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Abstract

Cold acclimation in woody plants may have special features compared to similar processes in herbaceous plants. Recent
studies have shown that circadian clock behavior in the chestnut tree (Castanea sativa) is disrupted by cold temperatures
and that the primary oscillator feedback loop is not functional at 4uC or in winter. In these conditions, CsTOC1 and CsLHY
genes are constantly expressed. Here, we show that this alteration also affects CsPRR5, CsPRR7 and CsPRR9. These genes are
homologous to the corresponding Arabidopsis PSEUDO-RESPONSE REGULATOR genes, which are also components of the
circadian oscillator feedback network. The practically constant presence of mRNAs of the 5 chestnut genes at low
temperature reveals an unknown aspect of clock regulation and suggests a mechanism regulating the transcription of
oscillator genes as a whole.

Citation: Ibañez C, Ramos A, Acebo P, Contreras A, Casado R, et al. (2008) Overall Alteration of Circadian Clock Gene Expression in the Chestnut Cold
Response. PLoS ONE 3(10): e3567. doi:10.1371/journal.pone.0003567

Editor: Ivan Baxter, Purdue University, United States of America

Received December 28, 2007; Accepted October 6, 2008; Published October 29, 2008
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Introduction

Circadian clocks allow organisms to adapt to periodic environ-

mental changes in light and temperature. In plants, circadian clock

performance increases growth, survival and competitive advantage

[1,2]. Although the clock components do not seem to be conserved

among kingdoms, clock mechanisms in different organisms are

remarkably similar [3–5]. In the model plant Arabidopsis, it was

initially proposed that circadian rhythms are based on a feedback

loop in which two partially redundant proteins, LHY (late elongated

hypocotyl) and CCA1 (circadian clock associated 1), negatively

control their own synthesis by inhibiting the expression of the

positively regulating TOC1 (timing of cab, chlorophyll a/b binding

protein, expression 1) transcription factor [6]. However, current

evidence indicates that the Arabidopsis oscillator comprises several

interlocking feedback loops, comparable to those identified in the

circadian systems of other eukaryotes [7–9]. Besides having

established roles for the primary clock genes LHY, CCA1 and

TOC1 in the oscillator feedback network, experimental data point to

the participation in this mechanism of several PSEUDO-RESPONSE

REGULATOR (PRR) genes, belonging to the same family as TOC1/

PRR1 [10–14]. This family consists of five members that are

expressed after dawn in the sequential order PRR9RPRR7R
PRR5RPRR3RTOC1 [15]. A feedback loop between PRR9/PRR7

and LHY/CCA1 was initially proposed whereby LHY and CCA1

trigger the expression of PRR9 and PRR7, and the corresponding

PRR proteins feed back to regulate LHY and CCA1 expression

[11,13]; PRR5 was later proposed to also participate in such a loop

[12]. Accordingly, computational models of the Arabidopsis circadian

oscillator include this feedback loop between PRR9/PRR7 and LHY/

CCA1 [16,17].

In a recent attempt to elucidate the role played by low

temperatures in the onset of winter dormancy in woody plants, we

showed that circadian clock behavior in the chestnut tree is disrupted

in response to cold [18]. The chestnut genes CsTOC1 and CsLHY,

which are homologous to essential components of the circadian

oscillator in Arabidopsis, were observed to cycle daily during

vegetative growth as expected. However, during winter, the presence

of high non-oscillating levels of CsTOC1 and CsLHY mRNAs

indicates alteration of the circadian clock. In addition, we were able

to induce a similar disruption by chilling (4uC) chestnut seedlings

[18]. To determine the extent to which this chestnut clock disruption

affects other elements of the oscillator feedback network, we

investigated the behavior of chestnut PRR genes during winter

dormancy and in response to cold. Here, we report that the

interrupted circadian behavior observed previously in CsTOC1 and

CsLHY expression is also true of CsPRR5, CsPRR7 and CsPRR9.

