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Abstract

Background: The Rı́o Tinto (RT) is distinguished from other acid mine drainage systems by its natural and ancient origins.
Microbial life from all three domains flourishes in this ecosystem, but bacteria dominate metabolic processes that
perpetuate environmental extremes. While the patchy geochemistry of the RT likely influences the dynamics of bacterial
populations, demonstrating which environmental variables shape microbial diversity and unveiling the mechanisms
underlying observed patterns, remain major challenges in microbial ecology whose answers rely upon detailed assessments
of community structures coupled with fine-scale measurements of physico-chemical parameters.

Methodology/Principal Findings: By using high-throughput environmental tag sequencing we achieved saturation of
richness estimators for the first time in the RT. We found that environmental factors dictate the distribution of the most
abundant taxa in this system, but stochastic niche differentiation processes, such as mutation and dispersal, also contribute
to observed diversity patterns.

Conclusions/Significance: We predict that studies providing clues to the evolutionary and ecological processes underlying
microbial distributions will reconcile the ongoing debate between the Baas Becking vs. Hubbell community assembly
hypotheses.
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Introduction

Geological and geochemical studies show the Rı́o Tinto to be an

acidic river situated at the core of the largest Pyritic Belt on Earth

(Fig. 1) whose chemistry has been shaped by the metabolism of

chemolithotrophic microbes bioleaching its rich metallic ores for

the past 60 My [1]. These microbial activities produce sulfuric acid

resulting in a pH below 3 and high concentrations of heavy metals

very much like acid mine drainage systems but of natural and very

ancient origin. The RT has also attracted the interests of

Astrobiologists because its geochemical characteristics are relevant

to Martian hematite sites [1]. Research over the past 15 years

shows the river contains predominantly microscopic organisms

from the three domains of life. Bacteria outnumber archaea by at

least ten fold [2]. Eukaryotes are conspicuous and diverse [3] and

phototrophs and fungi comprise the largest biomass [4]. While the

patchy geochemistry of the RT likely influences the dynamics of

the most abundant bacterial populations [2,5], demonstrating how

environmental factors shape microbial community structure of

low, moderate and high abundance microbes remains a first order

question in microbial ecology research. Environmental tag

sequencing methods [6] are ideal for addressing this issue as they

allow for deeper sampling of the molecular populations of PCR

amplicons. These methods capitalize on the intrinsic phylogenetic

information contained in genetically hypervariable regions of the

16S ribosomal RNA gene (rDNA) to simultaneously provide

accurate assessments of the relative abundances of all microbial

community members and their taxonomic affinities (Text S1). We

applied Serial Analysis of Ribosomal Sequence Tags of the V6

hypervariable region (SARST-V6 [7]) to replicate samples from

three sites at three stations along the RT (Fig. 1). We coupled these

data with measurements of physico-chemical parameters to

explore how the environment shapes bacterial community

structure. In this study rather than describing the microbial

community of the RT, we concentrate on microbial (alpha and

beta) ecological diversity. We first aimed to demonstrate that in

spite of the dearth of saturation and replication in microbial

ecology studies so far, they are in fact essential to provide a

comprehensive view of natural microbial assemblages. Our second

aim was to cluster short tag sequences into ecologically
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differentiated populations to shed light on the evolutionary

ecological processes underlying microbial diversity patterns in

the RT.

Results and Discussion

Defining a criterion for clustering sequences in microbial
ecology

Clustering sequences into operational taxonomic units (OTUs)

is the first step in a molecular study exploring ecological diversity.

Microbiologists traditionally use a 97% similarity cut-off value to

form OTUs that delineate microbial species [8]. Cohan [9] and

Polz et al. [10] recommend an infraspecific taxonomic level to

define significant units in microbial ecology and advocate for an

evolutionary ecological criterion to identify distinct microbial

populations adapted to a given habitat (ecotypes). Recent bacterial

diversity studies identified the presence of microdiverse rDNA

clusters at the 99% similarity level denoting bacterial populations

that probably arose by selective sweeps followed by effectively

neutral diversification [11–13]. Furthermore, at least for Vibrio

spp., these clusters constituted individuals different at the genomic

level but whose divergence should be neutral (i.e. with no selective

advantage) because of the small spatial scale in which they

coexisted [14]. Through environmental sequencing of RT samples

we found a total of 1,212 unique ribosomal sequence tags (RSTs)

