
APC Activation Restores Functional CD4+CD25+

Regulatory T Cells in NOD Mice that Can Prevent
Diabetes Development
Jean N. Manirarora1,2, Michele M. Kosiewicz1, Sarah A. Parnell1, Pascale Alard1*

1 Department of Microbiology and Immunology, University of Louisville, Health Sciences Center (HSC), Louisville, Kentucky, United States of America, 2 Department of

Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America

Abstract

Background: Defects in APC and regulatory cells are associated with diabetes development in NOD mice. We have shown
previously that NOD APC are not effective at stimulating CD4+CD25+ regulatory cell function in vitro. We hypothesize that
failure of NOD APC to properly activate CD4+CD25+ regulatory cells in vivo could compromise their ability to control
pathogenic cells, and activation of NOD APC could restore this defect, thereby preventing disease.

Methodology/Principal Findings: To test these hypotheses, we used the well-documented ability of complete Freund’s
adjuvant (CFA), an APC activator, to prevent disease in NOD mice. Phenotype and function of CD4+CD25+ regulatory cells
from untreated and CFA-treated NOD mice were determined by FACS, and in vitro and in vivo assays. APC from these mice
were also evaluated for their ability to activate regulatory cells in vitro. We have found that sick NOD CD4+CD25+ cells
expressed Foxp3 at the same percentages, but decreased levels per cell, compared to young NOD or non-NOD controls.
Treatment with CFA increased Foxp3 expression in NOD cells, and also increased the percentages of CD4+CD25+Foxp3+ cells
infiltrating the pancreas compared to untreated NOD mice. Moreover, CD4+CD25+ cells from pancreatic LN of CFA-treated,
but not untreated, NOD mice transferred protection from diabetes. Finally, APC isolated from CFA-treated mice increased
Foxp3 and granzyme B expression as well as regulatory function by NOD CD4+CD25+ cells in vitro compared to APC from
untreated NOD mice.

Conclusions/Significance: These data suggest that regulatory T cell function and ability to control pathogenic cells can be
enhanced in NOD mice by activating NOD APC.
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Introduction

Dysregulation of the immune response in NOD mice plays a

major role in the induction of type 1 diabetes [1,2]. NOD mice are

defective in both central [3] and peripheral tolerance [1]. In

addition, antigen-presenting cells (APC) in NOD mice exhibit

various defects, including differentiation, antigen presentation and

co-stimulatory molecule expression [4–7].

It is now well established that CD4+CD25+ regulatory T cells,

which account for 5–10% of CD4+ cells in healthy mice and

humans, control the development of many autoimmune diseases.

Their mechanisms of action are still controversial [8], however,

these cells absolutely require activation [9,10], presumably by

APC, to function in vitro and probably in vivo. The transcription

factor, Foxp3 appears to be critical for CD4+CD25+ regulatory T

cell development and function. Foxp3-deficient mice do not

develop functional CD4+CD25+ regulatory T cells, and ectopic

expression of Foxp3 in naive T cells converts them into cells with

regulatory function [11–13]. Studies using transgenic mice

expressing GFP under control of the Foxp3 promoter has

confirmed the relationship between Foxp3 and regulatory cell

function [8,14]. Interestingly, a recent study has found a

correlation between levels of Foxp3 expression and regulatory

function [15], suggesting that failure to maintain optimal Foxp3

expression could compromise regulatory cell function and lead to

autoimmune disease development.

Although controversial, the percentage of CD4+CD25+ regula-

tory T cells has been shown in some studies to be reduced in NOD

mice [16–18] and patients with type 1 diabetes [19]. On the other

hand, there is very clear evidence that this regulatory population is

functionally defective in mice and patients with type 1 diabetes

[20–22]. We have shown previously that it is not the NOD

CD4+CD25+ regulatory cells themselves that are defective in

assays for regulatory function, but the NOD APC that are

defective in their ability to stimulate CD4+CD25+ regulatory

function [16]. We speculated that this may also be the case in vivo,

and that stimulation of NOD APC in vivo could enhance their

ability to activate regulatory T cells and thusly, prevent disease.
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The ability of complete Freund’s adjuvant (CFA), a potent

activator of APC, to prevent type 1 diabetes in NOD mice is

well-established, and although protection has been attributed to a

variety of different cells, including suppressor T cells, NK cells and

suppressor macrophages [23–25], the precise mechanism is

unknown. In the present study, we investigated whether CFA

could act at least in part by enhancing the ability of NOD APC to

activate NOD CD4+CD25+ regulatory cells that can control

autoreactive T cells and prevent disease in NOD mice.

Methods

Mice
C57BL/6 and NOD female mice from 6 to 34 weeks of age

(Jackson Laboratory, Bar Harbor, ME), and 8-week-old female

OVE26 and FVB mice (gift from Dr. Paul Epstein, University of

Louisville, KY) were maintained under specific pathogen-free

conditions as described in the Institutional Animal Care and Use

Committee guidelines.

