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Abstract

Helicobacter pylori colonizes the gastric mucosa of half of the human population, causing gastritis, ulcers, and cancer. H. pylori
is naturally competent for transformation by exogenous DNA, and recombination during mixed infections of one stomach
with multiple H. pylori strains generates extensive allelic diversity. We developed an in vitro transformation protocol to study
genomic imports after natural transformation of H. pylori. The mean length of imported fragments was dependent on the
combination of donor and recipient strain and varied between 1294 bp and 3853 bp. In about 10% of recombinant clones, the
imported fragments of donor DNA were interrupted by short interspersed sequences of the recipient (ISR) with a mean length
of 82 bp. 18 candidate genes were inactivated in order to identify genes involved in the control of import length and
generation of ISR. Inactivation of the antimutator glycosylase MutY increased the length of imports, but did not have a
significant effect on ISR frequency. Overexpression of mutY strongly increased the frequency of ISR, indicating that MutY, while
not indispensable for ISR formation, is part of at least one ISR-generating pathway. The formation of ISR in H. pylori increases
allelic diversity, and contributes to the uniquely low linkage disequilibrium characteristic of this pathogen.

Citation: Kulick S, Moccia C, Didelot X, Falush D, Kraft C et al. (2008) Mosaic DNA Imports with Interspersions of Recipient Sequence after Natural Transformation
of Helicobacter pylori. PLoS ONE 3(11): e3797. doi:10.1371/journal.pone.0003797

Editor: Niyaz Ahmed, Centre for DNA Fingerprinting and Diagnostics, India

Received October 23, 2008; Accepted November 4, 2008; Published November 24, 2008

Copyright: � 2008 Kulick et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by funding under the Sixth Research Framework Programme of the European Union, project INCA (LSHC-CT-2005-018704).
S.K. received a Ph.D. stipend from Research Training Group GRK745 funded by the German Research Foundation (DFG). C.M. received a Ph.D. stipend from the
German Academic Exchange Service (DAAD) and the Wilhelm Hirte Foundation.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: suerbaum.sebastian@mh-hannover.de

¤ Current address: Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America

. These authors contributed equally to this work.

Introduction

Helicobacter pylori infects an estimated 50% of the world

population, and can result in chronic gastritis, gastric or duodenal

ulcers, gastric cancer, and MALT lymphoma [1]. Among the most

striking characteristics of H. pylori are its amazing allelic diversity

and variability. Not only do almost all infected persons harbor

their own unique strain(s), but H. pylori can undergo genetic

change during chronic colonization. Such change is driven by the

combination of frequent recombination between strains that

simultaneously colonize one stomach, and an elevated mutation

rate that is thought to be at least partly due to the lack of a

MutHLS mismatch repair pathway (H. pylori possesses a MutS

homolog, which, however, is not involved in mismatch repair [2],

for reviews, see [3,4]).

H. pylori is naturally competent, and takes up exogenous DNA

through an unusual transport system related to type IV secretion

systems [5,6]. Population genetic analysis of H. pylori nucleotide

sequences has provided strong evidence that recombination is far

more common in H. pylori than in other bacteria [7,8]. More direct

information about the effects of recombination on H. pylori comes

from studies of sequential H. pylori isolates, cultured from biopsies

taken from the same patient at time intervals of several months to

years [9]. Numerous recombination events, many of them

spanning only a few hundred base pairs, were detected when 10

gene fragments were sequenced for 24 pairs of such sequential

isolates. Bayesian analysis revealed the most likely combination of

recombination rate, mutation rate, and length of imported

fragments that would generate the dataset. Strikingly, H. pylori

cells that undergo recombination import unusually short pieces of

DNA into their genomes (estimated mean of 417 bp), in contrast to

other bacteria, where known lengths range from 2 kb (pneumo-

cocci, ref. [10]) to over 10 kb (E. coli, Bacillus subtilis, refs. [11,12]).

However, despite ample evidence of the importance of recombi-

nation to the population structure of H. pylori [7,13,14], few studies

have addressed basic questions of the recombination process. We

have developed an in vitro transformation protocol that permits to

study import events after natural transformation and to assess the

role of candidate genes in determining import frequency and

length. The data show that import of short fragments of DNA into

the chromosome is an intrinsic property of the H. pylori DNA

recombination/repair machinery. Imports can be interrupted by

interspersed sequences of the recipient (ISR) of varying length

which can accelerate allelic diversification. Overexpression of the
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DNA glycosylase MutY increased the frequency of ISR, suggesting

that MutY activity is involved in at least one pathway leading to

the formation of ISR.