Results and Discussion

The Circadian Behavior of the Chestnut PRR5, PRR7 and
PRR9 Genes

To help clarify the behavior of the chestnut circadian clock

response to cold, additional members of the PRR gene family were

identified by screening a chestnut stem cDNA library. Three full-

length cDNA clones, homologous to Arabidopsis PRR genes were

isolated. Each clone encoded a polypeptide containing the two

domains characteristic of the Arabidopsis PRR protein family
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(PRR1, PRR3, PRR5, PRR7 and PRR9): the pseudo-receiver

domain and the CCT (CONSTANS, CONSTANS-LIKE, and

TOC1) motif. To explore possible genetic relationships between

these chestnut polypeptides and the PRRs previously character-

ized in Arabidopsis and other species [15,19–21], we constructed a

phylogenetic tree (Figure 1). The topology of the phylogram

revealed three groups of PRR proteins, as has been observed by

Murakami et al. [19]. One of these groups, which includes

CsTOC1/CsPRR1, comprises the PRR1 proteins of the different

species. The other two groups each included representatives of two

PRR proteins: PRR5 and PRR9 in one group, and PRR3 and

PRR7 in the other. In these last two groups, the PRR proteins of

rice, Lemna gibba and Lemna paucicostata were designated two

numbers (37 or 73, and 59 or 95), since it was difficult to estimate

which PRR from rice or the two Lemna species corresponded to

which Arabidopsis PRR [19,21]. Of the three chestnut pseudo-

response regulators identified in the present study, two were found

to group with the proteins PRR5 and PRR9. These PRRs were

denoted CsPRR5 and CsPRR9 based on the relative distances

shown in the phylogram to Arabidopsis PRR5 and PRR9. The third

chestnut PRR we could infer from the clones isolated, grouped

within the PRR3 and PRR7 protein class. Given the character-

istics of the phylogram and the fact that we did not isolate the gene

coding for the other PRR protein of this group in the chestnut, it is

difficult to ascribe the corresponding homology to this CsPRR. We

opted for tentatively designating it as CsPRR7 rather than

CsPRR3 based on the similar circadian expression pattern of

the gene to that shown by the Arabidopsis PRR7 gene (Figure 2; see

below) [15].

To test the circadian behavior of the CsPRR genes, we analyzed

their expression in leaves collected from 16- to 24 week-old chestnut

seedlings grown under continuous light (LL) conditions in a

temperature-controlled (22uC) growth chamber over a 48 h period.

RNA samples were analyzed by Northern blot hybridization using

probes specific for each gene CsTOC1/PRR1, CsPRR5, CsPRR7, and

CsPRR9. These probes were sequences of the non-conserved region

of PRR family genes, flanked by the pseudo-receiver and CCT

domains. We observed the diurnal oscillation of transcript levels of

the CsPRRs over an approximate 24 h period (Figure 2). These

chestnut PRR transcripts started to accumulate after subjective

dawn in the order PRR9 and PRR7RPRR5RTOC1. Despite the

concurrent appearance of PRR9 and PRR7 mRNAs, PRR9 mRNA

peaked earlier than PRR7 mRNA. This expression order of the

CsPRR genes resembles that of the Arabidopsis PRR genes

(PRR9RPRR7RPRR5RPRR3RTOC1) more than the order noted

in the monocotyledons rice or Lemna spp. [15,19,21]. For example,

circadian analysis of OsPRR in rice also indicates their sequential

expression but in a different order: OsPRR73 and OsPRR37-

ROsPRR95 and OsPRR59ROsPRR1 [19]. Differences among

species in the temporal order of PRR gene expression could be

essential, given the direct role these genes play in the machinery of

the circadian oscillator [11–14]. In particular, the feedback loop

Figure 1. Phylogram of PRR proteins. A non-rooted neighbor-joining phylogenetic tree of PRR proteins was constructed using amino acid
sequences of the pseudo-receiver domain (55). Species identifiers are: At, Arabidopsis thaliana; Cs, Castanea sativa; Lg, Lemna gibba; Lp, Lemna
paucicostata; Mc, Mesembryanthemum crystallinum; Os, Oryza sativa. The following are the accession numbers for the proteins: AtTOC1 (AF272039);
AtPRR3 (BAB13744); AtPRR5 (BAB13743); AtPRR7 (BAB13742); AtPRR9 (BAB13741); CsTOC1 (AY611028); CsPRR5 (ABV53464); CsPRR7 (ABV53463);
CsPRR9 (ABV53465); LgPRR37 (BAE72700); LgPRR59 (BAE72701); LgPRR95 (BAE72702); LpPRR37 (BAE72697); LpPRR59 (BAE72698); LpPRR95
(BAE72699); McTOC1 (AAQ73525); OsTOC1 (BAD38854); OsPRR37 (BAD38855); OsPRR59 (AK120059) (KOME database); OsPRR73 (BAD38856); OsPRR95
(BAD38857). Numbers at each branch point indicate the bootstrap replicates (out of 1000) giving rise to the topology.
doi:10.1371/journal.pone.0003567.g001