Antibodies and flow cytometry
APC-anti-CD25, PerCP-anti-CD4, PE-anti-CD103 antibodies

were purchased (BD Pharmingen, San Diego, CA). One million

cells were incubated with Fc block and labeled with antibodies for

20 min in DPBS 1% FCS, 0.1% NaN03, and washed twice. For

membrane-bound TGFb, cells were labeled with biotinylated anti-

TGFb antibody (R&D, Minneapolis, MN) in buffer containing

BSA followed by streptavidin-PE (BD, San Diego, CA). For Foxp3

and granzyme B, cells pooled from multiple culture wells were

intracellularly labeled with either PE-anti-Foxp3 or anti-granzyme

B antibodies (eBioscience, San Diego, CA) according to the

manufacturer’s instructions. Cells were analyzed by FACSH using

a FACScalibur (Becton Dickinson, Palo Alto, CA).

Cell isolation and purification
Pancreatic cells were obtained by successive digestion at 37uC in

1 mg/ml, 0.5 mg/ml, and 0.25 mg/ml collagenase D for 15 min,

10 min and 6 min, respectively. CD4 cells from lymphoid organs

were enriched using CD4 cell-enrichment columns (R&D,

Minneapolis, MN), then CD25+ (purity consistently .90%) and

CD252 cells purified using PE-anti-CD25 antibody and anti-PE

magnetic beads (Miltenyi Biotech, Auburn, CA) as per the

manufacturer’s instructions. For some experiments, CD4+CD25+

regulatory cells were sorted (MoFloH, DakoCytomation, Fort

Collins, CO) to .95% purity.

T cell-depletion of spleen cells
Spleen cells were incubated in lysis buffer (RPMI 1640 with

25 mM Hepes and 0.3% BSA) containing anti-mouse CD90

antibody (Cedarlane, Hornby, Ontario, Canada), then with Low-

Tox-M rabbit complement (1:10; Cedarlane, Hornby, Ontario,

Canada). The purity of the CD32 cells was consistently .95%.

Cell culture
For the T cell suppression assay, CD4+CD252 T responder cells

(2.56104/well in 96-well round-bottom plates) were cultured in

complete media (RPMI 1640, 10% heat-inactivated FCS, 2 mM

glutamine, 10 mM HEPES, 100 U/ml penicillin G sodium,

100 mg/ml streptomycin sulfate, and 161025 M 2-mercaptoeth-

anol) with irradiated spleen cells (APC; 26105/well), anti-CD3

antibody (0.5 mg/ml), and with or without CD4+CD25+ regula-

tory T cells (2.56104/well) for 4 days at 37uC in 5% CO2. Cells

were pulsed with [3H] thymidine (0.5 mCi) for the last 18 hrs.

Percent inhibition was calculated as [(12(responder2regulatory

cell cpm/responder cell cpm))6100]. To evaluate Foxp3 mainte-

nance or granzyme B induction in vitro, CD4+CD25+ regulatory T

cells from multiple mice were pooled and sorted, and cultured in

multiple wells (2–46104 cells/well) in complete media for 18 or

40 hrs with irradiated T cell-depleted spleen cells (APC; 16105)

and anti-CD3 antibody (0.5 mg/ml).

Treatment of mice with CFA
Complete Freund’s adjuvant (CFA) was prepared using non-

viable desiccated Mycobacterium tuberculosis (H37 RA, Difco

Laboratories, Detroit, MI) at 3, 1 or 0.5 mg/ml in PBS and

emulsified in incomplete Freund’s Adjuvant (IFA; Sigma-Aldrich,

St Louis, MO). NOD mice were injected subcutaneously at 6–

8 weeks of age with 100 ml of CFA.

Adoptive transfer assay and assessment of diabetes
Pancreatic LN CD4+ cells were sorted and transferred (0.46106)

by i.v. injection into 4 wk-old female NOD mice. In some

experiments, CD4+ cells were first depleted of CD25+ cells by

incubation with anti-CD25 antibody (7D4) and low-Tox rabbit

complement (Cedarlane, Hornby, Ontario, Canada). Blood

glucose was monitored weekly until 30 weeks of age, and mice

were considered diabetic when glucose levels were .300 mg/dl

for two consecutive weeks.

mRNA extraction and real-time PCR
Total mRNA was extracted from CD4+CD25+ and CD4+CD252

T cells sorted from lymphoid organs (purity .98%) and reverse

transcribed using Picopure RNA isolation (Arcturus, Mountain

View, CA) and a Taq Man reverse transcriptase kit (Applied

Biosystems, Foster City, CA). cDNA was amplified in duplicate by

real-time PCR using a SYBR Green PCR kit (Applied Biosystems)

and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (59-

GGAGCGAGACCCCACTAACA-39 and 59-ACATACTCAGC-

ACCGGCCTC-39) and Foxp3 (59-CCCACCTACAGGCCCTT-

CTC-39 and 59-GGCATGGGCATCCACAGT-39) primers. Foxp3

mRNA amounts were normalized to GAPDH mRNA amounts, and

fold increase compared to CD4+CD252 T cells is represented.

Statistical analysis
Data were analyzed using either the student’s t test, or ANOVA

and the Turkey-Kramer multiple comparisons test, Fisher’s exact

test or Mann-Whitney test. Each experiment was repeated with

reproducible results 2–4 times. One representative experiment is

shown in each figure.