Results

Short sequence imports after natural transformation of H.
pylori

In order to study the characteristics of import events after natural

transformation of H. pylori, we transformed Rif sensitive H. pylori

strains 26695, N6, or J99 with genomic DNA purified from Rif

resistant H. pylori donor strains, J99-R3, 26695-R1, and N6-R1, and

selected Rif resistant clones from these transformation experiments.

In a parallel experiment without addition of DNA, the frequency of

spontaneous mutations to Rif resistance was determined (Fig. 1A).

The spontaneous mutation frequencies were 1.161026 (26695),

1.661026 (J99), and 4.661027 (N6), consistent with the results of

earlier studies [15,16]. Addition of DNA from a Rif resistant donor

strain to liquid cultures increased the frequency of Rif resistant clones

by a factor of 22–199 depending on the recipient/donor

combination, due to natural transformation (Table S4).

Rif resistant clones were characterized by nucleotide sequence

analysis of a 1663 bp fragment of rpoB that included the positions

conferring Rif resistance in the donors (Fig. 1B). The rpoB

fragments of the three wild type strains differed at 3.7–5.5% of

nucleotides. Due to this high degree of sequence divergence, even

small imports created a mosaic sequence, and in many cases, both

start and end point of DNA import events could be mapped with

high accuracy by comparing the mosaic recombinant sequence

with both donor and recipient sequences (Fig. 2). In other cases,

the import extended beyond the sequenced fragment, providing

only a minimum bound for the length of the import. We therefore

applied a Bayesian model to the dataset in order to estimate the

mean length of imports. Our estimates varied between 1294 bp

(J99/26695-R1) and 3853 bp (N6/J99-R3), and the differences

observed between some recipient/donor combinations were

statistically significant (Table 1). The length of import events was

thus longer than previously observed in sequential patient isolates

(417 bp, ref. [9]), but still shorter than values reported for

transformation in most other bacterial species.

Interspersed sequences of the recipient (ISR) within
imports

When the rpoB sequences of Rif resistant transformants were

compared with those of corresponding donor and recipient, we

found that for ,10% of the recombinant clones, the stretch of

Figure 1. Schematic of the H. pylori in vitro transformation system used to study import events after natural transformation. (A) In the
transformation experiment, H. pylori recipient strains were incubated with genomic DNA of a Rif resistant H. pylori donor strain. Bacteria were spread
on selective plates and counted to determine the frequencies of resistant clones (transformants plus spontaneous mutants). Mutation frequencies
were determined by plating similarly treated bacteria without addition of DNA. (B) To calculate the DNA import lengths, a 1663 bp long fragment
(blue) of rpoB including the Rif resistant mediating point mutation of the donor strain was sequenced and compared to the sequences of the
recipient and the donor (here: 26695 [blue] and J99-R3 [red]). The rpoB alleles of recipient and donor differ by 3.7–5.5% of nucleotides, depending on
the strain combination used. Sequence comparisons of the recombinant sequence with both donor and recipient rpoB sequence permit to determine
approximate starting or/and end points of DNA imports.
doi:10.1371/journal.pone.0003797.g001
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integrated DNA from the Rif resistant donor was interrupted by

one or multiple short fragments where the sequence was identical

to that of the recipient. These interruptions of the imported

fragment were termed ‘interspersed sequences of the recipient’

(ISR, Fig. 2). Some ISR included only a single polymorphic

nucleotide, while others were up to 593 bp long, including up to 21

recipient-specific nucleotides. ISR could be observed in 8 out of 95

clones with DNA import in the recipient/donor combination

26695/J99-R3, 3 out of 26 in 26695/N6-R1, 4 out of 32 in J99/

26695-R1, 5 out of 25 in N6/26695-R1, and 8 out of 80 clones in

N6/J99-R3 (Table 1). The estimated mean length of ISR for the

wild type strains varied between 38 and 121 bp (Table 1 and S7).

However, there was no significant difference of ISR lengths

between the analyzed recipient/donor combinations.

Short import length and ISR do not depend on DNA
uptake via the ComB system

We hypothesized that the short length of imported fragments

and/or the generation of ISR might be a consequence of the passage

of exogenous DNA via the H. pylori-specific ComB DNA uptake

system. To test this hypothesis, a comB10 mutant of H. pylori 26695

was constructed. After verification that this strain was unable to take

up DNA by natural transformation, electroporation was used to

introduce J99-R3 DNA into the comB10 mutant strain. 25 Rif

resistant clones with DNA import were generated by this approach.

The mean length of imports was not significantly different from the

wild type, and 8 clones contained ISR, indicating that DNA transfer

through the ComB system was not responsible for either the short

length of imports, or the formation of ISR (Table 2). The frequency

of ISR (8/25) was significantly higher in clones obtained by

electroporation of the comB10 mutant than in clones isolated after

natural transformation of 26695 wild type (8/95; Table 2).

