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Abstract

Background: Toxoplasma gondii is an obligate intracellular protozoan that infects 20 to 90% of the population. It can cause
both acute and chronic infections, many of which are asymptomatic, and, in immunocompromized hosts, can cause fatal
infection due to reactivation from an asymptomatic chronic infection. An essential step towards understanding molecular
mechanisms controlling transitions between the various life stages and identifying candidate drug targets is to accurately
characterize the T. gondii proteome.

Methodology/Principal Findings: We have explored the proteome of T. gondii tachyzoites with high throughput
proteomics experiments and by comparison to publicly available cDNA sequence data. Mass spectrometry analysis
validated 2,477 gene coding regions with 6,438 possible alternative gene predictions; approximately one third of the T.
gondii proteome. The proteomics survey identified 609 proteins that are unique to Toxoplasma as compared to any known
species including other Apicomplexan. Computational analysis identified 787 cases of possible gene duplication events and
located at least 6,089 gene coding regions. Commonly used gene prediction algorithms produce very disparate sets of
protein sequences, with pairwise overlaps ranging from 1.4% to 12%. Through this experimental and computational
exercise we benchmarked gene prediction methods and observed false negative rates of 31 to 43%.

Conclusions/Significance: This study not only provides the largest proteomics exploration of the T. gondii proteome, but
illustrates how high throughput proteomics experiments can elucidate correct gene structures in genomes.
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Introduction

Toxoplasma gondii is an obligate intracellular protozoan, belong-

ing to the phylum Apicomplexa and is an important pathogen in

both immune competent and immune compromised humans. The

parasite causes chronic infection in adults and is present in an

estimated 22.5% of people older than 12 in the United States [1]

and up to 90% of the population in other regions of the world [2].

Acute infection is typically not symptomatic. Reactivation of latent

infections is seen in immune compromised individuals, where

infection often presents as encephalitis. T. gondii clinical disease is

most typical in immune compromised individuals and is a

common opportunistic pathogen associated with AIDS.

T. gondii has a wide range of hosts including almost all

mammals as well as birds. It exists in three life stages. Oocysts are

produced in the definitive host, the cat, and are environmentally

resistant, surviving for prolonged periods of time in water, thus

causing potential waterborne illness. Bradyzoites, found in the

intermediate hosts, are slow growing parasites contained in

vacuoles, which form tissue cysts and are generally unrecognized

by the host’s immune system. Bradyzoite tissue cysts can be

transmitted via ingestion of undercooked, infected meat products

or contaminated water. Once the parasite is present in the host,

bradyzoites or sporozoites differentiate into the tachyzoite stage,

which is responsible for the dissemination and clinically apparent

infection. Due to waterborne outbreaks associated with ocular

toxoplasmosis [3], T. gondii is classified by the National Institute

of Allergy and Infectious Diseases as a Category B priority

pathogen.

T. gondii is an important model system for the phylum

Apicomplexa [4], which includes, among others, Plasmodium

(malaria) and Cryptosporidium species. Unlike many other Apicom-

plexa, which are experimentally intractable, T. gondii is easily

cultured in vitro, has well established experimental protocols for

genetic manipulation, and has a well characterized mouse model

[5].
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A whole genome shotgun sequence of T. gondii has been

generated by The Institute for Genomic Research (TIGR; now the

J. Craig Venter Institute) at 126 coverage (available at http://

www.toxodb.org), and additional genome sequence is available

from the Sanger Centre (http://www.sanger.ac.uk/Projects/

Protozoa). Initially, three gene prediction algorithms, TigrScan

[6], TwinScan [7], and GlimmerHMM [6], were employed by

TIGR and ToxoDB.org to identify genes in the ME49 strain of T.

gondii. TigrScan and GlimmerHMM are Generalized Hidden

Markov Model, ab initio gene prediction methods. The two models

differ in their underlying statistical methods; TigrScan employs

weight matrices and Markov chains, while GlimmerHMM

incorporates additional splice site models. TwinScan combines

comparative genomics and the probability model approach by

integrating local genomic alignments from related species and ab

initio methods. TwinScan was run using Eimeria tenella as the

informant sequence. A fourth dataset of ME49-strain gene

predictions was developed by ToxoDB and is currently available

from version release 4.3 [8]. The Release4 predictions were

produced using GLEAN [9], an algorithm that creates consensus

gene predictions by integrating available experimental data such

as expressed sequence tags (ESTs) and proteomics data. The

computational gene prediction methods produce protein sequence

sets that represent the theoretical proteome of Toxoplasma gondii;

however, the datasets of predicted protein sequences are quite

different and are likely to introduce substantial inaccuracy [10–

12]. Without experimental verifications it is not possible to assess

whether any of the datasets offer a comprehensive view of the T.

gondii proteome or which datasets, if any, are more accurate than

the others.

Large scale proteomics approaches have been used to analyze

genomes of various organisms such as S. cerevisiae [13], M. mobile

[14], C. parvum [15], T. gondii [16] and S. luteogriseus [17]. Targeted

studies of T. gondii rhoptry [18], secretory [19], and micronemal

[20] proteins highlight the value of applying proteomics to explore

important subproteomes. Further, proteomics can be used to

elucidate the role of post-translational modifications, such as N-

glycosylation, in the function of important proteins [21].

We hypothesize that a systems-level analysis of the T. gondii

proteome, using an approach that integrates proteomics and

bioinformatics, will identify novel proteins that represent unique

chemotherapeutic targets or have important biological functions

during the obligate intracellular development of the parasite. We

assembled a database comprising all computationally and

experimentally derived sequences in an effort to capture the

complete hypothetical proteome of T. gondii. Functional annota-

tion of the proteome, using motif prediction methods, helped to

gain insight into the biological relevance of the predicted proteins.

Comparative genomics identified those proteins that were unique

to T. gondii. Finally, MS and EST data were mapped to the

experimentally derived and computationally generated proteins to

experimentally validate predicted sequences and to assess the

accuracy of various gene prediction methods.