out of 10,529 SARST-V6 tags. RSTs have been deposited in

GenBank under accession numbers FJ005322-FJ006533. Most of

the microdiversity we observed involved sequences that cluster at

.98.5% similarity. The average tag length was 62 bp but the

aligned V6 tag regions spanned 142 bp so this represents a 2 bp

difference between aligned sequences. The number of clusters at

this cut-off was 50% of the maximum possible number of clusters

(Fig. 2). Clustering at a 3 bp difference (98%) only decreased the

number of clusters by 8.6% (Fig 2). Until the implementation of

more appropriate methods than similarity cut-off criteria for

defining ecotypes [9], clustering sequences at a 99% similarity for

rDNA is the best compromise to form cohesive neutral units of

diversity. Linking physicochemical parameters with the resulting

genotypic microclusters, however, is still necessary to corroborate

that they are differentiated populations that constitute ecologically

significant units or ecotypes [9,10] rather than interoperon

heterogeneity within one cell [15].

In-depth microbial community composition: the known,
the new and the rare

The majority of the 458 OTUs from this study matched

sequences previously found in anthropogenically impacted acidic

soils or streams but were not previously detected in the RT using

culture dependent and other culture independent methods to

study microbial diversity. A relatively small number of OTUs

dominated all sites (Fig. 3). This pattern is applicable in situations

where one or a few factors dominate the ecology of an assemblage

[16], as in the RT [2]. The most abundant OTUs previously

detected in the RT gave a 100% match to phylogenetic ribotypes

Figure 1. Sampling stations at Rio Tinto: geographic locations and main physico-chemical parameters. A map depicting the geographic
location of the Rı́o Tinto in southwestern Spain with insets of our three sampling stations: Anabel’s Garden (AG), Origin (OR) and Berrocal (BE).
Labeled on the photographs are the relative locations of the three sites sampled for each station. The inset table indicates the physico-chemical
parameters that best explained the microbial diversity observed in our study.
doi:10.1371/journal.pone.0003853.g001
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of Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans and other

relatively less abundant ribotypes (Fig. 3) found with the same

prevalence, at the same sites during the same time of year by

colleagues using DGGE and FISH methods [see Fig. 3 and 4 and

Table 5 in ref [2]. The equivalent sites are as follows (this study/

Gonzalez-Toril et al. [2]): (OR1/RT5; OR2/RT2; OR3/RT1;

AG/RT6; BE/RT9)]. We interpret this observation as evidence

that the same bacterial populations reoccur at certain geochem-

ically stable RT locations. We found Acidiphilium sp. related tags to

be in lower numbers than in the Gonzalez et al. study [2] and

attribute this difference to a mismatch in our SARST-V6 primer.

Nevertheless, because the bias is consistent across samples it should

not invalidate our down-stream ecological diversity analyses [17].

Taxa that had escaped detection in this river so far include the

second most common OTU in our dataset (1,654 tags), which

matches uncultured bacterial clones MPKCSC9 and TrefC11

(Fig. 3) with 100% similarity. These bacteria dominate macro-

scopic biofilms thriving in two acidic, metal-rich streams from

copper and pyrite mines of Wales and are described as novel

acidophilic autotrophic iron oxidizers [18] 99.9% similar to

uncultured bacterial clones TRA3-20 and Tui3-12 from acid mine

drainage areas in California and New Zealand, respectively. Our

OTU also matches these two clones at 100% similarity and has its

highest relative abundance at RT sites Anabel’s Garden AG1 (175

tags of 539 tags sequenced for this site) and AG3 (783 tags of 1679

tags sequenced), both with similar concentrations of As [19], Fe, S,

Zn and pH to the mines where the macroscopic biofilms dominate

[18]. Only a few abundant OTUs detected by SARST-V6 (Fig. 3)

exhibit low similarity to anything in the databases. In contrast, of

the total number of RSTs, 15% differ more than 10% from

anything in the databases, and all of them are found at relatively

low abundance. This result coincides with previous findings of a

‘‘rare biosphere’’ accompanying the most abundant taxa in

microbial communities [20]. Equally remarkable is that a large

proportion of less abundant members of the bacterial assemblages

in the RT have a 97% similarity to rRNA gene sequences

deposited in GenBank whose best match is a sequence of a

microbe from an acidic environment. Among these rarer members

are bacterial endosymbionts of acidophilic eukaryotes or bacteria

previously reported from digestive systems, as well as free-living

bacteria observed in metal impacted soils or acid mine drainages.