Search for genes determining import length and ISR
formation

The results from our in vitro transformation experiments

suggested that importing short pieces of donor DNA into the

chromosome was an inherent property of the H. pylori DNA

recombination or DNA repair machinery. In order to identify

genes involved in determining import length and ISR formation,

we selected 18 genes with predicted roles in DNA repair or

recombination (magIII, mfd, mutS, mutY, nth, nucT, recA, recB, recG,

recJ, recN, recR, ruvABC, ung, xseA, and xth) and inactivated these

genes in H. pylori 26695 by allelic disruption. Subsequently, all

mutant strains were individually transformed with DNA from

strain J99-R3. Mutation and recombination frequencies were

measured, and the length of imported fragments and the

frequency of ISR were determined by sequence analysis of rpoB

in Rif resistant clones. Inactivation of mutY, nucT, nth, and ung

significantly increased the rate of spontaneous mutations to Rif

resistance, while disruption of recA, recB, ruvA, ruvB, and ruvC had

the opposite effect. Inactivation of recA, recB, recN, ruvA, ruvB, and

ruvC significantly reduced the number of recombinant clones,

Figure 2. Import events after transformation of recipient strain
26695 with DNA of Rif resistant strain J99-R3. Each row
represents a 1663 bp partial rpoB sequence. The blue row on top
represents the sequence of the recipient strain 26695, and the red row
at the bottom that of the donor strain J99-R3. Vertical yellow lines
represent the positions of polymorphic sites, the green line depicts the
position of the point mutation that is responsible for Rif resistance in
J99-R3. Numbers below the panel: position relative to the Rif resistance
point mutation, negative values indicate upstream nucleotides. The fifty
rows between 26695 and J99-R3 depict the sequences of 50 randomly
selected clones out of 95 recombinant clones analyzed. Any fragment
surrounded by two sites identical to the donor is shown in red, any
fragment surrounded by two sites identical to the recipient is shown in
blue, and the remainder of the sequence is in white. Consequently,
each sequence is shown as a mosaic of colors, where blue indicates
DNA from the recipient, red DNA from the donor, and white DNA of
unresolved origin. ISR are surrounded by circles. Note that ISR
containing only one recipient-specific polymorphism will be represent-
ed as a white box separated by a vertical line indicating the
polymorphism.
doi:10.1371/journal.pone.0003797.g002

Table 1. Maximum likelihood estimation (MLE) of the mean length of donor DNA imports in the rpoB gene, number of clones with
ISR in the imported DNA fragments and MLE of ISR length of H. pylori wild type strains.

Recipient Donor Num clones1
MLE of import
length (bp) Bayes Factor2 Clones with ISR Bayes Factor2

MLE of ISR
(bp) Bayes Factor2

26695 J99-R3 95 1681 8 39

N6-R1 26 2434 0.29 3 0.19 121 1.20

J99 26695-R1 32 1294 0.19 4 0.20 38 0.24

N6 26695-R1 25 3819* 28.21 5 0.66 110 1.62

J99-R3 80 3853* 4.436104 8 0.12 114 2.26

See Methods for interpretation of Bayes Factor values. Strongly significant results (Bayes Factor $10) are marked with an asterisk.
1Number of clones with DNA imports in rpoB.
2Approximated using the Bayesian Information Criterion (cf. Methods).
doi:10.1371/journal.pone.0003797.t001

Transformation of H. pylori
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while disruption of nth, recG, recR, and xseA increased it (Table S4).

However, out of 18 genes investigated, only one, mutY, had a

significant effect on import length and ISR formation.

Role of the DNA glycosylase mutY in import length and
ISR formation

The H. pylori antimutator gene mutY (HP0142) encodes a DNA

glycosylase involved in preventing specific C to A transversions

[16–19]. Due to this antimutator function of mutY, a 26695 mutY

mutant had a strongly increased frequency of spontaneous

mutation to Rif resistance. In order to test the impact of an

inactivation of mutY on length of import and ISR, a prescreening

procedure was applied to select recombinants from the Rif

resistant clones isolated from the transformation experiment. 43

clones with import were selected from a total of 250 colonies

screened, and characterized by rpoB sequence analysis.

The mean length estimate of import events in the mutY mutant

was 3268 bp, almost twice of that observed in wild type bacteria.

This difference was statistically significant (Table 3). ISR were

detected in 10/43 (23%) of recombinant clones; this ISR

frequency was, however, not significantly different from wild type.