Results

CD4+CD25+ T cells from NOD mice express lower levels of
Foxp3

We have found previously that APC from NOD mice are

unable to activate CD4+CD25+ regulatory cells properly in vitro

[16]. We speculated that NOD APC may exhibit a similar defect

in vivo in NOD mice, which may be reflected by lower Foxp3

expression in CD4+CD25+ cells. We first examined Foxp3

expression in freshly harvested CD4+CD25+ cells from non-sick

6 week-old NOD, Sick (.300 dl/ml blood glucose for two

consecutive weeks) 15–20 week-old NOD and age-matched B6

(control) mice. CD4+CD25+ cells from lymphoid organs of B6,

Non-Sick and Sick NOD mice were labeled with anti-CD4 and

anti-CD25 antibodies and either sorted (.95% purity) and Foxp3

mRNA quantified by real-time PCR, or also labeled with anti-

Foxp3 antibody and analyzed by FACSH. Interestingly, Foxp3
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mRNA and protein levels were significantly decreased in

CD4+CD25+ cells from Sick NOD compared to B6 mice

(Fig. 1A–C), although the percentages of CD4+CD25+ cells

expressing Foxp3 were identical (Fig. 1D). We next evaluated

the age at which decreases in Foxp3 expression can first be

detected in NOD mice. We found that the level of Foxp3

expression in CD4+CD25+ cells from 6 week-old normoglycemic

NOD mice was similar to that of B6 mice, but statistically different

from Sick NOD mice (Fig. 1E). In contrast, CD4+CD25+ cells

from 10 week-old pre-diabetic NOD mice (i.e., before elevated

glucose can be detected in either urine or blood) expressed Foxp3

at a level that was not statistically different from that of 15–20

week-old Sick NOD mice. However, Foxp3 levels in CD4+CD25+

cells from 10-week-old NOD mice were also not statistically

different from that of either 6 week-old NOD or B6 mice (Fig. 1E),

suggesting that by 10 weeks of age CD4+CD25+ cells may be just

beginning to show signs of lower Foxp3 expression. By 11 weeks of

age, Foxp3 expression was significantly decreased in pre-diabetic

NOD mice compared to B6 mice (Fig. 1F). Taken together, these

data indicate that the decrease in Foxp3 expression may begin

several weeks before disease onset, i.e., in our facility at about 10–

12 weeks of age, and suggest that high levels of glucose may not

affect Foxp3 expression. To directly evaluate the impact that high

glucose has on Foxp3 expression, we next analyzed CD4+CD25+

cells from transgenic mice that were rendered chronically

hyperglycemic beginning shortly after birth by rat insulin

promoter driven expression of calmodulin (OVE26) [26] and

subsequent b cell damage. CD4+CD25+ cells from eight week-old

normoglycemic wild-type (FBV strain) and hyperglycemic OVE26

transgenic mice were analyzed for Foxp3 expression, and were

found to express comparable Foxp3 levels (Fig. 1G). We concluded

from these results that Foxp3 expression by CD4+CD25+

regulatory T cells is lower in diabetes-prone (NOD) than

diabetes-resistant (B6) mice, and the lower expression of Foxp3

by NOD CD4+CD25+ cells is unlikely to be due to exposure to

high glucose levels, although we cannot rule out a possible role for

other metabolites in NOD mice.

NOD APC are less effective than B6 APC in maintaining
Foxp3 expression in CD4+CD25+ T cells in vitro

To begin to evaluate the possibility that the lower Foxp3

expression in fresh NOD CD4+CD25+ T cells (Fig. 1) may be due

to decreased ability of NOD APC to maintain Foxp3 expression in

vivo, we developed an assay to evaluate the ability of NOD APC to

maintain Foxp3 expression in vitro. CD4+CD25+ cells from B6

mice were cultured overnight in the presence of T cell-depleted

irradiated splenic cells (APC) pooled from B6 mice, and anti-CD3

antibody. The following day, the wells containing CD4+CD25+ T

cells were pooled and Foxp3 expression was evaluated. As shown

in Table 1, CD4+CD25+ T cells stimulated with APC and anti-

CD3 expressed higher levels of Foxp3 (MFI) than unstimulated

cells, suggesting that in the absence of APC-mediated activation

optimal Foxp3 expression by CD4+CD25+ T cells is not

maintained. Further, these data indicate that this assay can be

used to evaluate APC efficacy in maintaining Foxp3 expression. In

the next experiment, irradiated T cell-depleted spleen cells (APC)

were pooled from Sick NOD or age-matched B6 mice, and used in

cultures with NOD or B6 CD4+CD25+ T cells and anti-CD3

antibody. After overnight culture, cells were collected and

CD4+CD25+ T cells evaluated for Foxp3 expression. Although

there were no differences in the percentages of CD4+CD25+ cells

expressing Foxp3 (Table 2, third column), the level of Foxp3 (MFI;