Chestnut PRR Circadian Genes
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proposed among PRR9, PRR7, and possibly PRR5 and LHY/CCA1,

which is thought to form part of a multiple-loop network [7–9],

could be affected by these differences. The expression interval of

each PRR could also be a determining factor for their participation

in clock output pathways. The findings of a recent study suggest that

PRR9, PRR7 and PRR5 regulate flowering time in Arabidopsis

through the CONSTANS- dependent pathway [22]. Interestingly,

a genetic complementation analysis in which the rice genes OsPRR1

and OsPRR37 were introduced into the corresponding Arabidopsis

loss-of-function mutants (toc1 and prr7 respectively) revealed that

these genes are only partially interchangeable between these species

[23].

The Circadian Behavior of CsPRR Genes is Disrupted in
Response to Low Temperatures

When we addressed whether the circadian behavior of CsPRR5,

CsPRR7 and CsPRR9 was modified during winter dormancy or in

response to cold, similar changes were observed to those described

previously for the central oscillator genes, CsLHY and CsTOC1

[18]. We examined the expression of the CsPRR genes in adult

chestnuts grown under natural light and temperature conditions in

Zarzalejo, Madrid (4u119W, 40u359N): first in June, which is when

vegetative growth takes place, and then in December, when

temperatures are low and these trees are in a state of

endodormancy. In samples collected in June, oscillatory expression

patterns were observed for the four CsPRR genes. The character-

istics of their fluctuations were consistent with those described

above for plantlets exposed to continuous light. This behavior was

noted both in stem and leaf samples (Figures 3A, 3B, and S1). In

contrast, in stem samples collected in December, the circadian

expression of the CsPRR genes was modified. Thus, rather than

exhibiting typical daily cycles, CsPRR mRNA levels remained

consistently high (Figure 3C and 3D). Hence, the previously

described altered expression of CsTOC1 and CsLHY in winter was

similarly shown by CsPRR5, CsPRR7 and CsPRR9.

We were also able to confirm that, as for CsTOC1 and CsLHY,

this alteration is not intrinsic to the state of endodormancy.

Endodormancy is caused by plant endogenous factors and, once

established, no growth can be achieved until a chilling require-

ment has been satisfied. In order for bud break to occur, plants

need to be exposed to low temperatures for a cumulative number

of hours. Thus, endodormant plants that had not yet satisfied the

chilling requirement, were transferred to growth chambers kept at

22uC and subjected to a long day (LD) photoperiod (16 h light /

8 h dark). In these conditions, the plants remain in a state of

endodormancy yet they gradually lose their characteristics

exclusive to the cold response. After one week at 22uC, expression

levels of the CsPRR genes in stem tissue had recovered their

circadian rhythm (Figure 4).

To establish whether exposure to low temperatures was

sufficient to interrupt the circadian behavior of the CsPRR genes,

experiments were performed on 16- to 24 week-old chestnut

seedlings. CsPRR expression patterns in stems and leaves collected

from seedlings grown under the conditions 22uC and LD were

compared to expression patterns in seedlings subjected to 4uC and

LD conditions for 1 week. At 22uC, the mRNAs of the 4 CsPRR

genes indicated their cyclic expression with specific circadian

oscillation both in stem and leaf samples. In contrast, in the plants

exposed to low temperatures, this oscillatory behavior was

interrupted (Figures 5 and S2). These effects of cold were

characterized by the presence and not by the absence of the

CsPRR mRNAs over time, as occurs in adult trees during winter.