Results

High throughput proteomics analysis of T. gondii
We explored the T. gondii proteome by performing tandem mass

spectrometry (MS/MS) experiments on T. gondii plasma mem-

brane, cytoskeletal and cytosolic protein preparations. A total of

252 MS/MS experiments provided 7,270 (203,990) unique (and

redundant) proteolytic peptides with an average false discovery

rate of approximately 2% based on peptide detection in a ‘‘decoy’’

database (Table 1). The decoy database was generated by Mascot

(www.matrixscience.com) in the following way: during the search,

every time a protein sequence from the target database is tested, a

random sequence of the same length is automatically generated

and tested. The average amino acid composition of the random

sequences is the same as the average composition of the target

database. Peptides were searched against human and mycoplasma

protein databases to remove potential contaminating peptides.

The MS/MS peptides were searched against the hypothetical T.

gondii proteome, comprised of all computationally predicted and

experimental sequences, to identify experimentally supported

sequences. Expressed sequence tag data was used to provide

further experimental support for some proteins in the T. gondii

proteome. All MS data and analysis is publicly accessible in full

depth at the Web site of the Albert Einstein Biodefense Proteomics

Research Center (http://www.fiserlab.org/biodefense and http://

www.fiserlab.org/epicdb ) and summaries have been deposited to

the NIH maintained Resource Center for Biodefense Proteomics

Research, website http://www.proteomicsresource.org/ and to

ToxoDB (http://www.toxodb.org).

Predicted and experimentally known proteins of T. gondii
The hypothetical proteome, comprised of 30,197 amino acid

sequences, combines predicted proteins from the TigrScan (8,336

sequences), TwinScan (7,588), Glimmer (4,954), and Release4

(7,793) datasets, and the available T. gondii sequences from the

NCBI non-redundant protein database (1,526) (NR).

The majority of the sequences in the combined dataset (94%)

are less than 2,000 residues long though some sequences are as

long as 14,514 residues. The averages, ranges, and distributions of

the sequence lengths already suggest substantial differences among

the protein datasets (Table 2, Fig. 1). Glimmer predicted

sequences (1,077 residues average length) are, on average, much

longer than the TigrScan, TwinScan, Release4, or NR sequences

(681, 614, 719, and 510 residues average length, respectively).

Furthermore, the maximum sequence length for TigrScan (9,696

residues) is substantially shorter than the maximum lengths of the

TwinScan, Glimmer, Release4, or NR sequences (13,936, 14,514,

11,862, and 12,269 residues, respectively). The NR sequences

have the shortest average length (510 residues) and the distribution

shows the highest frequency of sequences of approximately 200–

300 residues. The median lengths for each distribution, compared

among each dataset, mimic the characteristics of the differences in

average lengths. The Glimmer sequences had the highest median

length (695), followed by Release4 (472), TigrScan (457),

TwinScan (395), and the NR sequences (341). The shorter

average and median lengths of the NR sequences is not necessarily

an inherent characteristic of T. gondii proteins but could be an

artifact because the researched proteins are likely not a

Table 1. Number, average length, and average MASCOT
score for all peptides identified by MASCOT when the MS
results were searched against the amino acid sequences in
the combined dataset.

Number of MS/MS experiments 252

Number of identified MS/MS peptides

redundant peptides 203,990

unique peptides 7,270

Average peptide length (residues) 15.3

Average MASCOT ion score 63.14

doi:10.1371/journal.pone.0003899.t001

Validation of Gene Predictions
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representative sample of the T. gondii proteome. Rather, the

predominance of shorter sequences could be a consequence of the

greater ease of studying these proteins experimentally, especially in

the past.

The substantial differences in the length characteristics of the

predicted proteins suggest that the algorithms either predict

sequences from vastly different genes and coding regions or that

there are significant disparities in the prediction of the structure

and splicing of the exons and introns within similar gene coding

regions.

Comparing protein sequences obtained from different
prediction methods

Identical or nearly identical proteins in the hypothetical

proteome were grouped in order to explore the overlap and

differences among the computational gene prediction methods.

Each gene finder was employed on the same genome and,

consequently, the four methods ideally should have predicted

identical genes. Of course, conversely, the algorithms may have

also predicted different splicing among predicted exons of the

same open reading frame, predicted different open reading frame

initiation or termination points, or added and/or missed entire

open reading frames, thus generating some vastly different

proteins. If each gene prediction method (TigrScan, TwinScan,

Glimmer, and Release4) produced the same predicted sequence,

those sequences would be clustered together. Grouping identical

proteins in the combined dataset results in 25,908 clusters (86% of

the original set), of which, only 101 contain predicted sequences

from all four methods (Table 3). The numbers of identical

sequence groups with a sequence from one (22,556 groups), two

(2,058), three (521), or all four (101) prediction methods confirms

the observation that the gene prediction methods produce very

different results, with many unique sequences for each prediction

method. The percentage of unique sequences that is produced by

each prediction method is roughly similar for the TigrScan,

TwinScan, and Glimmer methods (76–87% of all predictions),

with Release4 having a slightly smaller percentage of unique

sequences (68%) (Table 3). In general, any two prediction methods

share less than 12% (and as low as 1.4%) identical predicted genes

in a head-to-head comparison. The above analysis does not

insinuate that any one gene finder algorithm is superior to the

others. However, the results provide an initial basis for the effort of

examining all available sequences from each computational

annotation of the genome when examining the proteome.

Clustering predicted proteins by sequence similarity
Discrepancies in protein sequences that are transcribed from

similar genomic locations, whether the result of prediction

differences or splicing variability, likely account for most of the

disparities among the protein datasets. Therefore, in order to

assess the fraction of sequences that are not identical yet share a

common part and, thus, may have been derived from the same

genomic location, the hypothetical proteome of 30,197 sequences

was clustered with a 90% sequence identity threshold requirement.

The clusters were constructed by aligning each sequence with the

longest sequence in a cluster, which is called the ‘‘representative

sequence’’ (see Methods), while allowing large gaps in the

alignment. The number of identical amino acid residues within

regions of sequence overlap was normalized over the length of the

shorter sequence to determine the sequence identity between the

Figure 1. Frequency distribution of sequence lengths (amino acid residues per sequence) for TigrScan (dark blue), TwinScan
(green), Glimmer (red), Release4 (light blue), and NR (grey) sequences. The frequencies are normalized to the total number of sequences in
each dataset. The large graph shows the distributions for sequence lengths of 0–3,000 amino acids. The inset shows the same distributions but for
sequence lengths of 0–500 amino acids.
doi:10.1371/journal.pone.0003899.g001

Validation of Gene Predictions
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aligned sequences. This approach can group together sequences

with very different lengths if the overlapping parts share more than

90% sequence identity. This clustering strategy is an obvious way

to assess redundancy among the datasets, but it is also a way to

examine potential splicing variability within the genome. Alterna-

tive splicing events such as alternative 59 or 39 exon splice sites,

skipped exons, or retained introns result in sequences that are

splice variants of the same gene. Although the sequences are

different, the local similarities allow them to be clustered together

(Fig. 2a–c).

