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Abstract

Background: Diverse bacterial genomes encode numerous small non-coding RNAs (sRNAs) that regulate myriad biological
processes. While bioinformatic algorithms have proven effective in identifying sRNA-encoding loci, the lack of tools and
infrastructure with which to execute these computationally demanding algorithms has limited their utilization. Genome-
wide predictions of sRNA-encoding genes have been conducted in less than 3% of all sequenced bacterial strains, leading
to critical gaps in current annotations. The relative paucity of genome-wide sRNA prediction represents a critical gap in
current annotations of bacterial genomes and has limited examination of larger issues in sRNA biology, such as sRNA
evolution.

Methodology/Principal Findings: We have developed and deployed SIPHT, a high throughput computational tool that
utilizes workflow management and distributed computing to effectively conduct kingdom-wide predictions and
annotations of intergenic sRNA-encoding genes. Candidate sRNA-encoding loci are identified based on the presence of
putative Rho-independent terminators downstream of conserved intergenic sequences, and each locus is annotated for
several features, including conservation in other species, association with one of several transcription factor binding sites
and homology to any of over 300 previously identified sRNAs and cis-regulatory RNA elements. Using SIPHT, we conducted
searches for putative sRNA-encoding genes in all 932 bacterial replicons in the NCBI database. These searches yielded nearly
60% of previously confirmed sRNAs, hundreds of previously annotated cis-encoded regulatory RNA elements such as
riboswitches, and over 45,000 novel candidate intergenic loci.

Conclusions/Significance: Candidate loci were identified across all branches of the bacterial evolutionary tree, suggesting a
central and ubiquitous role for RNA-mediated regulation among bacterial species. Annotation of candidate loci by SIPHT
provides clues into the potential biological function of thousands of previously confirmed and candidate regulatory RNAs
and affords new insights into the evolution of bacterial riboregulation.
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Introduction

sRNAs are small (typically 100–300 nucleotides in length), non-

coding bacterial RNAs that regulate gene expression, usually by

interacting with specific mRNA targets to modulate message

stability and/or accessibility to the translation machinery [1].

sRNAs have been shown to regulate a wide variety of cellular

processes including secretion, quorum sensing, stress responses,

and virulence [1,2]. In nearly all cases, genes encoding sRNAs are

located far from genes encoding their mRNA targets and

sRNA:mRNA hybridization occurs over relatively short regions

of imperfect complimentarity. Due to this limited sRNA:mRNA

complimentarity, predicting the regulatory role of confirmed

sRNAs through bioinformatic identification of their mRNA targets

has proven very difficult. In recent years, more than 200 sRNAs

have been identified in several bacterial species including

Escherichia coli, Vibrio cholerae, Pseudomonas aeruginosa, Bacillus subtilis,

Listeria monocytogenes, and several cyanobacterial species [3]. While

the diversity of species known to encode sRNAs suggests that these

riboregulators are common to most if not all branches of the

bacterial evolutionary tree, genome-wide predictions of sRNA-

encoding genes have been conducted in only 19 of the over 550

sequenced bacterial strains [3]. Moreover, the biological activities

of only a small minority of confirmed sRNAs are currently known.

The relative paucity of sRNA predictions and functional

annotations represents a significant gap in our understanding of

bacterial genomes, transcriptomes, and regulatory pathways.

The lack of genome-wide annotations for sRNA-encoding genes

compared to those for genes encoding proteins, tRNAs, and

rRNAs is due in large part to the relative difficulty of identifying

sRNA-encoding loci by bioinformatic approaches. First, unlike

protein-encoding genes, sRNAs do not encode open reading

frames and thus cannot be readily identified based on their

primary sequence alone. Second, unlike rRNAs and tRNAs, which
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are well conserved among diverse bacterial species, most known

sRNAs are conserved only among closely related species. Since the

vast majority of sRNAs physically confirmed to date have been

identified in only a few species of c-proteobacteria, prediction of

sRNAs based solely on homology to known sRNAs has yielded

relatively few loci outside of this class [4,5].

Several bioinformatic approaches have been developed to identify

sRNA-encoding genes in intergenic regions of bacterial genomes by

searching for the co-localization of genetic features such as predicted

Rho-independent transcription terminators, promoters and tran-

scription factor binding sites (TFBSs), intergenic conservation among

closely related species, and/or conserved secondary structure [3].

