generic rank-ordered distribution function.

As a starting point we consider systems consisting of symbols

arranged sequentially such as codons (nucleic acid triplets that

code for amino acids) in genes or notes in musical scores. In Fig. 1A

we show a log-log plot of the frequency with which the 61 possible

codons (stop codons excluded) appear in the coding genetic

sequences of the bacterium Escherichia coli, plotted in decreasing

order from the most common to the least common one. Notice the

power law like behavior in the intermediate range and the steeper

finite size decay for the less frequent occurrences. If we plot the

same data in a semi-log representation, together with the codons of

the genes of Nesisseria gonorrhea and the worm Caenorhabditis elegans,

we obtain the sigmoid type graphs shown in Fig. 1B. In this

representation the full data range is given equal standing. The

form in the semi-log graphs in the region to the left of the inflexion

point is suggestive of a logarithmic decay, while the one to the

right brings to mind a logarithmic behavior with the independent

variable measured from right to left; we therefore test the

pertinence of using a functional form incorporating the above

mentioned features as a fit for the data, namely:

f rð Þ~A Nz1-rð Þb
.

ra,

where r is the rank value, N its maximum value, A a normalization

constant and (a, b) two fitting exponents. This expression is a

discrete version of the continuous random variable generalized

beta distribution and we shall refer to it from now on as DGBD

[14,15]. The bold curves in Fig. 1 show that the functional form is

a very good choice. The square of correlation coefficients, R2,

determined by a log-log multiple linear regression, lie between

0.98 and 0.99. We have obtained similar results, for tens of

organisms covering archea, bacteria and eukaryotes, both for

amino acid and codon distributions.

If we now look into the arts, we have that notes in musical scores

provide another example of sequences of symbols where rank

frequency DGBD are encountered. Fig. 2 shows compositions by

Beethoven, Holst and the rock band Alice Cooper. Again

correlation coefficients are very high, with R2 above 0.98, notice

that fit is very good for the whole range of values. The analysis of

more than 1800 compositions shows that this type of behaviour is

recurrent. Furthermore, fitting parameters (a,b) appear to be

sensitive to whether the musical composition is in a minor or

mayor scale [16].

Still in the arts, keeping in mind that the frequency of

occurrence of a note is in some sense related to the ‘‘length’’

occupied in a given score, we determine the area occupied by

specific geometric motifs in abstract painting, such as rectangles in

canvases by Paul Klee and Piet Mondrian or circles in works of art

by Kandinsky. We then order these determinations as rank-size

Figure 1. Frequency-rank in genetic sequences. (A) Log-log plot
of the frequency, in descending order, with which the codons appear in
the genome of E. coli. The bold line is the discrete generalized beta
distribution (DGBD) fit with exponents and squared correlation
coefficient (a,b,R2) = (0.25, 0.50, 0.99). The straight line is included as a
guide to the eye of a power law behavior within a restricted range. (B)
Semi-log plot of the frequency-ordered codons of the genomes of C.
elegans, N. gonorrehea and E. coli. Solid lines are the fits with (a,b,
R2) = (0.28, 0.38, 0.98), (0.31,0.65, 0.99) corresponding to the first two,
values for E coli are given in (A). Frequencies for N. gonorrhea have been
multiplied by a factor of 5 and those of C. elegans by 10 in order to
avoid overlaps.
doi:10.1371/journal.pone.0004791.g001
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distributions and adjust DGB distributions. In Fig. 3 we show fits

for Klee’s ‘‘Flora on Sand’’ and Kandinsky’s ‘‘Several Circles’’

respectively, again with R2 values above 0.98.

An environmental case is shown in Fig. 4A for plant species

diversity in old-field successional ecosystems. Here the rank ordered

data refer to the relative cover values of the plant species encountered

in 40 year old abandoned fields in Southern Illinois [17].

Fig. 4A is related to neurophysiology [18], it shows that rank

ordered local field potential measurements in cat cerebral cortex

during natural wake states follow very closely a DGBD,

(a,b,R2) = (0.081, 0.239, 0.97). When slow wave sleep states

(SWS) are considered the fit worsens while rapid-eye-movement

(REM) periods resemble awake state results.

A rank ordered distribution related to society, is presented in

Fig 5A for the world wide classification of universities according to

their number of contributions to the journals Nature and Science

between 2002 and 2006 [19]. Here the square of the correlation

coefficient is 0.99. In Figs. 5 B,C we show fitting results with R2

above 0.99 for two other examples of social bearing: the journal

impact factor ranking [20] and population ordered municipalities

of Spanish provinces, respectively [21].

As DGBD network examples we show the movie actor

collaborative distribution [1] (see Fig. 6A) and the rank-size

distribution of the out-bound links of the E. coli genetic regulatory

network [22] (see Fig. 6B). In the former each node is an actor, and

two actors are connected if they were cast in the same movie. Though

this network has been extensively studied in the literature and good

results for the connectivity probability have been found with

alternative two parameter distribution functions [23], our DGBD

fit reaches remarkable accuracy, reproducing qualitative features.