Clustering by sequence similarity allows for an interpretation of

a comprehensive set of genes and open reading frames that are

predicted by various gene finder algorithms. A cluster of similar

sequences (or a single sequence) is representative of a predicted

gene at the genomic locus despite the fact that there may be some

discrepancy in the exact structure of the gene in question due to

differences in the predicted sequences. This method of clustering

by local sequence similarity is a distinct analysis compared to the

evaluation of identical sequence overlap produced by the gene

finder algorithms. Additionally, the local sequence-similarity

clustering, which encompasses all subsequent clustering analysis,

was performed on the redundant set of 30,197 protein sequences

because the ensuing statistics regarding the differences among the

prediction methods would be artificially affected if some sequences

were removed from the dataset in cases in which two or more

prediction algorithms produced identical sequences.

The hypothetical proteome of 30,197 sequences collapses to

14,983 non-redundant clusters with an average size of 2.02

sequences. The majority of the clusters (55%) are individual

sequences (Table 4), strengthening the observation that there are

many unique sequences that do not share even a common sub-

sequence with other proteins and that the predicted protein

datasets provide remarkably different alternatives. If the 8,281

unique sequences (singleton clusters) are removed from the

original combined dataset, there are 21,916 remaining sequences

that are clustered with at least one other sequence i.e., about 73%

of the combined dataset is redundant, based on sequence

similarity. The elimination of the singleton clusters was performed

only for the aforementioned evaluation of the degree of

redundancy in the dataset. The singleton clusters were included

in all other analyses.

The percentages of the clusters that contain a TigrScan,

TwinScan or Release4 sequence are similar (53%, 47%, and 49%,

respectively), while the percentages that contain a Glimmer or NR

sequence are much lower (33% and 6% respectively) (Table 5).

The differences for the Glimmer predictions and the NR

sequences could be explained by the fact that these datasets,

especially the NR, are significantly smaller then the datasets for the

other three prediction methods. The small fractions of common

protein predictions suggest that any single prediction dataset either

covers a small portion of the theoretical T. gondii genome (,50%

or less) and/or produces a very large percentage of false positives.

Table 3. Number of identical sequence groups containing one, two, three, or all four types (TigrScan, TwinScan, Glimmer,
Release4) of protein prediction methods.

Overlap Among Prediction Methods Number Of Identical Sequence Groups

All (4) Prediction Methods Agree (Tigr,Twin,Glimmer,Release4) 101

Three Prediction Methods Agree 521

Two Prediction Methods Agree 2,058

Single Prediction Method 22,556

unique Tigr = 7,245

unique Twin = 5,778

unique Glimmer = 4,252

unique Release4 = 5,281

doi:10.1371/journal.pone.0003899.t003

Table 2. Length characteristics (average, standard deviation, and range) and experimental data (MS peptides, MS coverage, EST
alignments, MS AND EST data), for sequence of each prediction type.

Predicted Protein Types

TigrScan TwinScan Glimmer Release4 NR

Total Number of Sequences 8,336 7,588 4,954 7,793 1,526

Length Characteristics

Sequence Length, average6stdev 6816733 6146743 1,07761,168 7196803 5106676

Sequence Length, range 20–9,696 2–13,936 23–14,514 50–11,862 1–12,269

Experimental Data

Sequences with Assigned MS peptides (% of dataset) 17% 19% 27% 20% 49%

Average sequence coverage of MS peptides 10.7% 13.4% 8.6% 12.5% 29.9%

Sequences with Filtered EST alignments (% of dataset) 58% 62% 75% 72% 85%

Sequences with MS peptides AND EST (% of dataset) 15% 17% 25% 18% 48%

doi:10.1371/journal.pone.0003899.t002

Validation of Gene Predictions
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Figure 2. Examples of clusters of similar predicted amino acid sequences (red lines) with MS peptide hits (shown as open black
blocks on amino acid sequences) and aligned ESTs (blue lines below amino acid sequence clusters), with EST translation
directionality indicated. Grey lines indicate areas where sequences differ and are not aligned. Identifiers are listed on the right. a. Cluster of a
TigrScan (TgTigrScan_7144) and Release4 (55.m10274) sequence. The TigrScan sequence has additional 59 and 39 regions (exons) compared to the
Release4 sequence. The additional regions are verified by MS hits. There are no TwinScan, Glimmer, or known NR sequences in this MS validated
coding region. b. Cluster of a Glimmer, TigrScan , Release4, and TwinScan sequence, all validated by MS peptide hits. The Glimmer sequence
(TgGlmHmm_2826) has an additional MS validated 59 region. The TigrScan ( TgTigrScan_4753) sequence does not have an exon that is included in
the Glimmer, Release4, and TwinScan sequences and that is supported by both MS and EST data. c. Cluster of a Glimmer (TgGlmHmm_2506)
sequence, three TwinScan (TgTwinScan) sequences, and three Release4 sequences. The TwinScan and Release4 methods each predict three distinct
proteins from this coding region whereas the Glimmer method predicts one. The distribution and location of the MS peptides on the Glimmer
sequence indicates that the full length protein is likely to be present in the proteome. However, the shorter splice variants may also be real proteins.
An example of the proteomics data confirming the existence of a continuous portion of the sequence is the group of MS peptides indicated by
arrows.
doi:10.1371/journal.pone.0003899.g002
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Clustering by genomic location
Clustering proteins by sequence similarity may group together

paralogs from different genomic locations that emerged through

gene duplication or gene shuffling mechanisms. Therefore, we

explored the homogeneity of the sequence clusters in terms of

genomic localization. First, individual protein sequences were

mapped onto the T. gondii genome. We successfully mapped

27,777 sequences (92% of the combined and redundant dataset)

onto the genome (see Methods). The sequences span an average

length of 5,879 nucleotides and, on average, approximately 52%

of the genomic coding region is exonic. We found 787 sequences

(2.6%) only that can be mapped to multiple locations in the

genome, which suggests a relatively low level of gene duplication

events.

