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Abstract

Background: Feedback loops are the simplest building blocks of transcriptional regulatory networks and therefore their
behavior in the course of evolution is of prime interest.

Methodology: We address the question of enrichment of the number of autoregulatory feedback loops in higher
organisms. First, based on predicted autoregulatory binding sites we count the number of autoregulatory loops. We
compare it to estimates obtained either by assuming that each (conserved) gene has the same chance to be a target of a
given factor or by assuming that each conserved sequence position has an equal chance to be a binding site of the factor.

Conclusions: We demonstrate that the numbers of putative autoregulatory loops conserved between human and fugu,
danio or chicken are significantly higher than expected. Moreover we show, that conserved autoregulatory binding sites
cluster close to the factors’ starts of transcription. We conclude, that transcriptional autoregulatory feedback loops
constitute a core transcriptional network motif and their conservation has been maintained in higher vertebrate organism
evolution.

Citation: Kiełbasa SM, Vingron M (2008) Transcriptional Autoregulatory Loops Are Highly Conserved in Vertebrate Evolution. PLoS ONE 3(9): e3210. doi:10.1371/
journal.pone.0003210

Editor: Mark Isalan, Center for Genomic Regulation, Spain

Received June 17, 2008; Accepted August 18, 2008; Published September 15, 2008

Copyright: � 2008 Kiełbasa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by grants from the German Ministry for Research and Education (NGFN/BMBF).

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: szymon.kielbasa@molgen.mpg.de

Introduction

Network motifs are small patterns of interactions from which

transcription regulation networks are built [1]. They are believed

to carry out specific information-processing functions, so predic-

tion of these circuits is a key step towards understanding the

properties of living systems. Feedback, where the output signal of a

network element influences its input signal, is common in

regulatory networks. A transcriptional autoregulatory feedback

loop is the simplest network motif built out of a transcription factor

regulating its own transcription. In general, such a negative or

positive feedback leads to nonlinear dynamics [2].

In higher organisms many examples of autoregulation have been

reported often in the context of key cellular processes like

development or differentiation. For example, Hes1 negative

autoregulation plays an important role in neuronal differentiation

in early chicken embryos [3]. PAX4 expression in human is

activated during pancreatic development and then switched off by a

strong negative autoregulatory effect [4]. It has been demonstrated

that autoregulatory binding of E2F1 may provide a switch

regulating accumulation of E2F activity during human cell cycle

transitions [5]. Similarly, a positive autoregulation was demonstrat-

ed for serum response factor (SRF) in muscle gene expression [6].

The Ets-1 proto-oncogene is positively autoregulated by its own

product [7]. Autoregulation of the Hoxa4 mouse gene is essential for

maintaining normal levels of its expression during development of

the embryo [8]. A model of direct positive autoregulation of Pax6 in

mouse lens development has also been proposed [9].

The function of autoregulatory loops has been intensively

studied. A synthetic circuit has been constructed to demonstrate

experimentally that negative autoregulation can speed up

transcription responses – a negative autoregulatory circuit

approaches its steady-state value much faster than the non-

autoregulatory circuit [10]. Additionally, it has been shown that

such negative autoregulation speeds up the rise-time, but does not

generally affect the turn-off time [10]. Moreover, negative

autoregulation has been demonstrated to produce a gain of

stability compared to non-autoregulatory system [11]. Experi-

mental analysis has shown that self-repression decreases noise

compared to expression from a non-regulated promoter [12].

Positive feedback is a mechanism that has been utilized to convert

a graded input into a binary response in a eukaryotic gene circuit

[13]. Mathematical modelling has been used to conclude that

multiple stable states can only arise when a positive feedback loop

is involved [14]. Bistability allows cells to maintain either of two

distinct gene expression states, providing a mechanism by which

past environmental conditions or intercellular signals can be

remembered – this way a mixture of responses has been achieved

in a single population with genetically regulated ratios [14].