These results indicate that low temperatures greatly modify the

expression of at least 5 of the genes potentially involved in the

Figure 2. CsPRR gene expression levels in chestnut leaves under
LL conditions. CsPRR gene expression rhythms observed in leaves
taken from 16- to 24 week-old chestnut seedlings grown under
standard conditions (LD, 22uC) subsequently transferred to conditions
of LL and 22uC. Samples were collected at 3-h intervals. (A) Northern
blot analysis. The rRNA loading reference was detected by staining gels
with ethidium bromide. (B) Quantitative RT-PCR analysis. Relative
transcript abundances are shown in the graphs. Data are means from
three biological replicates. The open and shaded bars above the graphs
represent subjective day and night lengths, respectively.
doi:10.1371/journal.pone.0003567.g002
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oscillator mechanism of the chestnut circadian clock. This cold

response in the chestnut may translate to all woody species.

Indeed, expression levels of clock oscillator genes in Populus alba

have also been observed to not show circadian cycling in winter

(our unpublished results). In contrast, the Arabidopsis clock seems to

exhibit different behavior in response to cold. Cycling of the

mRNA levels of genes under circadian control (CAB and CCR2,

cold-circadian rhythm-RNA binding 2) has been observed in

Arabidopsis seedlings grown for 5 days at 4uC under a light/dark

photoperiod [24] and, recently, Bieniawska et al. [25] have shown

that under continuous light conditions, cold disrupts the circadian

expression of Arabidopsis oscillator genes, while in normal diurnal

light-dark conditions cold only reduces the amplitude of cycles of

clock components. The different responses to low temperatures

shown by the circadian clocks of Arabidopsis and the chestnut could

be attributable to differences in the clock mechanism or in the

Figure 3. CsPRR gene expression in stems of adult chestnuts under different seasonal conditions. Stems (second-year branch internodes)
collected in June (A and B) and December (C and D). Samples were collected at 3-h intervals. (A and C) CsPRR northern blot analysis. The rRNA
loading reference was detected by staining gels with ethidium bromide. (B and D) Quantitative RT-PCR analysis. Relative transcript abundances are
shown in the graphs. Data are means from two biological replicates. Open and filled bars above each graph represent natural day and night lengths,
respectively, as provided by the National Institute of Meteorology, Madrid.
doi:10.1371/journal.pone.0003567.g003
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regulation of a shared mechanism. It is difficult to predict which

mechanisms of control could be affected by cold, and besides the

possibility of an influence on transcriptional level control other

alternatives should be considered. Studies on clock gene regulation

mechanisms in plants at the posttranscriptional and posttransla-

tional levels are currently underway [26–30]. In effect, of the four

PRRs examined in this work, three (TOC1, PRR5 and PRR7) are

now known to be regulated at the protein level in Arabidopsis

[14,26,29]. Moreover, the circadian expression of TOC1 has been

recently correlated with clock-controlled histone acetylation

rhythms of its promotor [31].

Cold disruption of the chestnut circadian clock in normal diurnal

light-dark conditions indicates that the cold acclimation process in

woody plants may have special features compared to similar

processes in herbaceous plants. Differences between species are

hardly surprising when one considers that trees have had to adapt to

two types of thermal stress: the fluctuating temperatures endured

during the growing season and the continuous temperature drop that

occurs in winter. Stopping of the clock is likely to have an impact on

the general physiology of the plant, since this molecular oscillator is

known to regulate major metabolic pathways, and over 10% of genes

in Arabidopsis are under circadian control [32–34]. Moreover, the

circadian clock participates in cold signaling pathways in Arabidopsis

by gating the low-temperature induction of CBFs (CRT/DRE, C-

repeat/drought-responsive, binding factor) and modulating low-

temperature Ca2+ signals [35,36]. Welling and Palva [37] have

shown that in addition to their role in cold acclimation during the

growing season, CBFs are involved in the regulation of cold

tolerance during overwintering in birch.

It has long been established that the photoperiod controls the

induction of winter dormancy processes in most trees growing in

temperate climates [38,39]. Recently Böhlenius et al. have shown

that the CO/FT (constans/flowering time locus T) regulatory

module, which controls flowering time in response to variations in

daylength in annual plants, also regulates short-day-induced

growth cessation [40]. However, in order to attain an advanced

state of dormancy, low temperatures are also required and it is

known that changes such as leaf senescence and abscission are not

provoked by a short day photoperiod alone, but also require

exposure to cold [41,42]. In fact, in the apple tree and other

species of the family Rosaceae, cold induces dormancy regardless

of photoperiodic conditions [43]. Although winter clock disruption

does not seem to maintain dormancy, since in endodormant plants

transferred to conditions of 22uC and a LD, standard PRR gene

expression cycling resumes, the initial changes induced by the first

low autumn temperatures could trigger the onset of endodor-

mancy. In addition, stopping of the circadian clock linked to low

winter temperatures could in part explain the extensive remod-

eling of meristem transcriptome observed in the vascular cambium

of poplar during the transition from growth to dormancy [44–47].