While these bioinformatic approaches have proven effective in

identifying sRNAs in several species, they present significant

computational challenges, requiring the positional relationships of

thousands of individual genetic features to be ascertained for each

genome-wide search. Several computational programs, including

sRNAPredict2 and ISI [6,7], have recently been developed to

facilitate the efficient execution of these algorithms. However,

searches using these programs involve highly fragmented protocols

requiring execution of numerous interdependent programs. More-

over, some of the steps in these algorithms are computationally

demanding. Prediction and annotation of sRNA-encoding genes in a

single genome using currently available tools therefore requires

significant user supervision and can take several hours to complete;

conducting these searches in the hundreds of sequenced bacterial

genomes would take many thousands of hours of supervised

computation. Furthermore, previous algorithms designed to identify

sRNA-encoding genes provide little functional annotation of

predicted loci and thus yield little insight into the potential biological

roles of candidate loci.

To enable high-throughput, kingdom-wide prediction and

functional annotation of bacterial sRNA-encoding genes, we

developed SIPHT (sRNA identification protocol using high-

throughput technologies). SIPHT utilizes automatic workflow

and distributive computing to enable a single user to conduct rapid

kingdom-wide searches for sRNAs, a task that would not be

practical without these computational approaches. SIPHT iden-

tifies candidate intergenic loci based on the co-localization of

intergenic conservation and Rho-independent terminators and

then annotates each of these loci for numerous features designed to

provide information regarding the strength of its prediction and/

or its potential biological functions. Using SIPHT, predictions and

annotations of putative sRNA-encoding genes were conducted in

932 bacterial replicons yielding 45,599 candidates for previously

unannotated intergenic loci. Annotations of these loci by SIPHT

help to identify particularly strong candidates for novel intergenic

transcripts and differentiate between putative sRNA-encoding

genes and other types of intergenic loci such as conserved

untranslated regions (UTRs) of mRNAs, intergenic repeat

sequences, and cis-acting regulatory RNAs. Functions for

thousands of the predicted loci, including several previously

confirmed but uncharacterized small intergenic transcripts, are

suggested by their homology to and/or shared synteny with genes

encoding characterized sRNAs or cis-regulatory RNA elements,

their association with putative TFBSs, and/or their pattern of

conservation both within the same genome and among the

genomes of other species. These kingdom-wide predictions and

annotations, along with a web-interface allowing access to the

SIPHT system are available at http://bio.cs.wisc.edu/sRNA,

email: . The SIPHT interface is accessible using the login name

and password ‘‘SIPHT’’ and search results will be sent to the

account SIPHTreviewer@gmail.com accessible using the pass-

word ‘‘reviewer’’.

Methods

Genome sequence and annotation files and sRNA
databases

Genome sequence and ORF sequence files (.fna and .ffn

extensions, respectively) and annotation files (.gbk extensions) were

obtained from the NCBI ftp database. All sequences and

coordinates of confirmed E. coli sRNAs were obtained from the

EcoCyc database [8] or from published results [9,10] and of tested

but unconfirmed E. coli loci from published results [11,12].

Sequences and coordinates of physically tested sRNAs in V.

cholerae, P. aeruginosa, B. subtilis, L. innocua, P. marinus, S. typhimurium

and S. aureus were based on published results [7,13–20] and in S.

meliloti on both published results [21] and unpublished results (C.

Valverde, J.L., J. Schlüter, J. Reinkensmeier, A. Becker and G.

Parisi). A database combining the coordinates of these physically

confirmed sRNAs with the coordinates of putative non-coding

RNAs (ncRNAs) obtained from Rfam version 8.1 [4] and from the

predictions of Weinberg et al. [22] was used to identify predicted

loci corresponding to previously predicted and/or experimentally

detected ncRNAs and to annotate for homology to and conserved

synteny with ,350 experimentally confirmed or putative sRNAs

and cis-encoded regulatory RNAs.

Identifying primary conservation
Intergenic regions (IGRs) in each replicon were compared using

BLASTN 2.0 [9] (with E set to 5e-3 and B and V each set to

10,000) to a database including all IGRs in all other replicons

except i) IGRs from the same strain ii) IGRs from different strains

of the same species (strains sharing the same genus and species

names) and iii) IGRs with an AT or GC content above 75%. The

last class of IGRs was excluded from BLAST comparisons because

these IGRs were found to produce high scoring alignments with

IGRs in numerous unrelated AT or GC-rich species that are

unlikely to correspond to real sequence conservation. Overlapping

predicted loci conserved in multiple replicons were parsed into a

single locus; the reported E value and score for each locus

corresponds to the lowest E value and highest score of these

overlapping candidates. In the annotation of candidate loci for

inter- or intragenomic sequence conservation, BLAST compari-

sons were conducted not between the sequences of the putative

RNA-encoding loci, which were often quite short, but between the

entire IGR sequences containing these loci. The BLAST E

threshold in these comparisons was set to 1e-3.

sRNA_Annotate searches the output of this IGR vs. IGR

BLAST to identify sequence alignments that overlap the RNA-

encoding genes in both the query and database IGR sequences.