To rule out that the increased import length was caused by

polar effects of the insertion of the resistance cassette on genes

downstream of mutY, we next performed a functional complemen-

tation experiment by introducing into the chromosome of the mutY

mutant an intact copy of mutY that was under the control of the

strong urease promoter [19]. The complemented strain, 26695mu-

tYcomp showed a ,10 fold higher abundance of mutY transcript

than the wild type strain 26695 (Fig. S1). As reported previously,

the complementation restored the frequency of spontaneous

mutations to Rif resistance to wild type level. The estimated

mean import length of the complemented strain was 1882 bp,

similar to the wild type length of 1681 bp, and strongly reduced in

comparison to the import length of the mutY mutant (Table 3).

Unexpectedly, the complemented strain also exhibited an increase

in its frequency of ISR that was statistically significant, with 25 out

of 40 recombinant clones containing ISR (Fig. 3).

Inactivation of two other DNA glycosylases in the H. pylori

genome, magIII and ung, did not have a significant effect on import

length or ISR.

Discussion

The extent of allelic diversity within H. pylori has puzzled

investigators since the late 1980s. Studies of population-wide

nucleotide sequence variation, sequence comparisons of multiple

strains isolated from a single biopsy, as well as comparisons of genetic

relationships of sequential H. pylori isolates provided evidence that

frequent recombination plays a central role in creating allelic

diversity in H. pylori [7,9,20]. Studies of sequential isolates have also

indicated that H. pylori imports short pieces of DNA with an

estimated mean length of 417 bp into its chromosome after natural

transformation [9]. However, systematic analyses of chromosomal

import events after natural transformation have not been performed

in H. pylori. In this study, we present extensive sequence data from a

total of 1090 recombinant H. pylori clones resulting from transfor-

mation experiments with different combinations of recipients and

donors, and investigated the roles of a large set of DNA

recombination and repair genes in determining the length of

imports after natural transformation.

Length of import events
The estimated mean length of imports after transformation of

H. pylori wild type strains ranged from 1294 to 3853 base pairs.

Table 2. Import length and ISR formation are independent of the DNA uptake system ComB.

Recipient Num clones1 MLE of import length (bp) Bayes Factor2 Clones with ISR Bayes Factor2

26695 95 1681 8

26695comB10 0 _ _ 0 1.00

26695comB10 EP3 25 2228 0.15 8* 11.45

J99-R3 DNA was used as donor DNA for all transformations. See Methods for interpretation of Bayes Factor values. Strongly significant results (Bayes Factor $10) are
marked with an asterisk.
1Number of analyzed clones with DNA imports.
2Approximated using the Bayesian Information Criterion (cf. Methods).
3EP: electroporation.
doi:10.1371/journal.pone.0003797.t002

Table 3. Import length and clones with ISR in selected mutants of H. pylori 26695 transformed with DNA from J99-R3.

Recipient Num clones MLE of import length (bp) Bayes Factor1 Clones with ISR Bayes Factor

26695 95 1681 8

26695magIII 51 1729 0.06 9 0.53

26695mutY 43 3268* 38.88 9 1.15

26695mutY comp 40 1882 0.08 25* 2.286108

26695nth 53 1919 0.08 9 0.45

26695ung 56 2390 0.60 7 0.18

Full data for all 18 mutants examined are contained in Tables S5–6. See Methods for interpretation of Bayes Factor values. Strongly significant results (Bayes factor $10)
are marked with an asterisk.
1Approximated using the Bayesian Information Criterion (cf. Methods).
doi:10.1371/journal.pone.0003797.t003
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While these values are still short in comparison with import length

data reported from most other bacterial species, they exceeded

those obtained by model-based analysis of sequences from

sequential H. pylori isolates (417 bp, ref. [9]). These results indicate

that import of short fragments after natural transformation is due

to intrinsic properties of the H. pylori recombination/repair

machinery. However, they also point at the existence of additional

mechanisms contributing to the even shorter import events

observed in vivo. For example, the moderately acidic environment

of the natural ecological niche of H. pylori, a thin zone within the

gastric mucus layer with a pH of ,5.5–6 [21], may damage naked

double stranded DNA (e.g. by depurination) before it is taken up

by the recipient cell. This and other hypotheses are currently

under investigation in our laboratory.

The length of imported fragments varied significantly between

different combinations of donor and recipient. We first hypoth-

esized that these differences might have been a consequence of

varying levels of sequence similarity between the rpoB alleles

(sequence identity ranged between 96.2% and 94.6% for the

combinations of rpoB tested). However, our results argue strongly

against this hypothesis, because in some cases, import lengths were

significantly different when combinations of donor and recipient

were reversed (e.g. N6/26695-R1 and 26695/N6-R1). Therefore,

the mechanisms responsible for the differences of import length

remain unknown, although our data suggest that import length is

mainly determined by properties inherent to the recipient strains,

such as their content of restriction modification systems. The

distance of the import border to the central point mutation

followed a geometric distribution, yielding no evidence that the

location of the starting/end point of the import depended on

specific sequence motifs.