Table 2, fourth column) expressed by either B6 or NOD

Figure 1. Foxp3 expression is decreased in CD4+CD25+ cells from NOD mice. Cells from lymphoid organs were harvested from 6-week-old
NOD, or 15–20 week-old B6 and Sick NOD mice and pooled. CD4+CD252 and CD4+CD25+ cells were sorted (.95% purity), and mRNA was isolated
and real-time PCR performed using Foxp3 and GAPDH primers (A). Cells from lymphoid organs were harvested from 15–20 week-old B6 and Sick NOD
mice (B–D); or 6 and 10-week-old NOD and B6 mice or 15–20 week-old Sick NOD mice (E); or 11 week-old B6 and NOD mice (F); or 8 week-old FVB
wild-type (control) and OVE26 transgenic mice (G). Samples from individual mice were labeled with anti-CD4, CD25 and Foxp3 antibodies, and
CD4+CD25+ cells were gated and analyzed for Foxp3 expression (% and MFI) by FACSH (B–G). Each point represents an individual animal. Blood
glucose levels were evaluated weekly beginning at 12 weeks of age, and mice were considered diabetic (Sick) when glucose levels reached 300 dl/ml
and were maintained for at least two consecutive weeks. An * indicates a significant difference from B6 controls at p,0.05.
doi:10.1371/journal.pone.0003739.g001
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CD4+CD25+ cells stimulated with NOD APC (Table 2, third &

fifth rows, respectively) was decreased compared to B6 or NOD

CD4+CD25+ cells stimulated with B6 APC (Table 2, second &

fourth rows, respectively). The magnitude of differences in Foxp3

expression between NOD CD4+CD25+ cells stimulated with

NOD and B6 APC in vitro was very similar to the differences

between freshly harvested CD4+CD25+ cells from NOD and B6

mice (Fig. 1C), suggesting that ineffective or sub-optimal

stimulation by NOD APC may be responsible for the lower

expression of Foxp3 in NOD CD4+CD25+ cells in vivo. We also

compared the ability of 11 week-old pre-diabetic NOD APC and

Sick NOD APC to maintain Foxp3 expression in vitro. Interest-

ingly, the level of Foxp3 expressed by NOD CD4+CD25+ cells

stimulated with APC from pre-diabetic NOD mice was lower

compared to cells stimulated with APC from B6 mice, but higher

than cells stimulated with APC from Sick NOD mice (Table 3).

These data suggest that APC from pre-diabetic mice may also start

to exhibit a decreased ability to maintain Foxp3 expression in vitro.

Taken together, these data support the possibility that NOD APC

are less effective at maintaining Foxp3 expression by CD4+CD25+

T cells in NOD mice.

Prevention of diabetes following in vivo treatment with
CFA involves induction/activation of CD4+CD25+

regulatory cells
Many studies have shown that s.c. injection of complete

Freund’s adjuvant (CFA) can delay onset and decrease incidence

of diabetes in NOD mice [23–25]. CFA contains desiccated

Mycobacterium tuberculosis (MT), a potent activator of APC. We

hypothesized that CFA prevents diabetes in NOD mice by

activating APC that subsequently activate regulatory cells. In

initial experiments, different doses of CFA were evaluated for

efficacy in preventing disease. As shown in Figure 2A, a single s.c.

injection (100 ml) of CFA containing 100 mg of MT at 6 weeks of

age, delayed diabetes onset by about 8 weeks or more, and 60% of

the mice remained disease-free through at least 30 weeks of age.

Injection of a lower (50 mg) or higher dose (300 mg) of MT was less

protective, and therefore, the 100 mg dose of MT was used for all

of the following experiments. These data may indicate that MT

can influence the balance between pathogenic cell and regulatory

cell activation, i.e., a higher dose of MT may tilt the balance in

favor of the pre-existing pathogenic cells, whereas an intermediate

dose may favor regulatory cells. In support of this hypothesis, we

have found that the ratio of anti-inflammatory versus pro-

inflammatory cytokines produced by APC is highly dependent

on the dose and type of stimuli, and can in turn influence disease

development, i.e., prevention versus exacerbation of diabetes,

respectively ([27] and unpublished data).

We next examined the mechanism of CFA-mediated protection

in NOD mice. Because 40% of CFA-treated NOD mice will

eventually develop diabetes and all mice that are going to develop

diabetes will do so by 30 weeks of age, we analyzed Sick and non-

Sick NOD mice that were .30 weeks of age. Lymphocytic

infiltrates in the pancreas of 34-week-old Non-Sick (NS) CFA-

treated and Sick NOD mice were evaluated for Foxp3-expressing

cells by FACS. The pancreas of Non-Sick CFA-treated mice

contained significantly higher percentages of CD4+Foxp3+ and

CD4+CD25+ cells than Sick NOD mice (Fig. 2B & C), suggesting

that CD4+CD25+Foxp3+ regulatory cells could play a role in

CFA-mediated prevention of disease. To investigate this possibil-

ity, pancreatic LN from Non-Sick (NS) CFA-treated and Sick

NOD mice were collected, and 0.46106 purified CD4+ cells

transferred into 4 week-old female NOD mice. Ninety percent of

the CD4+CD25+ T cells from pancreatic LN (pLN) of CFA-

treated NOD mice expressed Foxp3 (Figure 2D), suggesting that

the great majority of the CD4+CD25+ cells that were transferred

in the CD4+ population exhibited a regulatory cell phenotype.