For comparative purposes in Table 1 we show the values of

(a,b,R2) for several representative examples of diverse nature, some

of them taken from previous figures.

Model
The material presented so far is only a sample of the variety of

situations where we have encountered a rank ordering statistical

behavior following closely the DGBD. This poses the challenge of

unraveling mechanisms or identifying characteristics that may

contribute to some understanding of these findings [24]. Prompted

by our analysis of genetic sequences, as a step in this direction we

work with an expansion-modification dynamics introduced by Li

[25,26], where two processes converge, one related to permanence

the other to change. This model incorporates basic elements of a

neutral evolution scheme in which the main mechanisms for

change in sequences are duplications and point mutations. The

simplest Boolean realization of this scheme is the following: i)

consider a system with variables that can only take two values, say

0 and 1; ii) initiate a process with either one of these values by

applying with probability p the modification (point wise mutation)

rule: 0 goes to 1, or 1 goes to 0, and with probability 1-p the

expansion (duplication) rule: 0 goes to 00 or 1 goes to 11, iii)

generate a growing sequence of zeros and ones by a repeated

application of the preceding algorithm. After a large number

iterations of this algorithm, the statistical behavior of the ensuing

Figure 2. Frequency-rank distributions for musical scores. Plot
of the occurrence of musical notes, ordered decreasingly, in the scores
of Holst’s ‘‘The Planets’’, Beethoven’s first movement of the ‘‘Fifth
Symphony’’ and Alice Cooper’s ‘‘Billion Dollar Babies’’. Solid lines are
DGDB fits with (a,b,R2) = (0.23, 1.54, 0.988), (0.42,1.25, 0.987), (0.71, 1.06,
0.978).
doi:10.1371/journal.pone.0004791.g002

Figure 3. Size-ordered distributions in abstract paintings. (A)
Plot of rectangle relative sizes in arbitrary units shown in decreasing
order appearing in Klee’s painting ‘‘Flora in the sand’’. Bold line is the
DGBD fit with (a,b, R2) = (0.70, 0.14, 0.999. (B) Plot of circle relative areas
expressed in arbitrary units present in Kandinsky’s ‘‘Several Circles’’
arranged in decreasing order, here the bold line fit has (a,b, R2) = (0.62,
0.32, 0.978).
doi:10.1371/journal.pone.0004791.g003
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sequence can be tested by looking into the frequency-rank of n-

tuples (non-overlapping groupings of n consecutive elements). Here

we have implemented a slight variation of the algorithm described

above which enhances expansion, namely 0 goes to 000 and 1 goes

to 111, both cases with probability 1-p. This makes it somewhat

more ‘‘realistic’’ in genetic terms. In practice we start with a 0 or 1

seed chosen with probability 0.5. After 128000 iterations the out

coming sequence is treated as an initial condition and further

iterated 106 times. The frequency with which non-overlapping

sextuplets occur is then averaged over 10 realizations of this

process. Fig. 7A shows this average frequency in decreasing order

for two values of the modification probability p, as well as the

corresponding DGBD. In Fig. 7B the values of the fitting

parameters a and b are plotted against p. For p very small, a.b,

point mutations are rare and expansion is favored, leading to

extended intervals of zeros or ones; as p grows a and b eventually

meet since a decreases and b increases. Above this threshold value

pth, a,b and the higher likelihood of point mutations induces more

disorder. From this perspective a is related to permanence and b to

Figure 4. Rank-ordered distributions in biological systems. (A)
Plot of the relative area occupied by different species in abandoned
fields of Ilinois over a span of 40 years [17]. For this case (a,b,R2) = (0.88,
0.76, 0.98). (B) Local field potential measurements of cat cerebral cortex
taken every 4 ms in an awake state, total of 8192 data points plotted in
decreasing order [18] (a,b,R2) = (0.08,0.25,0.98).
doi:10.1371/journal.pone.0004791.g004

Figure 5. Rank-ordered distributions in social phenomena. (A)
Academic ranking of world Universities [19] based on the number of
publications in Nature and Science,(a,b,R2) = (0.37,0.43,0.99). (B). Biosci-
ence and material science journals ordered by impact factor [20]
(a,b,R2) = (0.59, 0.83, 0.99),(0.51,0.75,0.99) respectively. (C). Population of
the municipalities of the Spanish provinces of Zaragoza and Valladolid
[21] (a,b,R2) = (0.95, 0.54, 0.99), (0.98,0.42,0.99) respectively.
doi:10.1371/journal.pone.0004791.g005
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change. Eventually, for values of p sufficiently large, intervals of

alternating zeroes and ones start to dominate, reducing the degree

of disorder and decreasing the value of b, which however

continuous to be greater than a. Modifications of this model by

introducing independent probabilities for mutation and modifica-

tion, different expansion rates, as well as delays for mutation

application, all produce sequences with good DGBD. Threshold

values are sensitive to these changes and may even be absent.