A similar circadian clock response to the cold has been observed

in the ruin lizard (Podarcis sicula), a hibernating ectothermal

vertebrate. At low temperatures (6uC), the cycling expression of

two clock genes (Per2 and Clock) in this animal is diminished in

peripheral clocks with a characteristic increase in basal expression

levels [48,49]. The basic mechanisms of clock function in plants

Figure 4. Recovery of circadian CsPRR gene expression in
endodormant chestnut seedlings. CsPRR gene expression rhythms
observed in stems from 11 month-old endodormant chestnut plants
grown under natural conditions in Madrid and subsequently transferred
to controlled-environment chambers under conditions of 22uC and LD

for 1 week. Samples were collected at 3-h intervals. (A) Northern blot
analysis. The rRNA loading reference was detected by staining gels with
ethidium bromide. (B) Quantitative RT-PCR analysis. Relative transcript
abundances are shown in the graphs. Data are means from two
biological replicates. Open and filled bars above each graph indicate
lights on and lights off, respectively.
doi:10.1371/journal.pone.0003567.g004
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Figure 5. CsPRR gene expression in the stems of chestnut seedlings grown under different temperature conditions. The figure shows
CsPRR blot analysis and mRNA abundances. (A and B) Stems from seedlings grown under conditions of LD and 22uC. (C and D) Stems from seedlings
grown under standard conditions (LD, 22uC) and subsequently subjected to one week of LD at 4uC. Samples were collected at 3-h intervals. (A and C)
CsPRR northern blot analysis. The rRNA loading reference was detected by staining gels with ethidium bromide. (B and D) Quantitative RT-PCR
analysis. Relative transcript abundances are shown in the graphs. Data are means from two biological replicates. Open and filled bars above each
graph indicate lights on and lights off, respectively.
doi:10.1371/journal.pone.0003567.g005

Chestnut PRR Circadian Genes
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and animals are similar, although their oscillator genes are

unrelated. This parallelism between two such evolutionary distinct

organisms suggests that the stopping of the circadian clock in

response to cold could be part of a general adaptive strategy that

enables living organisms that undergo dormancy or hibernation to

survive the winter. Recently, the interruption of the molecular

circadian clock in the European hamster during hibernation has

also been described; the clock genes Per1, Per2, and Bmal1 being

constantly expressed in the suprachiasmatic nucleus during deep

torpor [50]. Interestingly, clock disruption in the three organisms

results in increased expression of oscillator genes, suggesting a

positive role of these components during low temperature periods.

In summary, our findings indicate that in the chestnut, low

temperatures disrupt the canonical cyclic expression of the

circadian oscillator genes CsPRR5, CsPRR7, and CsPRR9, as

previously observed by us for CsTOC1/PRR1 and CsLHY.

Concurrent changes in the expression of these five genes forming

part of several oscillator feedback loops, point to control

mechanisms not yet elucidated by current Arabidopsis circadian

clock models.

Materials and Methods

Plant Material and Growth Conditions
In field experiments, stem samples (2-year-old branch internodes)

and leaves were harvested from adult European chestnut trees

(Castanea sativa Mill.) in Zarzalejo, Madrid (4u119W, 40u359N).