Blood glucose was monitored every week and diabetes incidence

determined through 30 weeks of age. As shown in Figure 2E,

CD4+ pancreatic LN cells from Non-Sick CFA-treated mice (NS)

significantly delayed disease onset by 8 weeks (i.e., from 12 to

20 weeks) and significantly decreased the incidence of disease by

comparison to untreated control mice (none). CD4+ pancreatic LN

cells from Sick mice, on the other hand, actually accelerated

Table 2. APC from NOD mice are less efficient at maintaining
Foxp3 expression in vitro.

APC CD4+CD25+ cells % Foxp3+ Foxp3 MFI

B6 B6 90 314

NOD B6 92 249

B6 NOD 92 302

NOD NOD 88 214

CD4+CD25+ T cells from 12–15 week-old B6 or Sick NOD mice were cultured
overnight in multiple wells, either alone or with B6 or Sick NOD irradiated T-cell
depleted spleen cells (APC) and anti-CD3 antibody. Cells were pooled and
labeled with anti-CD4, anti-CD25 and anti-Foxp3 antibodies. CD4+CD25+ T cells
and APC were pooled from 3 mice. Cells were analyzed for Foxp3 expression by
FACSH after gating on CD4+CD25+ cells. Representative results from one of four
experiments are shown.
doi:10.1371/journal.pone.0003739.t002

Table 1. In vitro assay to evaluate APC-mediated
maintenance of Foxp3 expression by CD4+CD25+ T cells.

APC CD4+CD25+ cells % Foxp3+ Foxp3 MFI

none B6 95 199

B6 B6 92 284

CD4+CD25+ T cells from 12–15 week-old B6 mice were cultured overnight in
multiple wells, either alone or with B6 irradiated T-cell depleted spleen cells
(APC) and anti-CD3 antibody. Cells were pooled and labeled with anti-CD4,
CD25 and anti-Foxp3 antibodies. CD4+CD25+ T cells and APC were pooled from
3 mice. Cells were analyzed for Foxp3 expression by FACSH after gating on
CD4+CD25+ cells. Representative results from one of two experiments are
shown.
doi:10.1371/journal.pone.0003739.t001

Table 3. APC from pre-diabetic and Sick NOD mice are less
efficient at maintaining Foxp3 expression in vitro.

APC CD4+CD25+ cells % Foxp3+ Foxp3 MFI

B6 NOD 94 232

Pre-diabetic NOD NOD 98 182

Sick NOD NOD 94 147

CD4+CD25+ T cells from 12–15 week-old Sick NOD mice were cultured
overnight in multiple wells, either alone or with irradiated T-cell depleted
spleen cells (APC) from B6, pre-diabetic (11 week-old) NOD or Sick NOD mice
and anti-CD3 antibody. Cells were pooled and labeled with anti-CD4, anti-CD25
and anti-Foxp3 antibodies. CD4+CD25+ T cells and APC were pooled from 3
mice. Cells were analyzed for Foxp3 expression by FACSH after gating on
CD4+CD25+ cells. Representative results from one of two experiments are
shown.
doi:10.1371/journal.pone.0003739.t003
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disease onset and increased the incidence of disease from 85% in

untreated control mice to 100%. To determine whether

CD4+CD25+ regulatory T cells contributed to the transferred

protection, CD4+ pancreatic LN cells from Non-Sick CFA-treated

mice were depleted of CD25+ cells (NS CD4+CD252) and

transferred into 4-week-old NOD recipients. Unlike unfractionat-

ed CD4+ pancreatic LN cells from Non-Sick CFA-treated NOD

mice, CD25+-depleted CD4+ cells from the same population were

unable to protect against diabetes and, in fact, transfer of these

cells increased the incidence of disease (to 100%) by comparison to

untreated controls (Fig. 2E). These data suggest that CD4+CD25+

regulatory T cells play a significant role in disease prevention

mediated by CFA, and CFA induces/activates CD4+CD25+

regulatory T cells that localize to the pancreatic LN and pancreas

of NOD mice.

The ability of NOD APC to activate CD4+CD25+ regulatory
T cell function in vitro is enhanced by treatment with CFA