Measuring ecological diversity and evaluating the
importance of saturation and replicate sampling

In order to generate accurate estimates of diversity, our

sampling scheme consisted of a replicated sampling design and

large area of coverage of the stations [21]. We measured both

alpha and beta diversity. Alpha diversity provides assessments of

microbial richness in a particular natural environment. Compar-

isons of alpha diversity are univariate, two samples could have the

same species richness or evenness but not share any taxa. In

contrast, beta diversity measures (dis)similarity among samples

through the use of multivariate methods that compare samples based

on taxon composition and relative abundance. It is important to

note that taxonomic description is not required for assessment of

either of these measures.

Alpha diversity. Each method for estimating richness and

comparing alpha diversity between samples has advantages and

drawbacks [16,17,22]. Rarefaction, a measure of alpha diversity

that reflects sample coverage at a site, is a good comparative

method of observed microbial richness among samples at the same

sampling effort [16]. Statistical differences in rarefaction curves

among RT sample replicates from this study emphasize the

importance of replication when measuring ecological diversity. In

bacterial assemblages, most taxa are rare [23] and therefore

rarefaction curves continue to increase with sampling effort and

rarely reach an asymptote unless diversity is very low or sampling

is very thorough. In contrast to rarefaction, coverage-based non-

Figure 2. Clusterer output: Number of clusters observed at different cut-off values. Total number of clusters observed as a function of the
number of base pair differences between aligned sequences within each cluster. The arrow points to where most microdiversity concentrates (see
text for details).
doi:10.1371/journal.pone.0003853.g002
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parametric richness estimators estimate overall species richness and

compare alpha diversity of communities provided they reach an

asymptote [16]. In this study, non-parametric estimators Chao1

and ACE ranged between 152 and 461 estimated OTUs for all the

sites considered (Table 1). Chao1 values leveled off in more

samples than ACE and it reached saturation in nearly all sites and

in at least one sample per site (Table 1). Representation of Chao1

against sampling effort showed that alpha diversity is not

significantly different among sites (P,0.05) at the same sampling

effort (Fig. 4). This is effectively true for all sites except AG1 and

AG3 because they did not reach saturation (Table 1). The highest

OTU richness is found in the less extreme sites, a result that

coincides with DGGE analysis [2]. The estimated overall number

of OTUs is low in the RT sites compared to other environments

with less extreme characteristics like soils or sediments where non-

parametric estimators might not perform well (cf. [17]). When

dealing with highly diverse samples Hong et al. have suggested a

new set of statistical approaches to calculate microbial richness

from parametric models [22].

Beta diversity. To evaluate relationships among samples

based on shared OTU relative abundance, we present results using

the Morisita-Horn pairwise similarity coefficient. This index is

widely used because it is less influenced by species richness and

sample size than other (dis)similarity measures of quantitative data

[16] and showed the best agreement between all methods

employed to compare beta diversity in RT samples (see

Materials & Methods). Non-metric Multi-Dimensional Scaling

(MDS) ordination in conjunction with clustering analysis with the

Unweighted Pair Group Method with Arithmetic mean (UPGMA)

and ANalysis Of SIMilarities (ANOSIM) indicated a high

similarity between Berrocal (BE) and AG2 samples (Fig. 5). Two

other groups emerged from these analyses: one group included

AG1 and AG3 samples and the other group Origin (OR) samples

that further split at 85% similarity. Because assemblages vary in

composition over space and time for stochastic reasons, sampling

replication as well as saturation of alpha diversity help to capture

the randomness of OTU recovery in microbial communities

providing a more accurate estimate of beta diversity. For instance,

OR2 samples were spread out in the 2-D plot (Fig. 5). This

indicated poor replication in OTU composition of these samples,

which is in agreement with the high OR2 site alpha diversity

(Fig. 4). Only through replication do we obtain a better

representation of the metapopulation at this site (Fig. 5 inset and

see next section). Furthermore, samples that displayed unsaturated

non-parametric alpha richness (Fig. 4) did not plot in the same

position as when pooled by site (compare MDS plot of Fig. 5 with

Fig. 5 inset) nor when comparing their distribution using

environmental variables (see next section).