Genomic mappings of the protein sequences determined the

genomic location of 92% of the 14,983 sequence clusters (see

Methods). In approximately 1% of the clusters, a sequence maps

to a different genomic location than the rest of the cluster

members. Approximately 99% of the clusters are composed of

sequences that are transcribed from the same genomic regions.

These clusters of predicted protein sequences may also represent

possible splice variants of the same gene. There are 3,120 and

2,969 genomic regions that are comprised of either an individual

cluster or a co-localized cluster group (see Methods), respectively,

and thus, we estimate that there are 6,089 potential protein-coding

regions in the T. gondii genome. The genomic protein-coding

regions span, on average, 9,924 nucleotides and, since the T. gondii

genome is about 65 Mb, approximately 7% of the genomic

sequence is intergenic. The estimated percentage of the genome

that accounts for coding regions is larger than what has been

previously reported for chromosome Ia (56.7%) and Ib (58.1%)

[25], which could be a reflection of the increased number of false

positive protein sequences that arise from a larger variety of

analyzed gene prediction algorithms or possible characteristic

differences among the T. gondii chromosomes.

High throughput experimental validation of the T. gondii
proteome

We explored the T. gondii proteome by performing high

throughput, tandem mass spectrometry (MS/MS) experiments

on T. gondii plasma membrane, cytoskeletal, and cytosolic protein

preparations and cross referencing the MS-derived peptides with

the computationally generated and experimentally derived amino

acid sequences of the hypothetical T. gondii proteome. Expressed

sequence tag data was used to provide further experimental

support for some sequences in the hypothetical T. gondii proteome.

The 252 MS/MS experiments provided 7,270 unique proteo-

lytic peptides that identified 6,438 sequences (21% of the

combined dataset). The average peptide coverage of the MS/

MS supported sequences is 13.5%. The percentages of sequences

with an assigned peptide are similar for the TigrScan, TwinScan,

Glimmer, and Release4 datasets (17%, 19%, 27%, and 20%,

respectively) while the percentage is substantially higher for the

NR dataset (49%) (Table 2). The average peptide coverages are

also similar for the TigrScan, TwinScan, Glimmer, and Release4

sequences yet significantly higher for the NR sequences (10.7%,

13.4%, 8.6%, 12.5%, respectively, compared to 29.9%) (Table 2).

The fact that the NR dataset has a higher percentage of sequences

with assigned peptides and a higher average coverage seems

intuitive as is a reflection of the fact that these sequences are

believed to be more reliable, because, in general, they are

experimentally derived. These sequences certainly do not

represent a comprehensive or uniform sample of the T. gondii

proteome and thus, no assumptions can be made about the quality

of the sequences or coverage of the proteome by this dataset with

respect to the predicted datasets. The observation that each

protein prediction method has a similar degree of experimental

validation, along with the disparate nature of the sequences

predicted by each method, indicates that each method predicts the

proteome with a similar level of accuracy.

There are 2,477 clusters (17% of the total clusters) that contain

a sequence with an assigned MS/MS peptide. The portions of the

MS/MS supported clusters that contain a TigrScan, TwinScan, or

Release4 sequence are similar (60.75%, 65.60%, and 67.62%,

respectively) while the portion that contains a Glimmer sequence is

slightly lower (56.72%) (Table 5). The discrepancy in the accuracy

of the protein prediction methods can be explained by the fact that

there are fewer Glimmer sequences as compared to the other

Table 4. Distribution of cluster sizes (number of sequences
per cluster) for the CD-HIT clustered combined protein
dataset.

Cluster Size (sequences per cluster) Number of Clusters

1 8,281

2 2,476

3 1,850

4 1,577

5 430

6 160

7 104

8 42

9 23

10 12

.10 28

doi:10.1371/journal.pone.0003899.t004

Table 5. Number of all sequence clusters and clusters
supported by MS data, EST data, and MS and EST data,
respectively.

Predicted Protein Types

TigrScan TwinScan Glimmer Release4 NR

14,983 Total Clusters

sequence type (# clusters) 7,914 7,093 4,916 7,389 889

% of Total Clusters 53% 47% 33% 49% 6%

2,477 MS Clusters

sequence type (# clusters) 1,505 1,625 1,405 1,675 384

% of MS Clusters 61% 66% 57% 68% 16%

9,242 EST Clusters

sequence type (# clusters) 4,954 4,851 3,816 5,645 748

% of EST Clusters 54% 52% 41% 61% 8%

2,275 MS AND EST Clusters

sequence type (# clusters) 1,396 1,507 1,315 1,562 370

% of both MS and EST
Clusters

61% 66% 58% 69% 16%

For each category, the number of clusters with each predicted sequence type is
shown along with the corresponding percentage of the clusters in the
respective category.

Validation of Gene Predictions
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prediction methods. These data show that none of the full genome

predictions manages to identify all of the proteins that are

supported by MS/MS data; each prediction method is missing 31

to 43% of the validated part of the proteome. In these calculations

we assumed that if there is at least one proteolytic peptide that

matches a sequence in a cluster, then all sequences are validated.

However a proteolytic peptide may not have an overlap with all

sequences in a cluster (Fig. 2a–c). Nevertheless for each type of

protein, due to the relatively dense coverage of MS peptides in

each cluster, a sequence that was present within an MS/MS

supported cluster almost always had a peptide mapped directly to

the sequence ($90% of the occurrences of a sequence within the

MS/MS supported cluster). This indicates that there is exper-

imental evidence to support each sequence within the cluster,

despite differences in splicing and/or predictions among the

clustered sequences.

According to the various prediction algorithms, the T. gondii

genome is expected to encode approximately 7,800 genes [26,27],

of which 18% were estimated to be life stage specific (,1,400)

[28]. This suggests that our high throughput MS/MS experiments

explored at least one third of the genome of T. gondii tachyzoites

(2,477 clusters). This may be an underestimate if a significant

fraction of our clusters represent two or more gene products.