Moreover, since bistable systems are expected to display some

degree of hysteresis, its role as a mechanism acting as a buffer

preventing noise to cause accidental switching between the states

has been discussed [15].

Much of the work on understanding regulatory networks has

focused on Escherichia coli and the yeast Saccharomyces cerevisiae for

which protein-protein or protein-DNA interaction data are most
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abundant. It has been shown [16] that although similar

transcriptional genetic circuits are found abundantly they do not

share common ancestors - the transcriptional network motifs

rather are a product of convergent evolution than circuit

duplication. A similar analysis [17] has shown that although genes

and interactions between them evolve by duplication, the network

motifs themselves are not direct products of duplication with

inheritance. Moreover, by combining interaction data with protein

sequences it has been observed that orthologous transcription

factors and their target genes share the same regulation provided

that the protein sequences of the regulators are sufficiently

conserved [18]. Such conserved relationships, forming a ‘‘reg-

ulog’’, may be used to map interactions between different species.

Moreover, the transcription factors have been found less conserved

than target genes, suggesting that genes evolve slower than their

regulation. In one of the largest studies, a comprehensive yeast

transcriptional regulatory network has been constructed and

analyzed [19]. The authors studied 157 transcription factors

known to interact with more than 4000 target genes as determined

in high-throughput chip-on-chip yeast experiments. They con-

clude that a few transcription factors are global regulators of many

modules, while most of the factors control only a few modules.

Here we address the question of the importance of autoregu-

latory feedback loops in the course of evolution of higher

organisms. We study a transcriptional regulatory network formed

from the human genes and their interactions, which are predicted

based on presence of strong putative transcription factor binding

sites in regulatory regions of the genes. We look at overall

properties of a subset of predicted human binding sites that are

conserved down to chicken, fugu or danio and we concentrate on

conservation of the simplest network motif. Since autoregulatory

loops realize important biological functions we suspect that their

number should be higher than expected and they should be

conserved in the course of evolution.

In order to estimate the expected number of loops we introduce

two different models to calculate autoregulation probability of a

transcription factor. In the first model we assume, that each target

has an equal chance to be regulated by a given factor, so the

regulation probability can be expressed as a fraction of genes that

have (conserved) binding sites predicted in own regulatory regions.

We show that in this model indeed the amount of autoregulation is

significantly higher than expected, but only when the whole

regulatory network is taken into account. We do not observe this

enrichment, when a part of the regulatory network limited only to

transcription factors nodes is analyzed. We suspect, that this

observation might be a consequence of higher conservation of

transcription factors’ regulatory regions. Therefore, we introduce a

second autoregulation probability model, which takes into account

the amount of conserved positions in gene regulatory regions. In this

model we assume, that genes which have their regulatory regions

more conserved have proportionally higher chance to be predicted

as targets of a given factor. We demonstrate, that with respect to this

model the amount of predicted conserved autoregulatory feedback

loops is significantly higher than expected when conservation

between human and chicken, danio or fugu is studied. We exclude

the possibility that this growth is a consequence of unspecific

binding sites which could arise if the transcription factors preferred

sites of similar GC-content as observed in their own regulatory

regions. In another test we show that our predicted autoregulatory

binding sites cluster surprisingly close to the transcription start sites

as expected for functional binding sites but not for falsely predicted

ones. This positional preference cannot be explained by positional

variations of other properties like GC-content or total amount of

putative binding sites.

Materials and Methods

This study is based on the genomic sequences, gene annotations

and gene ortholog predictions available in the EnsEMBL database

[20] version 46. Transcription factors and the position specific

score matrices modeling sequences recognized by them were

obtained from the Transfac 10.4 database [21].