Figure 3. Relative abundances of dominant OTUs at Rı́o Tinto study sites. Histogram of relative abundances of the dominant OTUs (those
with more than 40 RSTs) of RT studied sites. (Acidithiobacillus sp. SS5 = clone SS5 AY960978.1; SK5 = clone SK5 AY960977.1; A. ferroxidans B9 = strain
B9 AJ879997.1; MPKCSC9 = clone MPKCSC9 AY766004.1; L. = Leptospirillum; P3a = strain P3a AF356837.1; Parys = strain Parys AF356838.1; Sy = strain Sy
AF356839.1; Thermicanus aegyptius = strain ET-5b AJ242495.1; PK46 = AY765995.1; Uncultured TRA5-3/MeBr10 = Uncultured Eubacterium clone TRA5-
3 AF047645.1 or clone MeBr10 AY439196.1; AS6 = AF543496.1; F. acidiphilium = Ferromicrobium acidiphilium AF251436.1). For site names see Fig. 1.
doi:10.1371/journal.pone.0003853.g003
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Linking community attributes to environmental variables
Amils et al. [24] proposed a geomicrobiological model for the

RT controlled by iron and based on the geochemistry and the

metabolism of the most abundant bacteria and archaea. The

major non-photosynthetic primary producers A. ferrooxidans and L.

ferrooxidans obtain their energy from pyrite (FeS2) and the oxidized

metabolites can in turn be mineralized by heterotrophic microbes

like Acidiphilium spp., Ferromicrobium or sulfate reducers. Ferric iron

buffers the pH at or below pH 3. In our study, of the 22

environmental parameters measured, seven best explained the

variation in the data (As, Fe, Mn, Sr, Zn, pH, and redox) (see

Material & Methods). We used these variables to perform

Canonical Correspondence Analysis (CCA) using OTUs at a

99% similarity cut-off with both samples and sites. The CCA plot

for samples, sites or OTUs with respect to environmental variables

showed a strong correlation of the canonical axes with the

variables chosen (Fig. 6). Monte Carlo permutation tests for the

first and all axes for samples and sites were highly significant

(P = 0.002) indicating that these environmental parameters are

important in explaining community diversity. For instance, AG2 is

more similar in geochemistry and relative abundance of OTUs to

BE (,30 km away) than to AG1 and AG3, only meters away

(Fig. 1). OTUs that plotted near BE and AG2 sites may therefore

be better adapted to relatively higher concentrations of Zn and

lower concentrations of As than OTUs with a higher relative

abundance at other sites (Fig. 1 and 5). Furthermore, we observed

that several OTUs had exactly the same match in GenBank and

occupied the same position in the ordination plot (Fig. 6). We infer

they are members of the same subspecific unit or ecotype that is

better adapted to particular environmental characteristics.

Implications for microbial community dynamics and
biogeography

Stochastic vs. deterministic community assembly hypotheses are

being tested in parallel to explain the distributional patterns of

organisms in natural environments [25,26]. In microbiology, the

debate over the causes of niche apportionment started early in the

nineteenth century. Baas Becking pointed towards a deterministic

composition of the microbial communities with the hypothesis of

‘‘everything is everywhere, but, the environment selects’’ to

explain his recurring observation of resuscitating microbial forms

in enrichment cultures. This idea has generated much debate in

recent years [27]. Hubbell’s neutral theory of biodiversity and

biogeography [28] examines the consequences of assuming a per

capita ecological equivalence of trophically similar individuals of

all sympatric species in a given community when shaped by

ecological drift, random migration and random speciation. He

concludes that these mechanisms decouple niche differentiation

from control of species richness and relative species abundance in

ecological communities. Sloan et al. [26] corroborate that

immigration and chance are important processes shaping

microbial communities demonstrating that stochastic neutral

community models can describe the assemblage patterns of

microorganisms. If we equate immigration with dispersal in the

microbial world, dispersal and mutation are important processes

driving bacterial population diversity patterns in the RT.

Regarding mutation, we found that the most abundant OTUs

are generally composed of a unique RST with the highest numbers

of tags characterized by exact matches to sequences in GenBank

(100% if it is a known species), and a few other unique RSTs with

lower numbers of tags and correspondingly lower matches to

sequences in GenBank. This pattern of within-OTU microdiver-

sity cannot be explained by standard Taq error rates [12] alone

and is best explained by high mutation rates in bacterial

populations not yet being purged by selection. Genetic variation

from mutation is an important process that might play a significant

role in the population dynamics of asexual organisms [29–31]. In

the long term, the ecosystem as a whole benefits from high

biodiversity levels as it assures a good response to environmental

variation. Yachi and Loreau [32] have referred to this as the

Figure 4. Alpha diversity at Rı́o Tinto study sites. Non-parametric richness estimator Chao1 variation with sampling effort for RT sites.
Shadowed areas are 95% confidence intervals of the highest and the lowest richness samples showing overlap of all sites in their estimated OTU
richness for the same sampling effort. For site names see Fig 1.
doi:10.1371/journal.pone.0003853.g004
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‘‘insurance effect’’. With respect to dispersal, Hubbell’s neutral