EST mapping analysis of the hypothetical T. gondii proteome

offers similar conclusions to what were generated from the MS/

MS analysis. It was possible to validate 20,123 sequences (67% of

the combined dataset) with an aligned EST sequence, which

corresponds to 9,242 clusters (62% of the total clusters). The

TigrScan and TwinScan datasets have roughly the same

percentages of sequences that are supported with an EST

alignment (58% and 62%, respectively) while the Glimmer and

Release4 methods have similar and higher percentages of

sequences with an EST alignment (75% and 72%, respectively).

The enrichment of Glimmer sequences with an EST alignment is

likely a result of the Glimmer sequences being, on average, much

longer then the TigrScan, TwinScan, or NR sequences. Thus,

there is a greater chance that a Glimmer sequence will cover part

of the genome that is also sequenced by an EST. The high

percentage of Release4 sequences with an EST alignment is

possibly the result of ESTs (or other genomic data) being included

in the integrated data that was used to derive the Release4

sequences (Table 2).

The percentages of the EST supported clusters that contain

TigrScan, TwinScan, or Release4 sequences are similar (54%,

52%, and 61%, respectively) whereas the percentage that contains

a Glimmer sequence is lower (41%) (Table 5). A vast majority

($96%) of the sequences within the EST supported clusters have

an EST alignment, again indicating that each sequence, within the

cluster, has experimental support despite possible splicing or

prediction differences.

The EST alignments were filtered based on requirements for

minimum alignment length and sequence identity in order to

differentiate cases in which the amino acid sequences were

supported by a strong alignment from the cases in which the

alignment indicated a paralog rather than a direct validation of the

sequence by genomic data. Without filtering, there are 21,989

sequences that have EST alignments, which is only 9.3% more

than the number of sequences with filtered EST alignments

(20,123 sequences) and which represents only a 6% increase in the

percentage of the hypothetical proteome that is supported by

experimental EST evidence. The consistency in the number of

amino acid sequences with filtered and non-filtered EST

alignments indicates that, within the subset of sequences that are

supported by EST data, there are strong similarities between the

protein sequences and the EST sequences.

The MS proteomics data were cross-referenced with the EST

genomics data. There are 5,881 sequences (19.5% of the

combined dataset) that are experimentally supported by both an

assigned MS/MS peptide and a filtered EST alignment, which

one might consider to be the most highly validated proteins in the

compiled proteome. The sequences with both types of exper-

imental data correspond to 2,275 clusters (15.2% of the total

clusters). The average MS/MS peptide coverage of sequences that

are supported by MS and EST data or exclusively by MS data

alone is 14.3% and 5.25%, respectively. The difference in peptide

coverage may be a result of the proteins with EST data being more

highly expressed in the T. gondii proteome compared to those

without EST alignments.

Clusters that are supported by both MS data and EST data

have a comparable portion of Glimmer, TigrScan, TwinScan, and

Release4 sequences (58%, 61%, 66%, and 69%, respectively)

(Table 5). Therefore, the gene prediction algorithms exhibit a false

negative rate of 31 to 42%, which is the portion of the

experimentally validated coding regions (clusters) (MS and EST)

that are completely missed by individual prediction methods.

While it is not possible to precisely identify the false positive

predictions (predicted amino acid sequences that are not real

proteins) from these data, it is clear that the rate of false positive

predictions must be substantial for each prediction method.

Figures 2a–c illustrate some of the sequence clusters with their

corresponding experimental data. The sequence cluster in the first

example (Fig. 2a.) is validated with MS peptide hits as well as EST

data, but there are only two predicted protein sequences, one from

TigrScan (TgTigrScan_7144) and one from Relase4 (55.m10274),

i.e. all other prediction methods failed to predict the protein

coding region that is represented by this cluster. Moreover, the

peptide coverage illustrates that the longer TigrScan prediction is

either a valid splice variant of the coded protein or the Release4

prediction failed to identify both the N and C terminal segments of

the protein, both of which have been validated by MS data and, in

the case of the N-terminal, EST data. The second example cluster

(Fig. 2b.) is composed of sequences from all four prediction

methods, albeit with significant differences among the sequences.

For instance, the TigrScan prediction suggests two separate

proteins in this clusters, or genomic location, while MS peptides

and EST evidence points to a continuous protein sequence. In

addition, the N terminal segment that is unique to the Glimmer

prediction (TgGlmHmm_2826) is confirmed by both an MS

peptide and two EST alignments. The third example (Fig. 2c.)

shows a cluster with a variety of vastly different predictions from

three methods (TigrScan fails to predict a protein in this cluster).

The arrows pointing to the Glimmer prediction indicate MS

peptides that confirm areas of the protein sequence where other

models predicted gaps (TgTwinScan_2224 and TgTwin-

Scan_2226 as well as 641.m00177 and 641.m00176), suggesting

that the continuous protein sequence exists at least as one splice

variant. In addition, the N-terminal tail of the Glimmer prediction

is confirmed with a very high coverage of MS peptides and

numerous EST alignments, while this segment was missed by all

other prediction methods.

Functional annotation of the T. gondii proteome
Each protein sequence in the combined dataset was scanned

against the PFAM database [31], a collection of protein domains

and families, using pfam_scan.pl version 0.5, available from

ftp.sanger.ac.uk. The output was parsed to find the PFAM domain

names and locations for each sequence. Phobius (version 1.01)
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[32], a combined transmembrane topology and signal peptide

predictor, was used to perform the transmembrane domain and

signal peptide predictions.

There are 13,430 sequences (45% of the combined dataset) with

at least one PFAM domain annotation compared to 20,326

sequences (67%) that are annotated with orthologs predicted from

pairwise BLAST [22] alignments with sequences from the NCBI

NR database. The percentage of proteins that have PFAM

domains compares well with the published results of PFAM 22.0,

which reports that 49% of 213 T. gondii UniProtKB/TrEMBL

deposited proteins have at least one PFAM domain [31].