Genes and transcription factors
By GA we denote the set of all human genes annotated in the

core version of the EnsEMBL database. |G| denotes the number

of genes in the set G. By GF we describe genes that have been

identified as transcription factors and for which profiles of

recognized binding sites are available. Identification of transcrip-

tion factors we perform using the ‘factor’ table of the Transfac

database. First we map Transfac factor names to EnsEMBL

human genes. For the factor names for which this procedure fails

the rat and mouse parts of EnsEMBL are searched and human

orthologs for the resulting genes are selected but only if they are

uniquely mapped. Next, for each transcription factor, correspond-

ing position specific count matrices (PSCMs) are extracted based

on the information provided by the ‘matrix’ part of Transfac. This

may result in one transcription factor being assigned to several

PSCMs. To avoid introducing a bias due to possible higher

representation of a factor with many associated matrices, we

disambiguate this assignment by keeping for each transcription

factor only the matrix with the highest information content.

Regulatory regions
Prediction of transcription factor binding sites and their

conservation is performed in two steps: first we scan the human

DNA sequence for binding sites and next we check whether the

predicted sites belong to a sequence fragment conserved with

respect to the DNA sequence of another organism.

For each gene gMGA we study sequence fragments from 3000 nt

upstream till 3000 nt downstream around the start of the gene

(without masking repeat regions or coding sequences). Transcrip-

tion factor binding sites are predicted using the method described

by [22] and as the authors suggest we choose for each PSCM a

score threshold which corresponds to finding with a probability

0.05 a single false positive match every 500 tested positions of

DNA sequence. By sf,g we denote the number of binding sites of a

transcription factor fMGF predicted within the DNA sequence

around a gene gMGA. Moreover, by nf,g we understand the number

of positions around the gene scanned for a PSCM match.

Next, the predicted human binding sites are checked whether

they belong to a sequence fragment conserved in another species

close to the orthologue of a studied gene. We study conservation to

rat, mouse, chicken, danio and fugu organisms separately. From

the EnsEMBL Compara database we obtain lists of genes that are

orthologs to the human genes and we use the BlastZ [23]

algorithm to align each human gene DNA sequence to the DNA

sequence of each of its orthologs. Before aligning we extend the

sequences to 5000 nt upstream and 5000 nt downstream with

respect to their transcription start sites. This way we calculate

regions in the neighborhood of each gene from GA which are

conserved in at least one of its orthologues from the chosen

organism. Here we extend the above notation and introduce

subsets G
org
A G

org
F

� �
containing human genes (factors) which have

an ortholog in organism org. For example, Gmouse
F denotes the

subset of human transcription factors which have at least one

ortholog among mouse transcription factors. By s
org
f ,g we describe

the number of binding sites for factor f predicted in fragments of

sequence around gene g[G
org
A . Similarly, n

org
f ,g stands for the

Autoregulatory Loops…
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number of scanned positions of factor f binding within the

conserved sequence part of gene g.

Random models of autoregulation
The transcriptional regulatory interactions between transcrip-

tion factors and their target genes can be presented as a directed

graph. The nodes correspond to all genes GA and directed edges,

always pointing from transcription factors GF to their target genes,

are interpreted as ‘‘predicted to be regulated’’ relations. An edge

fRg is added to the graph only when at least one binding site is

predicted around the target gene, so when sf,g$1.

An autoregulatory feedback loop is defined as at least one predicted

binding site in a transcription factor’s own regulatory region, or

equivalently sf,f$1 for fMGF. An autoregulatory loop is represented by

an edge in the graph pointing to the same transcription factor node

from where it originates. Therefore, the number of autoregulatory

loops obtained by prediction of binding sites can be written as:

L~
X
f [GF

d sf ,f §1
� �

:

The hypothesis which we study is whether in the graph there are

more predicted autoregulatory loops than expected. In order to

estimate how probable it is to observe by chance L autoregulatory

loops we first estimate probabilities for a transcription factor to be a

target of itself. Then using these probabilities we simulate the total

number of autoregulatory loops. We study separately the cases, when

targets are defined as all genes GA or as transcription factors only GF.

Moreover, the requirement that binding sites should be conserved

causes some nodes or edges to disappear from the graph. Therefore,

we study the above hypothesis for different conservation depths.