Since CFA appears to enhance CD4+CD25+ regulatory T cell

function in vivo (Fig 2) and NOD APC are less effective stimulators

of regulatory cells [16], at least in vitro, there is a possibility that

CFA could be acting by activating NOD APC. Because a number

of CFA-treated NOD mice will eventually develop diabetes and

the mice that are going to develop diabetes will do so by 30 weeks

of age, we analyzed Sick and Non-Sick NOD mice that were

.30 weeks of age. We compared the ability of APC (irradiated

spleen cells) from individual 30 week-old Non-Sick (NS) CFA-

treated or Sick NOD mice, or B6 mice to activate B6 CD4+CD25+

regulatory cell function in vitro. To test NOD APC activity without

the added complication of potentially defective NOD CD4+CD25+

cells and/or NOD CD4+CD252 responder cells, we initially

compared the ability of NOD APC from untreated Sick and CFA-

treated Non-Sick NOD mice to induce B6 CD4+CD25+ regulatory

cell activity in vitro. As shown in Figures 3A & B, CD4+CD25+ cells

cultured in the presence of APC from Non-Sick CFA-treated mice

(CFA NS NOD; Fig. 3A, black columns & 3B) suppressed

proliferation of B6 CD4+CD252 responder T cells in a manner

similar to B6 APC (Fig. 3A, white columns & 3B), and to a

significantly greater extent than APC from Sick NOD mice (Fig. 3A,

gray columns & 3B). Interestingly, although APC from Non-Sick

CFA-treated NOD mice activated regulatory cells more effectively

than APC from untreated NOD mice, there were no differences in

their ability to stimulate responder T cells, i.e., NOD APC are less

effective at stimulating responders cells than B6 APC regardless of

their treatment (Fig. 3A). Once we established that APC from Non-

Sick CFA-treated NOD, but not untreated Sick NOD mice, could

activate ‘‘normal’’ B6 CD4+CD25+ regulatory cells in vitro, we

compared their ability to activate NOD CD4+CD25+ regulatory

cells. As shown in Figures 3C & D, although not quite as effective as

B6 APC, CFA-treated NOD APC (CFA NOD) were significantly

better than PBS-treated NOD APC in inducing NOD CD4+CD25+

regulatory cell function in vitro, i.e., inhibition of proliferation was

Figure 2. Disease-free CFA-treated NOD mice possess potent regulatory cells. Three different doses of CFA containing 50, 100 or 300 mg of
Mycobacterium tuberculosis or PBS were administered s.c. to 6 week-old NOD mice. An * indicates a significant difference from the PBS control at
p,0.03 (A). Pancreata were harvested from 34 week-old Sick (Sick) or CFA-treated Non-Sick (NS) NOD mice and digested with collagenase. Cells from
individual mice were labeled with anti-CD4, CD25 antibodies, and Foxp3 antibodies and analyzed by FACSH. Each point represents an individual
animal. An ** indicates a significant difference from the Sick NOD group at p,0.05 (B & C). Pancreatic LN cells were harvested from 30-week-old CFA-
treated Non-Sick NOD mice, and labeled with anti-CD4, CD25 and Foxp3 antibodies, and analyzed by FACSH (D). Pancreatic LN cells from 30-week-old
Sick or CFA-treated Non-Sick (NS) were pooled, CD4+ cells purified and 0.46106 cells transferred into 4-wk-old NOD mice. Or purified CD4+ cells from
pancreatic LN from 30-week-old CFA-treated Non-Sick (NS) were depleted of CD25+ cells (NS CD4+CD252) and 0.46106 of these CD4+CD252 cells
injected into 4-wk-old NOD mice. Blood glucose was monitored weekly and diabetes incidence determined. An *** indicates a significant difference
from the untreated controls at p,0.005 (E).
doi:10.1371/journal.pone.0003739.g002
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significantly increased in the presence of CFA-treated NOD APC

versus PBS-treated NOD APC. Altogether, these data indicate that

treatment with CFA enhances the ability of APC from NOD mice to

activate CD4+CD25+ regulatory T cells.

APC from CFA-treated NOD mice induce a fully activated
CD4+CD25+ regulatory T cell phenotype

Since APC from NOD mice treated with CFA can activate

NOD CD4+CD25+ regulatory T cells effectively, we wondered

whether CFA treatment also restored the ability of NOD APC to

induce/maintain expression of markers important for regulatory

cell function that we had found to be downregulated in NOD mice

(Fig. 1). We first examined the expression of Foxp3 since we had

found that NOD APC were defective at maintaining its expression

in CD4+CD25+ cells in vitro (Table 2). CD4+CD25+ cells purified

from the lymphoid organs of uninjected NOD mice were cultured

overnight in the presence of T cell-depleted irradiated splenic cells

from age-matched B6, Sick NOD or CFA-treated NOD mice and

anti-CD3 antibody. Cells were harvested and Foxp3 expression by

CD4+CD25+ cells evaluated. APC from CFA-treated NOD mice

(pink line) increased Foxp3 expression to levels found with B6 APC

(purple line), suggesting CFA enhanced the ability of NOD APC to

maintain Foxp3 expression by CD4+CD25+ cells in vitro (Fig. 4A).

We next examined whether CFA increased expression of Foxp3 in

vivo. Spleen, pancreatic LN and pancreas were harvested from age-

matched B6, PBS-treated NOD, and CFA-treated NOD mice

3 weeks after PBS or CFA injection, and Foxp3 expression by

CD4+CD25+ T cells evaluated. CFA treatment of NOD mice

produced a significant enhancement in Foxp3 expression by

splenic and pancreatic LN (pLN) CD4+CD25+ cells compared to

cells from untreated NOD mice (Fig. 4B & C). Similar results were

found for cells harvested from the pancreas of CFA-treated NOD

mice (Fig. 4D). These data suggest that CFA may mediate its

protective effect by inducing or maintaining optimal levels of

Foxp3 expression by CD4+CD25+ regulatory T cells in the

periphery and at the inflammation sites via the activation of APC.