Since H. pylori imports DNA through an unusual type IV

secretion system (ComB, ref. [5]), we hypothesized that this

machinery might be involved in generating short import events.

However, this also seems unlikely, because the import length did

not change when DNA was introduced into a ComB-deficient

mutant by electroporation.

Interspersed sequences of the recipient (ISR)
One striking feature of the imports we observed in H. pylori was

the occurrence of short stretches of recipient sequence interspersed

within the imported regions. The mean length of ISR was 82 bp.

While these disruptions of the imported alleles were observed only

in ,10% of clones, ISR are likely to have an impact on allelic

diversity, because they have the potential to significantly decrease

linkage between individual polymorphic sites. H. pylori is

characterized by a uniquely low linkage disequilibrium [7], and

ISR are likely to contribute strongly to this allelic diversity,

together with an overall high rate of recombination and a

relatively short length of imported fragments.

The formation of complex mosaic alleles has previously been

observed after transformation or transduction of homeologous DNA

into E. coli. Abastado et al. obtained multiple different sequences with

‘‘patchwork structure’’ after transformation of E. coli with plasmids

containing a heteroduplex [22,23]. These mosaics were obtained in

wild type as well as in recA-deficient recipients, suggesting that their

formation resulted from repair processes rather than recombination.

Since mosaicism was detected with oligonucleotide probes, detailed

analysis of the imported sequences could not be performed at that

time. McKane and Milkman used restriction fragment polymor-

phisms to characterize import events after transduction of ,100 kb

of DNA into E. coli, reporting that import frequently occurred in

multiple fragments with a mean size of 8–14 kb. Similar to our data,

fragment lengths were dependent upon the recipient strain used, and

this was thought to be due to differences in the restriction

modification systems [11]. To our knowledge, the present study is

the first to use nucleotide sequencing of a large number of

recombinant clones to analyze import patterns resulting from

transformation. It is thus not possible to conclude with certainty

whether ISR similar to those observed with H. pylori occur in other

species, and at which frequency.

Formation of ISR might occur randomly at any position within

the transformed fragment, or depend on the occurrence of specific

sequence motifs, such as restriction sites. We tested the existence of

such associations for 36 restriction sites within the rpoB sequence,

and found no significant association between restriction sites in the

rpoB fragment and the occurrence of ISR (data not shown).

However, due to the relatively short length of the sequenced

fragment, this analysis does not rule out the existence of such

associations. Many restriction sites are present only once or twice

in the sequenced fragment, making our dataset lowly informative

about the association of ISR with particular sequence motifs.

Figure 3. Effect of inactivation (strain 26695mutY, panel A) and overexpression (strain 26695mutYcomp, panel B) of the DNA
glycosylase gene mutY on import patterns. Color coding of sequences, see legend to Fig. 2.
doi:10.1371/journal.pone.0003797.g003
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We note that there was a significant increase in the number of

clones with ISR when DNA was introduced by electroporation.

Whether this is due to an increase of DNA repair activities after

electroporation, damage to DNA generated by the pulse, the non-

selective process by which the DNA is introduced into the cell by

electroporation, or yet other mechanisms remains to be investigated.

To address the question whether ISR occur in vivo, we

reanalyzed mosaic nucleotide sequences from sequential H. pylori

isolates that were previously shown to have undergone recombi-

nation in vivo [9]. These paired sequences contain multiple events

where blocks of sequence polymorphisms are interrupted by

stretches of identical sequence (e.g. the atpA alleles of the pair

NQ352). These patterns likely represent ISR, but it is impossible

to prove this with certainty, because only recipient and

recombinant sequences are known, whereas the donor sequence

is not available, which would also be required to establish that the

mosaic patterns are indeed ISR.

A screen for genes controlling import length and ISR: the
role of mutY

In order to identify genes that are involved in the control of

import length and ISR formation, 18 candidate genes were

selected. Mutants in these genes were constructed by allelic

disruption and characterized with respect to import length and

ISR, as well as mutation and recombinant frequencies (Tables S4,

S5, S6, S7). This screen identified only one gene, mutY, whose

inactivation affected import length and whose overexpression

increased ISR frequency.