Sequences with PFAM domains correspond to 5,741 clusters

(38% of the total clusters). The TigrScan, TwinScan, and Release4

sequence sets have similar percentages of sequences with PFAM

domains (36%, 43%, and 44%, respectively). The percentages of

sequences with PFAM domains are similar for the Glimmer and

NR sequence sets (62% and 69%, respectively). The higher

proportion of PFAM domains found in the NR sequences,

compared to TigrScan, TwinScan, or Release4, is probably a

consequence of a higher level of confidence in these sequences, as

they are typically experimentally derived. However, the higher

proportion of PFAM domains for the Glimmer sequences is likely

a consequence of the fact that they are much longer, on average,

than the other sequence types (Table S1), so an individual

sequence will coincide with a bona fide coding region within the

genome with a higher probability than the other protein types. In

summary, PFAM annotations are used to infer a certain degree of

biological validity for approximately 45% of the compiled T. gondii

proteome.

There are 6,927 sequences (23% of the combined dataset) that

have predicted transmembrane domains, which corresponds to

3,730 clusters (25% of the total clusters), and which is consistent

with the proportion of membrane proteins that have been

predicted in other genomes (20–35%) [33]. There are 4,330

sequences (14% of the combined dataset) that have predicted

signal peptides, which corresponds to 2,601 clusters (17% of the

total clusters). The percentages of sequences with signal peptides

and transmembrane regions are consistent among the individual

datasets. Transmembrane proteins of T. gondii are of particular

interest because of their role in the interaction and adhesion of

the parasite to the host cell and their link to the virulence of the

parasite. These critical functions make some subsets of mem-

brane proteins good candidates for chemotherapeutic targets.

Meanwhile sequences with signal peptides generally refer to

proteins that are secreted from the cell. In the case of T. gondii,

secreted proteins include those of the micronemes, rhoptries, and

dense granules, which are integral parts of the unique process of

interaction, invasion, and infection of the host cell by T. gondii

[34].

Comparative genomics of the T. gondii proteome
Each sequence was compared against other Apicomplexan

genomes, against the human genome, and against the complete

NCBI NR database (Table S1).

The amino acid sequences of the hypothetical proteome of T.

gondii were searched against the complete NCBI NR database,

Apicomplexa proteins, and human proteins to identify unique and

conserved proteins. In general, 67% of the hypothetical T .gondii

proteome (59% of the clusters) has a homologous sequence in NR

and 64% has an Apicomplexan ortholog (58% of the clusters).

Approximately 52% of T. gondii sequences (57.5% of the clusters)

are unique as compared to the human genome and, thus, fulfill a

primary requirement of chemotherapeutic target candidates.

EPIC-DB: Experimental ProteomICs DataBase
All experimental data, annotations, protein cluster information

and comparative genomics data are organized into a relational

database (EPICDB) that is publicly accessible at http://www.

fiserlab.org/epicdb. In addition, a summary of the data and

information about reagents generated from the Toxoplasma gondii

MS experiments are available from the Resource Center for

Biodefense Proteomics Research website http://www.proteomics-

resource.org/.

Discussion

The proteomics study presented here is one of the largest of a

genome and certainly the most comprehensive analysis and

validation of the T. gondii proteome to date identifying novel

proteins and offering unique insights into its gene structure. We

experimentally validated with MS experiments 6,438 distinct

proteins that can be clustered into 2,477 groups and account for

approximately one third of the T. gondii genome.

Further, this analysis provides important novel information,

with respect to the T. gondii proteome, since 3,838 (60%) of the

experimentally identified proteins have been annotated as

‘‘hypothetical’’, ‘‘putative’’ or ‘‘predicted’’ in the NCBI NR

database. Additionally 609 MS identified T. gondii proteins are

unique as compared to any known organisms, providing an

important subset of validated proteins for drug targeting.

While the genomes of many organisms have been sequenced,

there are relatively limited amounts of experimental protein data

to accurately annotate these genomes or to validate the

computational gene prediction methods. The current study offers

a way to address this ubiquitous problem by integrating genomics

and proteomics data. The large scale experimental validation of

the hypothetical T. gondii genome shows a false negative rate for

various gene prediction methods of about 31–42% (proteins that

were confirmed experimentally by both MS and EST data but

missed by one or more of the computational gene prediction

methods) and experimentally confirms earlier anecdotal reports

that gene prediction algorithms operate with a substantial false

negative rate [29,30].

This study demonstrates that genome analysis coupled with

experimental proteomics data is essential to benchmark and

improve the accuracy of gene prediction methods and facilitates

insights into gene structure and splice variability within genomes.

Materials and Methods

Protein sequence datasets
All available T. gondii protein sequences were compiled from five

datasets; TigrScan (8,336 sequences), TwinScan (7,588), Glim-

merHMM (4,954), Release4 (7,793), and NR sequences (1,526).

TigrScan, TwinScan and GlimmerHMM sequences were down-

loaded as FASTA files of protein sequences from http://www.

toxodb.org/common/downloads/release-3.3/Genome/pep/. A

FASTA file of Release4 sequences was downloaded from http://

www.toxodb.org/common/downloads/release-4.0/TgondiiAnno-

tatedProteins.fa. The NR sequence dataset was obtained from the

NCBI Entrez Protein Database, which was filtered, by the organism

name, for Toxoplasma gondii (As of July 2008, predicted genes/

proteins from T. gondii genome analysis have not been deposited to

NCBI or GenBank databases). The five datasets were combined to

provide a comprehensive set of all available protein sequences for

the Toxoplasma gondii proteome and comprised 30,197 sequences.

This is a redundant database as different prediction methods may

identify the same sequence with different names.
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Identifying groups of nearly identical predicted protein
sequences

Identical or nearly identical sequences in the combined dataset

were grouped in order to assess the overlap among the four gene

prediction methods. A BLAST [22] search was performed

(without low complexity filtering and with an e-value of

e,0.001) for each sequence against the combined dataset.

Sequences in each alignment were evaluated for overlap and

sequence identity. For sequences longer than 100 residues, two

sequences in an alignment were considered identical if the

sequential overlap and the sequence identity within the overlap

were both 99% or greater. If both the query and subject hit

sequences 100 amino acids or smaller the two sequences were

required to be within one amino acid in terms of length and

sequence identity. Groups containing only NR sequences (672

groups) were not included in the analysis of the computational

prediction methods.