This behavioral pattern is further reinforced by looking into

families of deterministic discrete time evolution rules of continuous

variables (mappings) where permanence relates to regular

(laminar) behaviors and change appears from chaotic (turbulent)

dynamics. For both the discrete models of the previous paragraph

and these continuous models it can be shown that the point a = b

signals a disorder transition. In the first case this coincides with the

end of scale invariant regions [25], in the second it marks the onset

of maximum entropy.

Discussion

Overall we have encountered a universal behavior defined in

terms of a functional relation for rank ordered distributions that

holds accurately along the whole rank range for an impressive

amount of phenomena of very diverse nature. It is not surprising

that this expression goes beyond power laws since it is a two

parameter relation that reduces to a power law when one of them

is zero. Special interest arises when power laws require corrections

due to finite size effects or other considerations. Under these

circumstances they have often been modified by the inclusion of

one or more additional parameters, e.g. Gaussian or exponential

cut-offs. In most of the examples we have studied, though this type

of correction often improves fits, our DGBD is quantitatively and

above all qualitatively more satisfactory (see Fig. 8 for an example).

Our main point is that, regardless of the presence of a power law,

we have found a generic behavior previously not identified.

With regard to the meaning of the DGBD parameters, in some

instances the exponent a can be related to behaviors generating

power laws, as is the case of scale invariance in turbulence in the so

called inertial range where energy is transferred between different

scales at the same rate, while b seems to be associated with chaotic,

disordered fluctuations, for example the dissipative range for

turbulence [27]. The DGBD manages to encompass both types of

regimes as well as their crossover. Further understanding of the

exponents comes from our expansion-modification study where a

conflicting dynamics leads to the DGBD. The expansion

component which preserves a given trend is associated with a,

on the other hand the modification part favors change and is

related to b. Though we have shown that these conflicting

permanence-change processes can produce DGBD, we are in no

position to consider them as a requirement. On occasions we have

perceived that parameters relations hold for certain instances, for

Figure 6. Rank-ordered distributions in networks. (A) Movie
actor network based on the Internet Movie Database (c.f. http://www.
nd.edu/,networks) containing 372,794 actors linked by movie collab-
orations (a,b,R2) = (0.71,0.61,0.99). (B) E. coli regulatory network nodes
ordered by the number of output links based on the data of reference
[22].
doi:10.1371/journal.pone.0004791.g006

Table 1. Fitting parameters a, b and correlation coefficient R2

for diverse systems.

a b R2

Letters in English 0.18 1.31 0.97

Musical Notes in Haendel’s Messiah 0.56 1.46 0.98

Area of Motifs in Malevich’s Airplane Flying 1.1 0.57 0.98

Old-field Ecosystems 0.88 0.76 0.98

Local Field Potential in Cat Cerebral Cortex 0.08 0.24 0.97

Crashes of U.S. Stock Exchange 3.56 0.11 0.98

E.coli Genetic Regulatory Network 0.99 0.39 0.98

Movie Actors Network 0.71 0.61 0.99

Academic Ranking of World Universities 0.37 0.43 0.99

Biosciences Journal Impact Factor 0.59 0.83 0.99

Mexican State Population 0.44 0.68 0.99

Zaragoza Municipality Population 0.95 0.54 0.99

Valladolid Municipality Population 0.98 0.42 0.99

Chinese Province Population 0.14 0.98 0.99

Highway Distance from Guanajuato to Major
Mexican Cities

1.52 3.87 0.99

Data sources are for: letters in the Concise Oxford Dictionary [29] (similar results
hold for other 25 languages we have looked into), musical notes come from the
musical score, relative area occupied by different species in abandoned fields of
Illinois [17], journal impact factor in biosciences and material sciences journals
[30], Mexican state population [31], Chinese population [32], Zaragoza and
Valladolid municipality population, Mexican highways [31].
doi:10.1371/journal.pone.0004791.t001
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example the for the musical notes frequencies a,b in general,

while for network connectivity related situations a.b is encoun-

tered more often. However, the role of exponents a and b as

universality classifying parameters, as for example in critical

phenomena [28], remains be investigated in further detail.

Our findings are most revealing when both parameters a and b

are non-negligible and not too disparate. This usually happens for

the social phenomena we have explored and which present some

the most impressive fits. Based on these examples, it appears that

DGBD fits are at their best when dealing with situations that result

from the convergence of multiple heterogeneous processes. These

are most probably weakly correlated, for example as a result of

constrictions. Such considerations are in accordance with the old-

field relative occupation studies previously mentioned [17] where

data has been collected for various types of vegetation; we have

found that the statistical behavior of each type considered

separately follows less convincingly the DGBD than the integra-

tion of them shown in Fig 4A. From the above, it seems also

worthwhile to analyze the role of constrictions in the art and music

examples. Additionally, consideration of phenomena with pro-

cesses operating at different scales, as well as multinomial

multiplicative processes [24] seem promising for a better

understanding of our observations. All in all, the ubiquity of our

findings suggests that there ought to be a fundamental underlying

explanation of a statistical nature, such as a central limit theorem

extension or reformulation for the class of systems we have been

encountering.
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