model predicts species abundances to follow a log series

distribution when immigration is unlimited if point mutation is

the dominant form of speciation [28]; all RT samples from this

study follow this model of species abundance when singletons are

eliminated (p.0.05). Departure from the log series distribution at

larger sampling efforts in RT samples might be explained by the

high dispersal rate typical of bacteria (cf. [33]), which would make

the tail of less abundant OTUs longer than expected for migration

rates typical of macroorganisms. These less abundant taxa

constitute allochthonous microbiota that arrive by dispersal and

if they survive in RT extreme conditions they do so by competing

for the leftovers from the dominant ecotypes. Our data agree with

bacterial assemblages composed of ‘‘core’’ taxa and a ‘‘seed bank’’

[23]. The first are the most abundant and active organisms using

relevant chemical elements as electron donors or acceptors and

therefore adapted to fine changes in those elements in the system.

The second are the ‘‘occasional taxa’’ derived from mutation and

migration that might constitute a reservoir of diversity to respond

to environmental changes (cf. [34]). For instance, the high

abundance of the OTU that matches uncultured bacterial clones

MPKCSC9 and TrefC11 in AG3 and AG1 sites (see above)

contrasts with its low prevalence in AG2 (45 tags of 989 tags

sequenced).

On the other hand, the presence of endemic ecotypes that

correlate with particular environmental factors seem to contradict

Baas Becking’s ideas on global bacterial distribution [35,36]. Our

findings show that these ideas are not contradictory. A large

number of OTUs match at 100% similarity those in geograph-

ically distant environments with similar physico-chemical charac-

teristics (see above). Another interesting case is an OTU that had a

100% match to a sequence from a symbiont originally described

from an amoeba in Iron Mountain (California) Candidatus captivus

acidiprotistae [37]. This suggests a global distribution of its

eukaryotic host via adaptation to low pH, and high Fe, As and

Sr and Mn environments. Because we are dealing with a highly

variable region of the small-subunit rRNA gene confirmed by the

high mutation rate within each OTU, the presence of these highly

similar sequences across the globe can only be explained if they are

part of the same genetic pool. Coincidentally, the dominance of

best competitors in a given environment is predicted by simulation

when dispersal is not limited [38]. Thus, our results favor a

scenario in which high immigration rates allow the global

dispersion of ecotypes better adapted to certain environmental

conditions, which prevail over less adapted units that emerge

locally. Pommier et al. (2007) and Ramette et al. (2007) have

suggested a similar pattern of global deterministic ecotype

adaptation [39,40]. Whether we consider this cosmopolitanism

of ecotypes or local adaptation at a global scale is a question of

lexical taste. Dispersal rather than niche differentiation is therefore

the process eventually responsible for the observed deterministic

pattern of most abundant members of the communities under this

hypothesis reconciling neutral versus deterministic models of

microbial community assemblage.

Perspectives
Seasonal sampling that integrates bacterial, archaeal and

eukaryal components of the microbial community is the necessary

next step to understanding whether interaction of all trophic levels

in the RT confirm or reject our scenario of the global distribution

of adapted ecotypes.

Materials and Methods

Sampling sites, sample collection and DNA extraction
Our study included three stations in the RT that have distinct

physico-chemical parameters and biology [2,3,41]; 1) the river’s

Origin (OR), 2) Anabel’s Garden (AG) and 3) Berrocal (BE) (Fig. 1).

At the OR station (N 37u 43.3296W 6u 33.069) we sampled three

sites a few meters apart including OR3 that has some of the most

extreme conditions along the river. The AG station (N 37u
43.4996W 6u 33.629) contains abundant and distinct biofilms. AG

sampling sites are in a small stream and in a small ephemeral pool

fed by seeps along the stream bank. The geochemical character-

istics change over a relatively small spatial scale at AG. Higher

water flow at BE station (N 37u35.5896W 6u 33.049) results in a

well-mixed water column resulting in our most homogenous

station. In October 2002, we sampled surface water in triplicate

Table 1. Alpha diversity measurements at Rı́o Tinto samples
and sites.