Clustering the protein dataset
The combined, redundant dataset was clustered using CD-HIT

[23]. The sequences are grouped by a given sequence identity

threshold, which corresponds to the local sequence similarity. The

longest sequence in each cluster is designated as the ‘‘represen-

tative’’ sequence, which is a CD-HIT terminology. The sequence

identities are calculated for the shorter sequences with respect to

the representative. The requirement to compare each sequence to

the longest sequence in the cluster is inherent in the clustering

algorithm. However, we do not extend this terminology to

designate the longest sequence to literally represent all the

clustered sequences. The band-width allowance for the sequence

alignments was set to 1,000 gaps in order to compare sequences

with very different lengths but that may share a short common

segment. Clustering was performed in the most accurate mode

where each sequence is added to the cluster to which it is the most

similar rather than to the first cluster for which the sequence

identity threshold is met. CD-HIT implements a greedy

incremental clustering algorithm, which orders the sequences by

decreasing length and makes the longest sequence the represen-

tative sequence of the first cluster. The next sequence is evaluated

by being compared to the representative sequence of the original

cluster and if it satisfies the sequence identity threshold it is added

to the cluster. Otherwise it becomes the representative sequence of

a new (second) cluster. Each successive sequence is evaluated by

being compared to the representative sequences of each cluster

and is either added to a cluster or becomes the representative

sequence of a new cluster. One implementation of the algorithm

clusters the sequences into the first cluster for which the minimum

sequence identity threshold is satisfied. Thus, the first clusters

could be artificially large. However, the clustering presented here

evaluates each sequence against all the clusters and includes the

sequence in the cluster for which it shows the highest sequence

identity.

In order to evaluate the redundancy in the dataset, the

sequences were clustered for decreasing sequence identity

thresholds and the resulting numbers of clusters were analyzed.

A linear relationship exists between the number of clusters and the

sequence identity threshold for sequence identity threshold levels

from 95% to 70% (data not shown). There is not a specific level of

redundancy in the dataset that dictates inherent clusters of the

sequences.

For each cluster within a CD-HIT sequence identity threshold

level, the representative sequence was aligned to all other

sequences in the cluster using BLAST2SEQ (without gaps and

without low complexity filtering). The BLAST sequence identity

and alignment coverage were evaluated for each sequence

alignment. The sequence identity was defined as the number of

identities in the alignment divided by the alignment length. The

alignment coverage was defined as the alignment length divided by

the length of the shorter sequence. The frequency of intra-cluster

BLAST alignment percent identities and alignment coverages

were computed for various CD-HIT sequence identity threshold

levels from 100% to 70%. As the CD-HIT sequence identity

threshold level decreases the frequency of cluster members with

lower quality alignments increases. However a distinct shoulder

forms around the 90–95% sequence identity clustering level,

therefore we identified the 90% sequence identity threshold as the

lower limit of sequence identity that produces clusters of highly

homologous proteins (Fig. 3a–b).

Mapping protein sequences to genomic locations
The genomic sequence for the ME49 strain was downloaded

from ToxoDB.org. Each chromosome’s nucleotide sequence was

translated in 3 consecutive reading frames in both the forward and

reverse directions. A dataset of 2,622,472 potential open reading

frames was created by dividing the 6-frame translations into any

sequences that occurred between two genomic STOP codons. To

determine the genomic location of a protein sequence a BLASTP

(without low complexity filtering and without gaps) search was

performed for the protein sequence against a custom database of

the 2,622,472 generated open reading frames. The resulting local

alignments were filtered to eliminate any alignments with an e-

value greater than 1024 or a percent identity below 80%. For cases

in which the protein sequence was spliced to multiple exons in the

genome the BLAST search produced multiple, highly significant,

local alignments rather than aligning the complete protein

sequence to a single genomic interval. Our mapping algorithm

examined all possible combinations of local alignments in order to

identify cases in which a sequence could have multiple mapping

options to the genome, i.e., duplicated genes. Each valid alignment

configuration was converted to genomic nucleotide positions since

the chromosomal locations of the open reading frames were

known. This process was repeated for each local alignment within

the protein query thus elucidating the physical mapping as well as

the intron/exon structure of the protein sequence. 80% of the

sequence was required to be mapped to the genome in order to

constitute a successful mapping of the protein to the genome.

There are 2,420 sequences, of the 30,197 sequences in the

combined dataset, that can not be mapped to the genome; 155

sequences have no BLAST alignments to any of the translated

genomic open reading frames, 376 sequences have no BLAST

alignments that meet the significance requirements, and 1,889

proteins are not mapped because significant portions of the

sequences cannot be aligned to the genome. The unmapped

sequences are likely to be predicted from scaffolds that are not

integrated into the genome.

Genomic locations of sequence clusters
The genomic locations of the protein sequences were used to

localize CD-HIT clusters. The location of a genomic region of a

CD-HIT cluster was defined by the sequence within the cluster

that spanned the longest genomic region, including exons and

introns. The genomic locations of each sequence, within a cluster,

were compared in order to identify cases when proteins with

similar sequences were derived from different genomic locations.

The genomic locations of the sequence clusters were used to

determine the distribution of the coding regions in the genome.

Each chromosome was scanned in both directions. Clusters that

had overlapping genomic regions and the same translation
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Figure 3. a. Histogram of distribution of pairwise sequence coverages within gene prediction clusters. Different curves refer to different sequence
identity thresholds used for clustering. Color purple, red, brown, dark purple, pink, blue, cyan corresponds to cutoff values of 100%, 95%, 90%, 85%,
80%, 75%, 70%, respectively. b. Histogram of distribution of pairwise sequence identities within gene prediction clusters. Different curves refer to
different sequence identity thresholds used for clustering. Color purple, red, brown, dark purple, pink, blue, cyan corresponds to cutoff values of
100%, 95%, 90%, 85%, 80%, 75%, 70%, respectively.
doi:10.1371/journal.pone.0003899.g003

Validation of Gene Predictions

PLoS ONE | www.plosone.org 10 December 2008 | Volume 3 | Issue 12 | e3899



directions were grouped into co-localized cluster regions. The

genomic regions spanned by the co-localized cluster regions were

defined as potential protein coding regions.

Growth of T. gondii in vitro
RH strain T. gondii were grown in human fibroblasts in DME

media with 10% fetal calf serum and 1% Penicillin Streptomycin

(GIBCO-BRL) in a 5% CO2 incubator. Parasites were transferred

to fresh culture human fibroblast monolayers biweekly. The

absence of Mycoplasma contamination was monitored monthly

using a PCR method (GIBCO-BRL).