The DNA glycosylase MutY is part of the base excision repair

(BER) pathway and has a strong antimutator function in H. pylori

[16,18,19,24]. Unexpectedly, a mutY mutant exhibited a signifi-

cantly increased import length compared with the wild type strain,

while the frequency of ISR was not significantly affected. A

functional complementation experiment was performed to rule out

polar effects. Since the intact copy of mutY introduced in this strain

is under control of a strong promoter [19], the complemented

strain contains more mutY transcript than the wild type strain (Fig.

S1). This complementation reduced the import length back to

levels not distinguishable from wild type. Strikingly, it also caused

a strong and highly significant increase in the number of ISR,

suggesting that the MutY enzyme may be involved in initiating

ISR formation after transformation. An involvement of MutY in

recombination has been demonstrated before, albeit in a very

different model system [25]. A hypothetical model of MutY-

mediated formation of a short ISR is shown in Fig. 4. The

inactivation of three other predicted BER glycosylase genes,

magIII, ung, and nth, had no significant effect on the import length,

and ISR were still observed in these mutants, indicating that

neither of them is essential for ISR formation. We note that all

single and double mutants studied were still capable of generating

ISR. This may suggest that ISR formation can occur via multiple

partially redundant repair pathways, and complete abrogation of

ISR might require inactivation of multiple repair genes.

Conclusion
The combination in H. pylori of competence for natural

transformation, and high degree of sequence divergence between

naturally occurring alleles of rpoB has enabled us to perform an in

depth study of import events after transformation, and to identify

the formation of mosaic sequences with interspersed recipient

fragments as a mechanism likely contributing to the uniquely high

allelic diversity in H. pylori. The experimental setup has also

permitted to identify the glycosylase MutY as one gene involved in

the control of import length and initiation of ISR formation. Our

system will provide a powerful tool for further studies of

recombination and possibly gene conversion in H. pylori, and

should also be applicable to other transformable bacteria where

many fundamental questions about the effect of recombination on

the chromosome remain to be addressed.

Materials and Methods

Bacterial strains and culture conditions
Bacterial strains used in this study are listed in supporting

information [SI] table S1 (references cited in supporting tables S1,

S2, S3 are listed in Supplementary References S1). Helicobacter

pylori wild type strains 26695 [26], J99 [27], and N6 [28] were

cultured from frozen stocks on blood agar plates (Columbia agar

base II, Oxoid, Wesel, Germany) containing 10% horse blood and

antibiotics (vancomycin [10 mg/l], polymyxin B [2500 U/l],

amphotericin B [4 mg/l], and trimethoprim [5 mg/l]). Plates were

kept in an incubator with 5% O2, 10% CO2 and 85% N2 at 37uC
for 24 h - 48 h. Mutant strains were cultivated on blood agar plates

containing kanamycin (20 mg/ml), chloramphenicol (20 mg/ml), or

both antibiotics as required. For selection of rifampicin (Rif)

resistant H. pylori donor strains, 108 wild type bacteria were plated

Figure 4. Hypothetical model of the involvement of MutY in
the development of a short ISR in H. pylori. After the
recombination of donor DNA (red) into the genome of a H. pylori
recipient strain (blue) the resulting heteroduplex DNA molecule
contains DNA mispairs at sites that differ between the two strains.
Some of these mismatches (e.g. G:A or C:A basepairs) are recognized by
the MutY glycosylase which subsequently hydrolyzes the N-glycosylic
bond between the adenine (A) and the deoxyribose resulting in an
apurinic site (AP) in one DNA strand. The AP site initiates further
processes including endonuclease and/or exonuclease activities,
leading to a single stranded DNA gap. The gap is closed by a
polymerase and ligase and the mismatch is repaired. After replication,
this gives rise to one daughter cell with recipient sequence and one
carrying an ISR sequence.
doi:10.1371/journal.pone.0003797.g004

Transformation of H. pylori
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on blood agar plates supplemented with rifampicin (10 mg/ml).

Liquid cultures were performed in brain heart infusion (BHI,

Oxoid) media with yeast extract (2.5 g/l), 10% heat inactivated

horse serum and antibiotics (see above) in microaerobic atmo-

sphere using anaerobic jars (Oxoid) and AnaerocultH C gas

generating bags (Merck).

E. coli strains DH5a [29] and MC1061 [30] were used for the

DNA cloning experiments and were grown in LB broth or on LB

plates (Lennox L Broth, Invitrogen GmbH, Karlsruhe, Gemany)

supplemented with ampicillin (200 mg/ml), chloramphenicol (20

mg/ml) and/or kanamycin (20 mg/ml) as required.

DNA techniques
All standard cloning and DNA amplification, purification and

manipulation procedures were done according to standard

protocols [31]. Preparation of genomic DNA was performed

using the QIAamp DNA Minikit (QIAGEN, Hilden, Germany).