Samples
Number
of tags

Number
of OTUs ACE

Chao1
(95% CIs)

AG1.2 485 77 210* 197*(133–326)

AG1.3 62 18 38 80(29–394)

AG2.1 291 44 149 136*(82–285)

AG2.2 116 15 45 35(22–93)

AG2.3 719 43 153 170*(89–419)

AG3.1 704 63 140 159*(105–294)

AG3.2 478 76 205* 220*(145–382)

AG3.3 624 101 274 251*(181–388)

BE1.1 543 87 332* 354*(207–688)

BE1.2 308 37 86 80*(55–152)

BE1.3 59 17 29 43*(23–141)

BE2.1 719 52 196* 148*(91–294)

BE2.3 462 68 333* 252*(151–486)

BE3.1 376 53 153 152*(95–298)

BE3.3 760 43 132 112*(70–232)

OR1.1 672 103 373 356(231–610)

OR1.2 334 57 115* 119(91–177)

OR2.1 551 72 235* 201*(135–341)

OR2.2 344 40 96 160(80–438)

OR2.3 451 76 219 202(138–345)

OR3.1 776 90 383 308(200–530)

OR3.3 695 51 123* 116*(86–175)

Sites

AG1 547 83 231 211(141–363)

AG2 1126 81 399 268*(164–500)

AG3 1806 167 401 432(315–642)

BE1 879 112 461* 312*(216–496)

BE2 910 99 275* 277*(186–462)

BE3 1136 78 217* 152*(112–237)

OR1 1006 129 370* 310*(227–462)

OR2 1246 130 346 328*(234–505)

OR3 1471 110 222* 254*(184–391)

Number of tags, number of OTUs, and ACE and Chao1 non-parametric richness
estimators arranged for each sample (top) and for pooled samples by site
(bottom). The asterisk indicates estimators that plateau at a given number of
OTUs.
doi:10.1371/journal.pone.0003853.t001
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from three different sites at each of the three stations. We

designated our samples using the following naming convention:

Station abbreviation, site number, sample replicate number e.g.

AG1.2 is the second replicate sample from site 1 at AG station. We

rinsed 4 L plastic buckets three times with water from each site

immediately before each replicate sample collection. We filtered

1–2 L from each sample by hand on site through 0.22 mm

Sterivex filters (Millipore, Billerica, MA USA) and post-washed

filters with 2 mL sterile acid water (pH 1.8).

We added Cell Lysis Solution from the PuregeneH DNA

extraction kit (Gentra Systems, Inc, Minneapolis, MI USA)

directly to the sterivex filter using a 3cc. syringe, sealed the filter,

and placed it into a liquid nitrogen dry shipper (Model SC14/2V,

Custom BioGenic Systems, Shelby Township, MI). We extracted

total DNA within one week of collection using the Puregene

Bacteria DNA purification procedure with the following modifi-

cations. We added lysozyme (67 mL of 50 mg/mL solution) and

proteinase K (10 mL at 20 mg/mL) consecutively directly to the

sterivex filters and incubated these enzymes with agitation as

indicated in the protocol. We then transferred incubated samples

to three 2-mL microfuge tubes to proceed with the protein

precipitation step. Nucleic acid precipitation occurred in 1 volume

of isopropanol. Finally we resuspended DNA pellets in 30 mL

Puregene� DNA Hydration Solution per sample and stored them

at 220uC until further processing.

Physicochemical measurements
For each sample both filtered and unfiltered 15 mL water

aliquots were analyzed using Total Reflection X-ray Fluorescence

(TXRF) at the Universidad Autónoma de Madrid (UAM Scientific

Service, Spain) to determine the concentration of 22 chemical

elements in the water samples examined. Given filtered vs.

unfiltered geochemistries were not significantly different, we report

results with unfiltered samples.

We measured redox potential and pH (using a Crison 506 pH/

Eh meter) and conductivity (using a Orion-122 conductivity-

meter) at the time of water collection from 15 mL aliquots.

Oxygen concentration and water temperature were measured

using an Orion-810 oxymeter in situ in the river at the time of

water collection. These two parameters varied with time of day as

the sun rose and heated the river so they were not included in our

analyses.