The simplest gene-oriented model to estimate the autoregula-

tion probability pM (f; G) of a transcription factor fMGF assumes that

each gene (from G) has the same chance to be regulated. Then the

probability would be estimated by a fraction of genes predicted to

have a binding site of the factor f

pM f ; Gð Þ~

P
g[G

d sf ,g§1
� �

Gj j :

The second, site-oriented model of autoregulation takes into

account the amount of conserved positions in gene regulatory

regions. The site-oriented estimator of autoregulation probability

pS (f; G) for each factor f takes into account the total number of

binding sites in the genome
P
g[G

sf ,g predicted over the total

number of positions scanned for binding
P
g[G

nf ,g. Using the

hypergeometric distribution pH we calculate the probability of

observing at least one predicted site among nf,f factor’s positions in

conserved sequence assuming that the predicted sites were

randomly distributed over all genomic conserved positions

pS f ; Gð Þ~pH §1;
X
g[G

sf ,g,nf ,f ,
X
g[G

nf ,g

 !
,

where pH ($c; a,b,N) denotes the probability that there are at least c

elements shared between two sets of sizes a and b whose elements

were independently and randomly chosen from a set of N

elements. Equivalently, the above formula can be written as:

pS f ; Gð Þ~1{pH ~0;
X
g[G

sf ,g,nf ,f ,
X
g[G

nf ,g

 !
,

where pH ( = c; a,b,N) denotes the probability of exactly c elements

to be shared between the sets of a and b elements chosen from a set

of N elements.

Finally, once we have the probabilities of autoregulation for

each transcription factor we may estimate the probability

distribution of observing a given number of autoregulatory

feedback loops. We perform 106 simulations where we randomly

assign an autoregulatory loop to a factor based on factor’s

individual autoregulation probability. This allows us to estimate p-

values for observing a given number of autoregulatory loops,

which we use to evaluate our hypothesis. The expected number of

autoregulatory loops estimated from the set of genes G we denote

by LM (G) or LS (G) depending which probability model is used.

Moreover, L
org
M Gð Þ and L

org
S Gð Þ stand for expected averages

calculated for genes and sequence fragments conserved between

human and organism org.

Results and Discussion

The choice of probability model is crucial in determining

whether the number of autoregulatory loops in a predicted gene

regulatory network is surprisingly high. Key function of such a

probability model is to define the probability that a gene is

regulated by a given transcription factor. We study a simple and a

more sophisticated probability model.

In the simple model, when a transcription factor regulates a

certain fraction of the genes, this number is also taken to be the

probability that the factor regulates itself. Below it will be shown

that this model suffers from a bias towards regulation of genes with

a large part of their upstream sequence evolutionarily conserved,

simply because it is more likely to predict a binding site within a

longer sequence stretch than within a short one. Since, in

particular, transcription factors tend to display high conservation

of their upstream regions, this bias prevents us from recognizing

particular topological features among transcription factors.

Due to the low specificity of binding site predictions, we cannot

afford to drop the focus on conserved predicted binding sites. We

thus put forward a more complex probability model that accounts

for the amount of conserved upstream sequence. In this model, it is

recognized that extensive upstream sequence conservation makes

false positive predictions more likely and, consequently, the

probability of true regulation needs to be downweighted. The

probability for regulation can be computed as the probability of

observing a non-zero overlap between all predicted binding sites

and the ones upstream of the gene, always accounting for the

amount of the conserved sequence. A hypergeometric distribution

describes just this situation and the formulae are given in the

Methods Section.

The key quantity needed to formalize the intuition of

autoregulatory loops being frequent, is the number of autoregu-

latory loops in a network as a random variable. Each transcription

factor contributes to this number with the probability that the

factor, seen as a target gene, could be its own target, i.e. with its

own probability to regulate a gene. Thus, one needs to add for all

transcription factors these probabilities to obtain the expected

number of autoregulatory loops. The Methods Section describes

the simulations employed to determine the distributions for this

quantity under the two probability models, respectively.