Large-scale purification of DNA was performed using QIAGEN

Genomic-tip 100/G columns. Plasmid DNA from E. coli strains

were isolated using QIAGEN tip 100 columns.

Insertion mutagenesis in H. pylori
Construction of mutants by natural transformation mediated

allelic exchange was performed as described previously [28,32]. A

list of the oligonucleotides used for mutagenesis, with introduced

restriction sites is provided in Table S2. Briefly, the target genes

were amplified by PCR and cloned into pUC18. The resulting

plasmids (Table S3) were used for inverse PCR amplification with

primers containing restriction sites. Inverse PCR reactions were

designed in order to delete a part of the target gene and to

introduce a unique restriction site. The PCR products were

subsequently digested with the appropriate restriction enzyme, and

ligated with an antibiotic resistance cassette (aphA39-III or cat, refs.

[33,34] flanked by compatible restriction sites. The direction of

transcription of the antibiotic resistance gene was the same as that

of the target gene to avoid possible polar effects caused by the

strong promoters of the antibiotic resistance cassettes.

Plasmids containing the interrupted gene were used as suicide

plasmids in natural transformations of the H. pylori strains 26695,

J99, or N6. The successful chromosomal replacement of the intact

target gene with the disrupted gene construct via allelic exchange

(double crossover) was checked by PCR using suitable primer

combinations. For mutY, whose inactivation caused significant

changes of the length of imported fragments, we performed a

functional complementation experiment.

In vitro transformation system of H. pylori
The transformation of H. pylori recipient strains with genomic

DNA from Rif resistant donors was performed in 10 ml BHI

including yeast extract (2.5 g/l), 10% horse serum and antibiotics

(vancomycin [10 mg/l], polymyxin B [2500 U/l], amphotericin B

[4 mg/l] and trimethoprim [5 mg/l]).

H. pylori wild type or mutant strains were grown for 24 h on non

selective (for wild type strains) or selective (kanamycin and/or

chloramphenicol as required for each knock out mutant) blood

agar plates, as described above and harvested in 1.5 ml BHI broth.

For strains J99, 26695 and N6, a suspension with an OD600 of 1

contains approx. 36108 bacteria [16]. The suspension was diluted

to a start concentration of 2.16107 bacteria/ml in a final volume

of 10 ml. For cultures containing knock-out mutant strains,

kanamycin and/or chloramphenicol (each at 20 mg/ml) were

added as required. The samples were then incubated for 20–24 h

at 37uC in a rotary shaker (175 rpm) under microaerobic

conditions using Anaerocult C bags (Merck). The bacterial

concentration of the preparatory culture was measured and the

suspension was used to start the experiment. Three 10 ml cultures

per strain were adjusted to 1.56107 bacteria/ml and cultivated for

16 h as described above to achieve a concentration of approx.

36108 bacteria/ml. At this point, donor DNA (1 mg/ml) was

added to two of the three cultures. All three cultures were then

further incubated for 8 h. The OD600 was measured and for each

culture incubated with donor DNA, inocula corresponding to 108,

107, and 106 bacteria were plated on selective blood agar plates

containing rifampicin (10 mg/ml) and cultivated for 5 days at

37uC. In parallel, a volume corresponding to 108 bacteria from the

recipient cultures cultivated without donor DNA were plated on

selective Rif containing blood agar plates to determine the

frequency of spontaneous Rif resistant mutants.

From each experiment, at least 16 clones were expanded in order

to sequence a fragment (1663 bp) of the rpoB gene (see below). These

experiments were reproduced at least 10 times for each H. pylori wild

type strain and 3 times for each H. pylori mutant strain.

Electroporation of H. pylori
For electroporation experiments, bacteria were grown to a

density of 36108 cells per ml in 10 ml liquid cultures as described

above, centrifuged and suspended in 10% glycerol (1 ml). 90 ml of

the suspension were mixed with 10 ml of DNA in prechilled 0.2 cm

electroporation cuvettes. Electroporation was performed at 2.5 kV,

25 mF and 400 V in a Gene Pulser (Biorad). After electroporation,

the bacteria were added to 2 ml BHI media with 10% horse serum

and yeast extract and incubated for 8 h. Plating and counting were

done as described above.