We also evaluated expression of other molecules associated with

regulatory function that are decreased in either freshly harvested

NOD CD4+CD25+ cells, i.e., CD103 [28,29] and membrane-

bound TGFb [30], or after culture, i.e., granzyme B. While the

percentages of CD4+CD25+ cells expressing CD103 were reduced

in the spleen of NOD mice compared to those from B6 mice, they

were significantly increased in the spleen of NOD mice treated

with CFA compared to those from untreated NOD mice (Fig. 5A).

Although not statistically significant, the percentages of

CD4+CD25+ cells expressing mTGFb tended to be higher

(8.5+/21.6% versus 5.9+/21.3%) after CFA treatment. Finally,

we examined the ability of APC from CFA-treated NOD mice to

induce granzyme B (GZB) in CD4+CD25+ cells in vitro. GZB is a

Figure 3. APC from CFA-treated NOD mice effectively induce regulatory cell function in vitro. CD4+CD252 responder cells from B6 mice
were cultured with irradiated spleen cells (APC) from individual 30 week-old B6, Non-Sick (NS) CFA-treated or Sick NOD mice, anti-CD3 and either with
or without CD4+CD25+ cells from B6 mice (1:1 regulatory:responder ratio; A & B). CD4+CD252 responder cells from NOD mice were cultured with
irradiated spleen cells (APC) from individual 11 week-old NOD mice injected with PBS or CFA three weeks earlier or B6 mice, anti-CD3 and either with
or without CD4+CD25+ cells from NOD mice (1:1 regulatory:responder ratio; C & D). Raw cpm data are shown for one representative animal (A & C),
and percent inhibition is shown where each point represents an individual animal (B & D). * and ** indicate significant differences from the respective
proliferation controls (i.e., responders alone; A & C), or B6 APC (B) at p,0.001 and p,0.05, respectively.
doi:10.1371/journal.pone.0003739.g003
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factor through which CD4+CD25+ regulatory T cells may mediate

suppression in vitro [31]. CD4+CD25+ cells were pooled from

multiple NOD mice, and cultured for 40 hrs in the presence of T

cell-depleted irradiated splenic cells (APC) pooled from either B6,

PBS-treated or CFA-treated NOD mice and anti-CD3. Cells were

harvested and examined for intracellular GZB. The percentage of

CD4+CD25+ cells expressing GZB was reduced when NOD APC

(Fig. 5B, center panel) were used as stimulators by comparison to

B6 APC (Fig. 5B, left panel). Interestingly, CFA increased the

ability of NOD APC to induce GZB production by CD4+CD25+

cells (Fig. 5B, right panel). Altogether, the optimal expression of

Foxp3, CD103 and granzyme B in CD4+CD25+ cells harvested

from CFA-treated NOD mice or after culture with APC from

CFA-treated NOD mice most likely reflects a fully activated

regulatory cell phenotype, and further supports our hypothesis that

CFA enhances the ability of NOD APC to activate CD4+CD25+

regulatory T cells.

Discussion

NOD mice have major defects in immunoregulation [17,32] and

APC function [4–7] that could be involved in the development of

diabetes. Our previous study suggested that defects in NOD APC

could be directly responsible for the lower functional activity of

CD4+CD25+ regulatory T cells in NOD mice [16]. In the current

study, we show that activation of APC in vivo by treatment with CFA

appears to significantly enhance the NOD APC’s ability to activate

CD4+CD25+ regulatory T cells, as indicated by increased regulatory

activity both in vivo and in vitro. The enhanced regulatory activity

associated with CFA treatment strongly correlated with restoration

of an optimal regulatory cell phenotype, as reflected by increased

Foxp3 expression and percentages of CD4+CD25+ T cells expressing

CD103 and granzyme B, and most importantly, by the ability of this

regulatory cell population to keep diabetogenic cells under control.

Although CFA could have a direct effect on the regulatory cells

themselves, our data suggest that its effect is at least in part mediated

through enhancement of the ability of NOD APC to act on NOD

CD4+CD25+ regulatory T cells at two related levels, i.e., maintaining

them in a state of ‘‘readiness’’ by sustaining Foxp3 expression and

producing optimal activation signals to stimulate regulatory activity.

The effect of CFA on diabetes prevention has been attributed to

various cell types, including tolerogenic macrophages [24], suppres-

sor T cells [25], and more recently NK cells [23]. Our study suggests,

for the first time, that CD4+CD25+ regulatory T cells may play an

important role in the control of diabetogenic cells and prevention of

diabetes development in CFA-treated disease-free NOD mice.