Samples were collected in the months of June (22.8uC average

temperature; 15 h, 5 min average day length) and December (4.9uC
average temperature; 9 h, 16 min average day length). Controlled-

environment experiments were performed using 16–24 week-old

chestnut seedlings in growth chambers under the conditions

described in Ramos et al. [18]. For the long day (LD) trials, seedlings

were grown at 22uC and subjected to a 16 h light/8 h dark (16:8)

photoperiod. Exposure to cold (4uC) was undertaken for a week

under the same light regime. Continuous light (LL) experiments were

performed on plants that had been grown under conditions of LD

and 22uC and thereafter subjected to LL from dawn. Endodor-

mancy experiments were performed as in [18]. Chestnut plants

grown in natural conditions enter a state of endodormancy at the

end of November. Before satisfying the chilling requirement, plants

were transferred to a growth chamber at 22uC under a 16 h light/

8 h dark photoperiod and kept for 1 week in these conditions before

sample collection. After subjecting the plants to the different

treatments, specimens were collected at 3-h intervals. Each

experiment was performed at least twice.

Isolation of cDNA Clones
Chestnut CsPRR5, CsPRR7 and CsPRR9 cDNA clones were

isolated from a lUni-ZAP XR cDNA library following standard

procedures [51]. The library was constructed using chestnut stem

poly (A)+ RNA isolated from plants in winter [18]. To detect

CsPRR clones other than TOC1, a full length CsTOC1/PRR1 clone

was used as probe on two replicate membranes, one under high

and the other under low stringency hybridization and washing

conditions. After discarding the common spots as TOC1 clones,

three different CsPRR clones were detected corresponding to

fragments of the genes CsPRR9, CsPRR7 and CsPRR5. To obtain

the CsPRR9 full-length cDNA clone, the corresponding fragment

was used as probe under high-stringency hybridization and

washing conditions. Probes were labeled with [a-32P] dATP using

a random-primed DNA labeling kit (Roche Applied Science,

Indianapolis). Full-length cDNA clones for CsPRR7 and CsPRR5

were obtained using the ‘‘BD SMART RACE cDNA Amplifica-

tion’’ kit (Clontech, Mountain View, CA) according to the

manufacturer’s instructions.

Northern Blot Expression Analysis
Total RNA was obtained from chestnut stems and leaves as

described in [52], separated on 1.2% agarose gels with 2.2 M

formaldehyde [53], and subsequently transferred to Hybond-XL

nylon membranes (GE Healthcare Bio-Sciences Corp., Piscat-

away, NJ). 32P-labeled DNA probes used to detect each specific

mRNA were designed to only span the non conserved region of

each pseudo response regulator gene. The probes were PCR

amplified using appropriate sets of forward and reverse primers:

CsPRR5 forward 59-GGCAAATCGTTTCCAAGTGA-39 and

CsPRR5 reverse 59-TAGAAGAGTTGACAAGGACATA-39,

CsPRR7 forward 59-GAAGACATCGGGATGTGCAA-39 and

CsPRR7 reverse 59- CCTGAACACAGCTAGTGCC-39,

CsPRR9 forward 59-GCTTCCTCGCATTGCTACAG-39 and

CsPRR9 reverse 59-AACAACAAAGCCAGGCATCG-39.

A gene fragment spanning CsTOC1 nucleotides 1380–1591 that

specifically recognizes the TOC1/PRR1 member of the pseudor-

esponse regulator (PRR) gene family was used as in Ramos et al. [18].

Northern blot hybridizations were conducted according to the

recommendations of the membrane manufacturer. Membranes

were washed at high stringency, exposed on storage phosphor

screens and visualized in a TYPHOON 9400 phosphorimage

scanner (GE Healthcare, Bio-Sciences Corp.). The rRNA loading

reference was estimated by staining gels with ethidium bromide.

Real time RT-PCR Expression Analysis
Total RNA was obtained from chestnut stems and leaves as

described in [52] with a modification introduced after LiCl

precipitation in which the RNeasy Plus Mini Kit columns from

Qiagen were used. This kit includes one step to eliminate any

contaminating genomic DNA in the total RNA sample. To check

the lack of degradation, RNA was separated by electrophoresis on

a formamide-formaldehyde denaturing agarose gel. RNA purity

and quantity were checked with a Nanodrop Spectrophotometer.