In total we extracted |GA| = 30793 human genes and

corresponding regulatory sequences around their transcription

start sites. Out of these genes |GF| = 292 have been identified as

transcription factors and we could associate each one of them with

at least one position specific count matrix (PSCM). The number of

PSCMs annotated to a transcription factor varies as presented in

Autoregulatory Loops…
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the Table 1. For each transcription factor we choose the matrix of

the highest information content, and afterwards, since several

transcription factors are linked with the same PSCM the total

number of different PSCMs is smaller than number of transcrip-

tion factors and equals 217.

For all the genes we extracted corresponding orthologs in

mouse, rat, chicken, fugu and danio genomes. Table 2 summarizes

the numbers of human genes found to have at least one ortholog in

a given species and the average lengths of fragments of regulatory

regions which are conserved in the given species. Moreover, the

numbers of transcription factors predicted to have an autoregu-

latory binding site are given. In general, for all analyzed species

larger fractions of regulatory regions are conserved in the

transcription factors GF than in all genes GA. As a consequence,

the probabilities pM and pS differ depending on the set of genes

used for their calculation.

As shown in Figure 1 the majority of human genes are predicted

to be regulated by each transcription factor even when strict

thresholds for generation of a putative binding site are used. This is

a well known problem related to low information content of

PSCMs and long sequences studied, which leads to many false

positive predictions.

Table 3 compares numbers of autoregulatory feedback loops

obtained by counting site predictions Lorg for different levels of

sequence conservation with expected numbers calculated based on

the introduced probability models. Additionally, the probabilities

of obtaining in the simulation at least as many autoregulatory

loops as Lorg are given in parenthesis. We study these probabilities

at the 0.05 significance threshold.

The counts Lorg are significantly higher than expected with

respect to the gene-oriented probability model trained on all genes

L
org
M GAð Þ. For all depths of conservation the model gives us strong

evidence supporting our hypothesis. In particular, when conser-

vation between human and the fishes is studied only about 55% of

the autoregulatory loops could be explained by the model. But

once the regulatory network is narrowed to the interactions

predicted between transcription factors, the gene-oriented model

L
org
M GFð Þ gives expectations no longer significantly different than

the counts Lorg. This is a consequence of higher sequence

conservation observed for the transcription factors than for

average genes. Therefore, the hypothesis evaluated in the context

of interactions exclusively between the transcription factors with

respect to the gene-oriented model has no support.

In the site-based model the influence of varying sequence

conservation is taken into account. For this model trained on all

genes L
org
S GAð Þ we observe that the counts are significantly higher

than expectations for feedback loops conserved down to chicken,

fugu and danio. On average, approx. 70% more autoregulatory

loops are found than expected by the model. This provides strong

evidence in favor for our hypothesis - among conserved regulatory

regions transcription factors tend to have own binding sites more

often than expected from the density of their sites in other targets.

This observation is also valid, when the site-based model is trained

only on the transcription factors. Here as well there appears to be

significantly more feedback loops conserved down to chicken, fugu

and danio compared to L
org
S GFð Þ.

The procedure that we use for prediction of binding sites

assumes the same background properties of all studied sequence

positions. As a consequence, PSCMs with high GC-content would

by chance occur more frequently in GC-rich regulatory regions.

Therefore, we check whether GC-contents of transcription factors

PSCMs and of corresponding regulatory regions correlate, which

could explain predicted preferences of transcription factors to bind

Table 1. Distribution of numbers of PSCMs associated with
transcription factors.

Number of PSCMs Count Transcription factors

1 136 …

2 77 …

3 47 …

4 20 …

5 10 …

6 11 …

7 1 HNF4A

8 0 -

9 0 -

10 3 MEF2A, TCF3, CREB1

11 0 -

12 1 POU2F1

13 1 E2F1

In total 292 transcription factors, which could be mapped to human genes, are
linked with 392 different PSCMs. In this study we choose for each transcription
factor only the PSCM of the highest information content. This leads to 217
different PSCMs associated with the factors.
doi:10.1371/journal.pone.0003210.t001

Table 2. Numbers of conserved transcription factors and genes.