When CD4+ cells harvested from the pancreatic LN of disease-free

CFA-treated NOD mice were depleted of CD25+ cells, the CD4+

cells lost their ability to prevent diabetes development after transfer

into young NOD mice. Although, we have not ruled out the

possibility that the CD25+ cells that appear to mediate protection

from diabetes in our model could also include other types of

regulatory cells, e.g., Th2 cells, the fact that 90% of the CD25+ cells

in the pLN of CFA-treated NOD mice expressed Foxp3 tends to

favor a traditional CD4+CD25+ regulatory rather than Th2

phenotype. More importantly, the enhanced ability of APC to

activate CD4+CD25+ regulatory cells in vitro may reflect the

mechanism by which CFA mediates regulatory cell activation in

vivo. APC from NOD mice injected with CFA indeed exhibit an

increased aptitude to stimulate CD4+CD25+ regulatory cells in vitro,

as indicated by restored regulatory function, sustained Foxp3

expression and induction of granzyme B in CD4+CD25+ regulatory

cells. Since there is increasing evidence of crosstalk between DC and

NK cells [33], there is a possibility that CFA-activated APC may also

Figure 4. CFA treatment enhances Foxp3 expression by CD4+CD25+ regulatory T cells in vivo. CD4+CD25+ regulatory T cells were cultured
for 24 hrs with APC (irradiated T cell-depleted spleen cells) pooled from 11 week-old B6 or NOD mice injected with PBS or CFA three weeks earlier
and anti-CD3 antibody (A). Spleen (B), pancreatic LN (pLN) (C) and pancreas (D) were harvested from 11 week-old B6 or NOD mice injected with PBS
or CFA three weeks earlier. Cells were labeled with anti-CD4, CD25 and Foxp3 antibodies and analyzed by FACSH gating on CD4+CD25+ cells (A–D).
Each point represents an individual animal (B–D). An * indicates a significant difference from PBS-treated NOD (p,0.05).
doi:10.1371/journal.pone.0003739.g004
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activate NK cells that appear to be involved in CFA-mediated

diabetes prevention [23].

It is not clear how CFA affects the ability of APC to activate

regulatory cells. The enhancement of regulatory cell-inducing APC

function in NOD mice treated with CFA is likely to be associated with

an increase in expression/production of molecules important for the

development and/or maintenance of CD4+CD25+ regulatory cells.

There are many molecules associated with CD4+CD25+ regulatory

cell development; CD28/B7 costimulation [34,35] as well as IL-2 and

TGFb [36,37], are crucial for the development, survival and

maintenance of CD4+CD25+ regulatory cells as well as in vitro and

in vivo conversion of CD4+CD252 cells into CD4+CD25+ regulatory

cells [37,38]. Indeed, we have found that the percentage of NOD

APC expressing B7-1 (including dendritic cells, macrophages and B

cells), which is lower than that of B6 APC, is restored after CFA

injection (data not shown). This is particularly significant, since B7-1

has been associated with tolerance in NOD mice, whereas B7-2

appears to be critical for induction of pathogenic responses [39].

Foxp3 is a molecule crucial for the development of CD4+CD25+

regulatory cells [11,13]. Importantly, decreases in the levels of

expression of Foxp3 appear to affect the ability of regulatory cells

to control pathogenic cells. T cells with attenuated endogenous

Foxp3 expression exhibit decreased suppressive activity and

expression of regulatory cell signature genes, resulting in the

development of an autoimmune syndrome similar to that of scurfy

mice [15]. In addition, expression of Foxp3 mRNA at the single

cell level has been shown to be impaired in CD4+CD25+

regulatory cells from NOD mice [40]. This decline in Foxp3

expression appears to start as early as 8 weeks of age and becomes

more pronounced as the mice become sick, suggesting its

association with the development of type 1 diabetes [40]. Our

data confirm that the expression of Foxp3 at the protein level is

decreased in NOD CD4+CD25+ cells, and that this decrease is not

likely to be due to exposure to high glucose levels. Moreover, our

data indicate that CFA-mediated protection strongly correlates

with upregulation of Foxp3 expression by peripheral and

pancreatic CD4+CD25+ regulatory cells, and increased infiltration

of CD4+Foxp3+ cells into the pancreas. This is similar to a study

showing that treatment with vasoactive intestinal peptide (VIP)

upregulates Foxp3 in the pancreas, and restores tolerance by

promoting the local differentiation and function of regulatory T

cells [41]. We have also found that CFA administration enhances

the percentages of CD4+CD25+ regulatory T cells expressing

CD103, thought to be an activated effector/memory-like regula-

tory cell population [29] that exerts potent Ag-nonspecific

suppression in the absence of TCR stimulation [42], and capable

of sustained localization at inflammation sites [28,29]. Culture of

NOD regulatory cells with APC from CFA-treated NOD mice

recapitulates the in vivo effect of CFA, as indicated by the increase

in Foxp3 and granzyme B expression. The upregulation of Foxp3,

CD103 and granzyme B expression may reflect restoration of a

fully activated regulatory cell population, which may be crucial for

the regulation of pathogenic cells and prevention of diabetes

development. Upon stimulation with CFA, NOD APC may gain

the ability to fully activate functional NOD regulatory cells that

can successfully control pathogenic cells.

In conclusion, our study has provided ‘‘proof-of-concept’’ that

manipulating the ability of APC to activate/induce CD4+CD25+

regulatory T cells is a potential strategy that can be used to prevent

disease. However, finding the optimal and specific stimulus as well

as identifying molecules that will target only regulatory cells, and

not pathogenic cells, will be crucial for developing therapies to

prevent and treat diabetes in humans. A cell wall molecule of M.

tuberculosis, Mannose-capped lipoarabinomannan (ManLAM), has

been shown to induce expansion of CD4+CD25+Foxp3+ regula-

tory T cells by binding to receptors expressed by APC [43].

ManLAM may, therefore, be a potential candidate for enhancing

the ability of APC to induce preferentially regulatory cells.
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