For each sample, single stranded cDNA was synthesized from one

microgram of total RNA using the Superscript III First-Strand

Synthesis SuperMix for qRT-PCR (Invitrogen). This mix includes

oligo (dT)20 and random hexamers. First-strand cDNA was

synthesized in a 2720 thermocycler (Applied Biosystems). Gene-

specific primers were designed using Primer Express 2.0 (Applied

Biosystems) for the non conserved region of each pseudo response

regulator gene as follows:

CsPRR5 forward 59-GCAAAACAAAGAAGAATACTTG-39

and

CsPRR5 reverse 59-CTTCACTCCCATGCGTAAG-39,

CsPRR7 forward 59-ATTTGTTAAGTGCGTCCCTTG-39

and

CsPRR7 reverse 59- TTTCCATATTTGTTCCTGAAGC-39,

CsPRR9 forward 59-GAGGTTGTGCCCTTCGGAG-39 and

CsPRR9 reverse 59-ACAAGCATTTTCCTTCAATCTC-39.

CsTOC1 forward 59-ACTTGATGCTTCTGGCTTACCT-39

and

CsTOC1 reverse 59-ATTGTGCTGCTGATGGC-39

Cs18S forward 59-TCAACTTTCGATGGTAGGATAGTG-39

and

Cs18S reverse 59-CCGTGTCAGGATTGGGTAATTT-39

Chestnut PRR Circadian Genes
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Real time polymerase chain reactions were performed in an

optical 384-well plate with an ABI PRISM 7900HT Sequence

Detector System (Applied Biosystems), using SYBR Green to

monitor dscDNA synthesis [54]. The reaction mixtures contained

16Power SYBR Green Master Mix reagent (Applied Biosystems),

250 nM gene-specific primers (except Cs18S, for which 25 nM gene

specific-primers were used) and 0.4 ml of the previously synthesized

cDNA (except Cs18S for which 0.4 ml of a 25-fold fresh dilution of

cDNA was used) in a final volume of 10 ml. The following standard

conditions were used in all PCRs: 40 cycles of 95uC for 30 s and

60uC for 1 min. A dissociation step was performed after amplifica-

tion to confirm the presence of a single amplicon. To estimate

variation in the technique, three technical replicates were carried out

for each biological replicate. Data were analyzed using SDS 2.2.2

software (Applied Biosystems). To generate a baseline-subtracted

plot of the logarithmic increase in fluorescence signal (DRn) versus

cycle number, baseline data and the Rn threshold were detected

automatically to obtain Ct (threshold cycle) values. Amplification

efficiency for each gene was calculated based on four dilutions of

template ranging from 500 ng to 0.5 ng and the equation E = 1021/

slope-1, with slopes in the range slope = 23.360.1 and E = 2. mRNA

abundances for each candidate gene were calculated as: relative

transcript abundance = 2(2DDCt). For the sample chosen as calibra-

tor, DDCt = 0 and therefore the fold-change = 1. Quantified data are

shown in the graphs as relative amounts of mRNA. The sample with

maximum expression (lower DCt) was used as calibrator and 18S

ribosomal RNA was used as the reference gene to normalize data.

The absence of genomic DNA contamination was checked using

Non-Retrotranscriptase controls (RT-) and the absence of environ-

mental contamination using Non-Template Controls (NTC).

Supporting Information

Figure S1 CsPRR gene expression in the leaves of adult chestnuts

obtained in June. Leaves were collected in June at 3-h intervals. (A)

CsPRR northern blot analysis. The rRNA loading reference was

detected by staining gels with ethidium bromide. (B) Quantitative

RT-PCR analysis. Relative transcript abundances are shown in

the graphs. Data are means from two biological replicates. Open

and filled bars above each graph represent natural day and night

lengths, respectively, as provided by the National Institute of

Meteorology, Madrid.

Found at: doi:10.1371/journal.pone.0003567.s001 (0.33 MB TIF)

Figure S2 CsPRR gene expression in the leaves of chestnut

seedlings grown under different temperature conditions. (A and B)

leaves from seedlings grown under conditions of LD and 22uC. (C

and D) leaves from seedlings grown under standard conditions

(LD, 22uC) and subsequently subjected to one week of LD at 4uC.

Samples were collected at 3-h intervals. (A and C) CsPRR northern

blot analysis. The rRNA loading reference was detected by

staining gels with ethidium bromide. (B and D) Quantitative RT-

PCR analysis. Relative transcript abundances are shown in the

graphs. Data are means from two biological replicates. Open and

filled bars above each graph indicate lights on and lights off,

respectively.

Found at: doi:10.1371/journal.pone.0003567.s002 (0.62 MB TIF)
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