Organism org

Number of
autoregulated factors
(fraction [%]) Lorg

Number of factors

G
org
F

�� �� Sequence conservation
around factors [%]

Number of genes

G
org
A

�� �� Sequence conservation
around genes [%]

human 231 (100) 292 - 30793 -

human-mouse 156 (56.5) 276 65.2 18136 50.4

human-rat 135 (51.5) 262 56.5 16891 44.5

human-chicken 39 (24.2) 161 11.5 10658 8.0

human-fugu 34 (17.8) 191 8.3 10263 5.8

human-danio 31 (16.5) 188 7.6 10040 4.9

L
org gives the numbers of autoregulatory loops observed by counting binding sites predicted in regulatory region fragments conserved between human and organism

org. G
org
F

�� �� and G
org
A

�� �� give numbers of human factors and genes which have orthologs in org. The remaining columns give an average fraction of gene regulatory
regions that could be aligned with regulatory regions of the orthologs.
doi:10.1371/journal.pone.0003210.t002
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Figure 1. Comparison of fractions of genes and factors targeted by a transcription factor. Each point corresponds to a transcription factor
fMGF. Horizontal axes provide the fraction of factors p

org
M f ,GFð Þ predicted to have a conserved binding site of f. Vertical axes give the fraction of

regulated genes p
org
M f ,GAð Þ. Three cases are shown: no conservation, conservation to danio and to fugu.

doi:10.1371/journal.pone.0003210.g001

Table 3. Observed and expected numbers of autoregulatory loops.

org Lorg L
org
M GAð Þ L

org
M GFð Þ L

org
S GAð Þ L

org
S GFð Þ

human 231 218.3 (0.034) 218.0 (0.034) 232.1 (0.61) 229.6 (0.45)

human-mouse 156 128.2 (0.0005) 149.0 (0.21) 153.4 (0.38) 148.5 (0.16)

human-rat 135 115.0 (0.0082) 131.4 (0.35) 129.1 (0.20) 125.5 (0.083)

human-chicken 39 27.7 (0.017) 39.6 (0.57) 23.4 (0.00006) 25.1 (0.00045)

human-fugu 34 20.1 (0.0019) 27.7 (0.12) 19.3 (0.00031) 20.8 (0.00062)

human-danio 31 17.6 (0.0014) 25.6 (0.15) 18.7 (0.0015) 17.6 (0.00031)

The Lorg column gives the number of conserved autoregulatory loops. Subsequent columns list expected numbers of conserved autoregulatory loops and p-values of
the observed numbers for two different probability models pM and pS trained either only on the transcription factors GF or on all genes GA.
doi:10.1371/journal.pone.0003210.t003

+

+

+

+

+
+

+

++

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+
+

+

+

+

+
+

+
+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

++

+

+
+

+++

+

+

++ +

+

+

+ +

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+ +

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

++

+

+
+

+
+

+
+ +

+

+

+
+

+

++

+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+
+

++

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

++

+

+

+

+

+

+

+

+
+

+

+

+

++

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+
+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+ +

+

+

+

++ +

+

+

+

+

+

+

+

0.3 0.4 0.5 0.6 0.7

0.
2

0.
4

0.
6

0.
8

Regulatory region GCcontent

P
S

C
M

 G
C

co
nt

en
t

+

+

+

+

+

+

+

+

+

+
+

+

+
+

++
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+ +

+

+

+

+

+

+

+

+

++

+

+

+

++

+

+

+

+
+

+

+ +

+

+

+

+

+

+

+ +

+

+

+

+

+
+

+
+ +

+

+
+

+

+

+

+

+

+

+

+

+

+

++

+
+

+

+

+

+

+

+ +

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+ +

+

+
+

+

0.3 0.4 0.5 0.6 0.7

0.
2

0.
4

0.
6

0.
8

Regulatory region GC content

P
S

C
M

 G
C

 
co

nt
en

t

Figure 2. Relation between GC-contents of transcription factor’s regulatory regions and corresponding PSCMs. Left: human
sequences were used for regulatory region GC-content calculation. Right: fragments of human sequence conserved in fugu.
doi:10.1371/journal.pone.0003210.g002
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own regulatory regions. Figure 2 presents a scatter plots illustrating