Purification of membrane and cytoskeleton protein from
T. gondii

1.261010 purified T. gondii RH strain tachyzoites from tissue

culture were resuspended in 20 ml of SMDI buffer (250 mM

Sucrose, 10 mM MOPS-KOH, pH 7.2, 2 mM DTT, 16protease

inhibitor cocktail) and disrupted by French press at a pressure of

1000 PSI, medium setting. The lysate was centrifuged at 7566g at

4uC for 10 min to pellet unbroken cells. Intact parasites and large

debris were resuspended in 10 ml SMDI buffer and disrupted

once more by French press at a pressure of 1000 PSI, medium

setting. The pooled supernatant was centrifuged at 25,0006g at

4uC for 20 min. The supernatant was saved for analysis as the

cytosolic fraction. The pellet was resuspended in 10 ml of 30%

Percoll in SMDI buffer. After centrifugation at 75,0006g in an

ultracentrifuge (Rotor TLA 100.3; 30,000 rpm) at 4uC for 25 min,

the top band was collected from the self-generated gradient. The

band was diluted in SMDI buffer and spun at 100,0006g for

90 min. at 4uC (Rotor TLA 100.3; 40,000 rpm). A band collected

between the buffer and resultant Percoll cushion contained the T.

gondii ghosts consisting of membranes and cytoskeleton [18].
Membrane fraction. To isolate the membrane fraction the

T. gondii ghosts were resuspended in an equal volume of 2%

thioglucopyranoside in 40 mM Tris pH 7.6 by pipeting the

mixture up and down 10 times (suspension kept on ice) followed by

a brief vortex. After centrifugation at 20,0006g in an Eppendorff

centrifuge for 20 min. at 4uC, the supernatant was saved as

membrane fraction (extraction 1). This extraction was repeated

twice with 300 ml of 1% thioglucopyranoside (to make extractions

2 and 3). These fractions were then frozen in liquid nitrogen and

stored at 280uC until used for protein analysis.
Cytoskeleton fraction. Insoluble material, which remained

after the membrane fraction extraction, was washed twice with

40 mM Tris pH 7.6. Following this washing step the material was

solubilized in 500 ml of urea lysis buffer (7.5 M Urea, 2.5 M

Thiourea, 40 mM Tris pH 7.6, 2.5% Octyl-b-glucoside, 6.25 mM

TCEP, 1.256 Proteinase inhibitor) followed by homogenization

on ice 10 times using a Potter homogenizer. The material was then

centrifuged at 8,000 rpm for 10 min at 4uC and the supernatant

was collected and saved. This extraction was repeated twice on the

remaining pellet using 300 ul of the urea lysis buffer and the

supernatants were pooled with the initial extraction to produce the

cytoskeleton fraction. This fraction was then frozen in liquid

nitrogen and stored at 280uC until used for protein analysis.

High throughput mass spectrometry
Nanospray LC-MS/MS was performed on a LTQ linear ion

trap mass spectrometer (LTQ, Thermo, San Jose, CA) interfaced

with a TriVersa NanoMate nanoelectrospray ion source (Advion

BioSciences, Ithaca, NY). An Ultimate Plus nano-HPLC system

with a Famous autosampler (Dionex Corporation, Sunnyvale,

CA), was coupled with the TriVersa NanoMate. Peptides were

loaded on a C18 m-PrecolumnTM Cartridge (5 mm, 100Å, 300 mm

i.d.9 5 mm) from the autosampler with a 25 ml sample loop at a

flow rate of 15 ml/min. After injection of sample, 20 mL, and

washing for 20 minutes, the precolumn was switched in line with

the analytical column, a C18 PepMap100, 3 mm, 100 Å, 75 mm

i.d. 9 150 mm (Dionex Corporation, Sunnyvale, CA). Mobile

phase B (80% acetonitrile/water+0.1% formic acid) was increased

from 2% to 55% over 70 minutes, held for 5 minutes, increased to

95% over 20 minutes and held at 95% B for 5 minutes. The flow

rate used was 250 nL/min and mobile phase A consisted of 5%

acetonitrile/water+0.1% formic acid. The four most intense ions

having a charge state between +2 to +4, determined from an initial

survey scan from 300–1800 m/z, were selected for zoom scan and

MS/MS. MS/MS was performed using an isolation width of 2 m/

z, normalized collision energy of 35%, a minimum signal intensity

of 1000 counts, and the dynamic exclusion option enabled. Once a

certain ion is selected twice for MS/MS in 30 sec, this ion is

excluded from being selected again for MS/MS during the next

period of 120 sec. Dta files were created from the raw LTQ mass

spectrometer LC-MS/MS data. The created dta files were then

merged using the merge script tool from Matrix Science (http://

www.matrixscience.com). The subsequent combined merge file

was used to search the database of compiled T. gondii proteins

using the following parameters with MASCOT [24] (in-house):

trypsin, 2 missed cleavages; variable modifications of carbamido-

methylation (Cys), deamidation (Asn and Gln) and oxidation

(Met); monoisotopic masses; peptide mass tolerance of 3.0 Da;

product ion mass tolerance of 0.6 Da. Peptides with a 95%

significance score were accepted only. Each identified protein

sequence was categorized according to the highest ion score of all

of it’s assigned peptides; 76% of the proteins had a high ion score

more than 60, while 24% of the proteins had a high ion score

between 30 and 60.

EST data analysis
The EST dataset was obtained by downloading the NCBI EST

‘‘others’’ database (ftp://ftp.ncbi.nih.gov/blast/db/). The FASTA

definition lines were searched and the sequences were selected for

the organism name ‘‘Toxoplasma gondii’’. A custom T. gondii EST

database was constructed for the resulting 129,736 sequences. A

TBLASTN (with an e-value requirement of 10210 and without low

complexity filtering) search was performed for each protein

sequence against the custom database of T. gondii EST sequences.

For each query sequence, the EST alignments were filtered to

include only the ESTs with a sequence identity of greater or equal

to 90% and an alignment length of 30 or more residues.

Supporting Information

Table S1 Sequence annotation (PFAM, Transmembrane do-

mains, Signal peptides) for sequence of each prediction type.

Found at: doi:10.1371/journal.pone.0003899.s001 (0.04 MB

DOC)
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