Partial sequence analysis of rpoB from H. pylori
transformants

To determine the position of point mutations or import events in

rpoB, a 2370 bp PCR fragment of rpoB was amplified with primers

HPrpoB-1 and HPrpoB-6. This PCR product was used as the

template for sequencing reactions with the primers HPrpoB-3, -4, -5,

-6, -9w, and -10. Sequence reactions were done using the BigDye

Terminator Cycle Sequencing Kit v1.1 (Applied Biosystems, Foster

City, USA), and analyzed with the ABI 3130xl genetic analyzer

(Applied Biosystems). The six sequences from each rifampicin

resistant clone were assembled using the software Bionumerics V 4.5

(Applied Maths, Sint-Martens-Latem, Belgium), yielding a contin-

uous, double-stranded 1663 bp fragment of rpoB that included the

Rif resistance mediating point mutation of the donor strains.

PCR-based prescreening for clones with DNA imports in
the strains 26695mutY and 26695ruvB

Since it was difficult to find DNA imports in the strain 26695mutY

due to the high background of spontaneous mutations and

extraordinary low recombination levels in 26695ruvB, it was

necessary to screen the Rif resistant clones after transformation by

an import specific PCR using the primers HPrpoB-IscrX and

HPrpoB-4. Primer HPrpoB-IscrX, specific for the Rif resistance

mediating point mutation in strain J99-R3, was designed according

to the method described by Furuta et al. [35]. PCR positive clones

were subsequently used for sequencing as described above.

Semi-quantitative reverse transcriptase PCR
Semi-quantitative RT-PCR was performed essentially as

described previously [36]. Briefly, RNA was prepared from H.

pylori strains grown in liquid culture to a density of 36108

bacteria/ml using the Qiagen RNeasy kit. Reverse transcription

was performed using 2 mg of DNAse I treated RNA, a random
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hexamer primer mix and superscript IIITM reverse transcriptase

(Invitrogen, Karlsruhe, Gemany) at 42uC for 1 h. Semi-

quantitative PCR of mutY was done with 2.5 ml cDNA in a total

volume of 25 ml using the primers HPmutY1979 and

HPmutY1980. To compare total amounts of RNA for different

samples, a fragment of the 16S rRNA was amplified with the

primer pair C05 and C97.

Statistical methodology
Statistical analysis was performed by Bayesian model compar-

ison, where two competing models are compared using the Bayes

Factor (BF) which is equal to the ratio of probabilities of observing

the data under each model (see refs. [37,38] for reviews). This has

the advantage to directly weight the evidence for two competing

hypothesis, taking into account their relative complexity, so that

over-complicated models are naturally penalized. Interpretation of

the Bayes Factor was done following the guidelines of Jeffreys [39]:

Negative (,1); Barely worth mentioning ($1-,3); Substantial

($3–10); Strong ($10–30); Very strong ($30-,100); Decisive

($100).

When the Bayes Factor could not be explicitly calculated, a

conservative estimate was computed using the Bayes Information

Criterion (BIC; refs. [37,40]

BF & exp
BIC1 { BIC2

2

� �
~

exp l2 { l1 z log nð Þ k1 { k2

2

� � ð1Þ

where l1 and l2 are the maximized value of the log-likelihood

under the two models, k1 and k2 the number of free parameters in

the two models, and n the number of observations. Comparisons of

frequency data between any two recipient/donor combinations

were done using the BIC for two models: one where the data from

the two combinations comes from the same Normal distribution

and one where it comes from two distinct Normal distributions.

Import length is often modelled using a geometric distribution

[9,13,41]. Using the BIC, we showed that this is a better model

than a negative binomial model, despite its additional free

parameter. We do not observe exactly where recombination starts

and ends for an observation i, but instead an interval [mi; Mi]

where it might happen (with Mi = ‘ if the beginning or end is out

of the sequenced region), so that the likelihood of N observations

under the geometric model with mean length d is equal to:

L dð Þ~ P
N

i~1
1 {

1

d

� �mi

{ 1 {
1

d

� �Mi

 !
ð2Þ

Lengths of imports on either side of the resistance points for each

recipient/donor combination were compared using the BIC with

one model where left and right come from the same geometric

distribution and one model where they do not. We found no

evidence for a difference in length on left and right. The effect of

gene knock-outs on the lengths of import was evaluated in the

same way (comparing results between two combinations rather

than between left and right of a single combination).

Let p denote the probability of occurrence of ISR in a

sequenced clone. The number m of clones containing ISR

amongst n sequenced clones is thus distributed as Binomial(n,p).

Assuming a Jeffrey’s prior on p (i.e. Beta(K,K)), we compared the

value of p between two recipient/donor combinations (m1,n1 and

m2,n2) using the Bayes Factor:

BF ~

B m1 z 1=2,n1 { m1 z 1=2ð ÞB m2 z 1=2,n2 { m2 z 1=2ð Þ
B m1 z m2 z 1=2,n1 z n2 { m1 { m2 z 1=2ð Þ

ð3Þ

where B(.,.) denotes the Euler Beta function.
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