the dependence of both GC-contents when the complete

regulatory regions are used or only their fragments conserved

between human and fugu. We observe no correlation for any

conservation depth. Therefore we conclude that unspecific GC-

related preference of transcription factors does not explain

overrepresentation of putative autoregulatory loops.

Figure 3 shows the positional behavior of conserved sequence

fragments and predicted autoregulatory binding sites. We define

bins of equal lengths located at different distances with respect to

transcription start sites (TSSs) of the factors GF. Within each bin

we count the amount of conserved nucleotides and average GC-

content of the conserved sequence. Moreover, we calculate the

number of autoregulatory binding sites predicted within a bin. For

all shown depths of conservation a striking growth of the number

of putative autoregulatory binding sites is observed in the bin

located directly upstream of the TSSes. Moreover, autoregulatory

binding sites are rather predicted downstream of TSSs than in the

further upstream bins (excluding the first upstream bin). These

distributions are significantly different from a uniform distribution

that would be expected for random binding sites. A slight growth

of amount of conserved sequence caused by higher conservation of

exons shows a different shape and does not explain observed

positional distribution of autoregulatory sites. Similarly, the

average GC-content resembles the conserved sequence pattern

and does not seem to influence autoregulatory sites distribution

either.

In order to further test autoregulatory dependences between

transcription factors and corresponding PSCMs we created a set of

PSCMs with randomly shuffled positions. In general such a

shuffling procedure should destroy a preference of a transcription

factor to its own promoter. Indeed, as expected, the resulting

number of predicted autoregulatory loops was no longer

significantly different from the expected value.

Summarizing, we have shown that the number of autoregula-

tory feedback loops conserved between human and fugu, danio or

chicken is significantly higher than expected in the site- and gene-

oriented models. This significant overrepresentation we interpret

o

o

o

o

o

o

o

o o

o
o o

x x x x x x x x x x x x

+ + + +
+

+
+

+
+

+ + +

2500 2000 1500 1000 500 0 500 1000 1500 2000 2500

40
60

80
10

0
14

0

1

o
x
+

human
sites
conservation
gccontent

o o o o
o

o

o

o

o

o

o
o

x x x x x
x

x x x x x x

+ + +
+ +

+
+

+
+ +

+ +

 2500  2000  1500  1000  500 0 500 1000 1500 2000 2500

0
5

10
15

0
0.

1
0.

3
0.

5

o
x
+

fugu human
sites
conservation
gc content

o
o o o

o

o

o

o

o

o

o o

x x x x x x

x x
x x x x

+
+

+ +
+

+
+

+ + +
+ +

 2500  2000  1500  1000  500 0 500 1000 1500 2000 2500

0
2

4
6

8
10

12

0
0.

1
0.

3
0.

5

o
x
+

danio human
sites
conservation
gc content

Figure 3. Positional distribution of autoregulatory binding sites. Amounts of conserved sequence and numbers of autoregulatory binding
sites observed in bins located at different distances with respect to factors starts of transcription. Left axes present amount of contributing
autoregulatory binding sites within a bin; right axes show fraction of conserved nucleotides in all factors within a bin. Top chart corresponds to the
human sequence; below, for conserved sequence fragments to fugu and danio.
doi:10.1371/journal.pone.0003210.g003
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as a consequence of biological importance of autoregulatory

network motifs in regulation of processes maintained by cells. The

predicted autoregulatory loops seem to constitute the core of

conserved regulatory relationships across several distant species.

The contributing sites have been shown to have positional

preference towards annotated transcriptional start sites of the

factors, which cannot be explained by a bias caused by GC

content or non-uniform sequence conservation.
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