SARST-V6 amplification, sequencing, sequence analysis
and Operational Taxonomic Unit (OTU) determination

SARST-V6 produces sequences of large concatemers of PCR-

amplified ribosomal sequence tags (RSTs) from homologous V6

hypervariable regions. We performed amplification and purifica-

tion of the V6 region of bacteria following [7] except that we used

AccuprimeTM Supermix (Invitrogen Inc., Carlsbad CA, USA) at a

later phase of this project. PCR products were then ligated into

concatemers, cloned and sequenced as previously described. A

single sequence product contains information of multiple bacteria

present in the DNA sample in the form of RSTs. The pipeline for

SARST-V6 sequence analysis [42] parses concatemers into single

RSTs, purges artifacts and pools RSTs into unique tag sequences.

A combination of BLAST against the GenBank database (http://

www.ncbi.nlm.nih.gov/GeneBank) and RDPQuery [43] against

the RDPII database [44] guided taxonomic assignments of tags. A

quality control step served to remove tags that hit non-ribosomal

Figure 5. Beta diversity among Rı́o Tinto samples and sites. Non-Metric Multi-dimensional Scaling plot of Morisita-Horn beta diversity indices
among the different RT samples and sites (inset). Superimposed circles represent UPGMA clusters of samples (or sites) at similarity values of 50, 70
and 85%. Underlined samples represent samples wherein ACE and Chao1 richness estimators do not level-off (Table 1). For sample names see
Materials and Methods.
doi:10.1371/journal.pone.0003853.g005
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sequences, phage, virus, plasmid, chloroplast or vector sequences

in GenBank. We then imported unique RSTs into ARB [45] along

with the sequences of top GenBank and RDPII matches not

already in ARB to generate a multiple sequence alignment used to

pare-down tags that violated secondary structure in the V6 stem.

The Clusterer program version 1.1.20060314 [46] served to group

aligned sequences into OTUs. Because average and single linkage

clustering algorithms are considered to be less conservative and

more dependent on sampling intensity [47], we used the complete

linkage algorithm with default parameters, except that we

collapsed subsequent gaps to avoid overestimating distances from

the rapidly diverging V6 region. We employed customized Perl

scripts to construct abundance matrices accounting for the number

of unique tag sequences per sample for each particular OTU and

for each BLAST top hit GenBank gi number. Names of OTUs

follow the first BLAST hit that match the most abundant RST of

the cluster, regardless of the OTU’s identity to other hits.

Ecological diversity measurements
Alpha or inventory diversity. We first compared diversity

between samples by representing relative abundances of OTUs in

a rank/abundance plot. We then tested whether the data fit one of

four statistical models of species abundance distributions: the

geometric series, log normal, log series, or broken stick models. We

transformed total abundance data into 0/1 matrices as input into

the program EstimateS [48] to compute rarefaction curves, non-

parametric richness estimators and several indices of alpha

diversity.

Beta or differentiation diversity. We also used EstimateS

to calculate Morisita-Horn, and the newly developed Chao-

Figure 6. CCA biplot of the SARST-V6 dataset with relevant environmental variables at Rı́o Tinto samples and sites. Superimposed
canonical correspondence analysis (CCA) biplots of RT samples and SARST-V6 OTUs at the 99% similarity cut-off value displaying 68% of the variance
of the OTUs with respect to the environmental variables. The inset represents the CCA biplot when pooling samples by site. The canonical
eigenvalues for axes 1–4 of the sample analysis are 0.367, 0.272, 0.112, and 0.062 respectively. Environmental variables are indicated by arrows that
point in the direction of increasing values of each variable. The coordinates of the arrowheads indicate the degree of correlation with the axes.
Samples and sites are represented by black circles. For sample names see Materials and Methods. OTUs with total abundances higher than 10 RSTs
are represented by grey triangles. To avoid overcrowding of points only one OTU per strain is plotted. The relative frequency of OTUs in samples can
be determined using the biplot rule. To do this, drop a perpendicular from each sample onto a line through the OTU and the origin. Samples
projecting on the line in the direction towards the OTU and beyond it are predicted to have a higher relative frequency of that OTU than samples
projecting onto the line in the opposite direction. Interpretation of environmental arrows with respect to sites, OTUs and other environmental
variables follows the same rule. OTU numbers correspond to: (1, 12, 14, 36) = Acidithiobacillus sp. SS5; (2, 11) = Uncultured bacterial clone MPKCSC9;
(3) = Acidithiobacillus sp. SK5; (4) = Leptospirillum ferrooxidans P3a; (5, 26) = L. ferrooxidans Parys; (6) = Acidithiobacillus sp. B9; (7) = L. ferrooxidans Sy;
(8) = Thermicanus aegyptius; (9) = Acidiphilium sp. Pk46; (10) = Eubacterium clones TRA5-3 and MeBr10; (13) = Uncultured bacterium BA18; (15) = F.
acidiphilium; (16) = Bacterium clone 015C-C11; (17) = Actinomycetales clone TM167; (18) = Leptospirillum sp. strain DSM 2391; (19) = Thermicanus
aegyptius; (20) = Bacterium Ellin5017; (21) = Pseudomonas sp. B35; (22) = Nostoc sp. PCC 9231; (23) = Acidiphilium sp. CCP3; (24) = Uncultured bacterium
clone RCP2-12; (25) = Uncultured actinobacterium clone BPM2_A01; (27) = Acidithiobacillus sp. SK5; (28) = Acidobacteria clone BPC3_E10;
(29) = Uncultured bacterium clone 300A-B12; (30) = Bacterium Ellin5114; (31) = Corynebacterium sp. S18-03; (32) = Uncultured bacterium clone
RCP1-34; (33) = Uncultured bacterium clone RH1-L2; (34) = Uncultured bacterium clone RH1-i3; (35) = Uncultured bacterium clone RCP2-16;
(37) = Uncultured actinobacterium clone BPM3_G08.
doi:10.1371/journal.pone.0003853.g006
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Jaccard and Chao-Sørensen abundance based beta similarity

estimators [16,49]. We further calculated Bray-Curtis similarities

as similarity coefficients normalized by sample size using the

PRIMER-E Ltd [50] software package. This software was used to

perform non-metric multi-dimensional scaling (MDS) in

conjunction with clustering analysis with the Unweighted Pair

Group Method with Arithmetic mean (UPGMA). MDS was

performed with 100 restarts at different random positions of

samples to avoid local minima. To test the null hypothesis that

there were no differences in community composition among sites

we used ANalysis Of SIMilarities (ANOSIM) with the software

PRIMER-E. ANOSIM is a simple non-parametric test better than

the classical multivariate analysis of variance (MANOVA) [51] for

this purpose [50]. It is based on the calculation of the R statistic

over the rank similarities between samples, whose values can lie

between 21 and 1. ANOSIM uses a Mantel permutation

procedure combined with a randomization approach to generate

significance levels (Monte Carlo tests).

We can consider our samples as real (independent) replicates of

the studied sites because repetitive sampling was done indepen-

dently from one sample to the next and the biological system

under consideration is dynamic (the river water flows so the actual

sampling space will never be the same from one moment to the

next). This assumption not only validates ANOSIM analysis [50]

but also allowed us to perform CCA with samples separately as

replicates of the particular physico-chemical characteristics of a

site to determine how samples behaved independently, and also

because a larger number of samples allows for testing a larger

number of environmental variables in constrained ordination.

Although this is not always the case and careful consideration to

this matter is necessary in microbial studies, this is the maximum

level of replication that can be achieved when trying to explain

beta diversity through environmental variables in natural

environments (cf. [16]).

Using environmental data to explain diversity data:
Canonical Correspondence Analysis (CCA)

We used CCA as a constrained ordination direct gradient

analysis method to relate RSTs grouped into OTUs to the

environmental variables measured. We used CANOCO 4.5 [52]

to perform CCA with scaling focused on inter-sample distances for

the sample vs. environmental variable biplot and inter-species

distances for the species vs. environmental variable biplot. These

biplots were then superimposed. When performing constrained

ordination it is important to limit the number of explanatory

(environmental) variables to avoid exceeding the number of

samples, otherwise the analysis becomes unconstrained and no

different from indirect gradient analysis techniques such as DCA

[52]. To perform CCA we used a combination of CANOCO’s

manual forward selection feature, Pearson correlation, and

knowledge of the ecology of the river to select the environmental

variables that could serve as proxies of others. To statistically

evaluate the significance of the first canonical axis and of all

canonical axes together, we used the Monte Carlo permutation full

model test (whenever possible) or reduced model test with 199

unrestricted permutations. The program CANODRAW within

the CANOCO package helped to visualize the resulting biplots.

Supporting Information

Text S1 Environmental tag sequencing methods facilitate

comprehensive microbial ecology and biogeography studies.

Found at: doi:10.1371/journal.pone.0003853.s001 (0.05 MB

DOC)
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