Two loci in different replicons are considered homologous if, for

both loci, the region of overlap between the BLAST alignment

and the locus is i) more than 50% of the entire length of the locus,

ii) more than 80% of the entire length of the BLAST alignment, or

iii) longer than 75 bp. Two loci in the same replicon are

considered homologous if, for both loci, the region of overlap

between the BLAST alignment and the loci is more than 20% of

the entire length of the locus.

Terminator identification
Three programs, RNAMotif, TransTerm, and FindTerm, were

used to identify putative Rho-independent terminators. RNAMotif

searches were conducted using RNAMotif v3.0.4 [23] with a motif

descriptor provided by D.J. Ecker. TransTerm searches were

conducted using TransTermHP v2.05 [24]. The FindTerm

program was created by Gilgi Friedlander based on a heuristic

algorithm developed by Ruth Hershberg [11].

Kingdom-Wide ncRNA Annotations
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Identifying conserved secondary structure
IGRs containing candidate sRNA loci were compared by

BLAST to a database of all IGRs. QRNA analyses were

conducted using version 2.0.3d [25] with the window size (w) set

to 150 and the slide size (x) set to 50. A putative sRNA is reported

to correspond to a region of conserved secondary structure

(denoted as ‘RNA’ in the ‘QRNA?’ column of the output file) or

coding region (denoted as ‘COD’ in the ‘QRNA?’ column of the

output file) if that sRNA overlaps any region predicted by QRNA

to encode conserved secondary structure or conserved coding

sequence, respectively, above a score of 5. If a candidate overlaps

both a region predicted as RNA and a region predicted as COD, it

is annotated as RNA/COD or COD/RNA, with the highest

scoring prediction listed first.

Search parameters for sRNA prediction
In all searches, the maximum overlap between a predicted locus

and an annotated ORF was set at 65 and the maximum gap

allowed between the 39 end of a region of conservation and the 59

end of a predicted Rho-independent terminator was 35 bp. The

maximum E value, the minimum TransTerm confidence value,

maximum RNAMotif and FindTerm scores, and minimum and

maximum lengths of predicted loci were set to the following values:

Search A- 1, 80%, -6, -7, 30, and 600; Search B- 1e-5, 86%, -7.5, -

10, 35, and 550; Search C- 1e-15, 87%, -9, -10, 50, and 500;

Search D- 1e-25, 90%, -10, -11, 60, and 450. Loci predicted in

IGRs longer than 1 kbp were excluded as this was found to

significantly increase specificity. The reported 59 end of the

predicted locus is based on the 59 border of the shortest HSP

associated with that locus; the 39 end of the predicted locus is

based on the predicted 39 end of its associated terminator. Thus,

the reported lengths of putative loci may differ significantly from

their actual size. Loci predicted overlapping but antisense to other

loci were discarded if 1) they were associated with a terminator

identified by only one terminator prediction program and 2) their

antisense loci was associated with a terminator predicted by .1

program.

Identifying TFBSs
BioProspector [9,26] was used to search for conserved motifs

upstream of genes known to be regulated by particular

transcription factors, to generate TFBS consensus sequences. For

TFBS consensus motifs of variable length, separate matrices were

constructed for each motif length. Lists of genes regulated by B.

subtilis SigA, SigK, and SigG were obtained from DBTBS [27].

Lists of genes regulated by LexA and Fur were based on their

experimentally determined regulons in both gram-positive and

gram-negative species (for Fur [28–31]; for LexA [32–34]). The list

of genes regulated by s54 in diverse species was obtained from

Barrios et al. [35]. The list of genes regulated by sE and s70 in E.

coli were obtained from Rhodius et al. [36] and from RegulonDB

[37], respectively. Searches for putative TFBSs corresponding to

each consensus matrix were conducted using Patser v3e.1 [38].

For Patser searches, the a priori nucleotide probabilities used to

convert the alignment matrix to a weight matrix were set to 0.25

for all 4 nucleotides. Annotations for Fur, LexA, and s54 binding

sites were conducted for all strains; for s70 and SigA, gram-

negative and gram-positive strains, respectively; for SigK and

SigG, sporulating strains; for sE, strains of Enterobacteriaceae.

Determining conserved synteny
Nucleotide sequences of the two ORFs closest to the 59 end and

the two ORFs closest to the 39 end of candidate and previously

annotated or confirmed loci were compared by BLAST (E,1e-3).

In annotating predicted loci as sharing conserved synteny with

known ncRNA-encoding loci, homology and conserved orienta-

tion relative to EITHER the nearest upstream OR nearest

downstream gene of the previously identified locus was regarded as

sufficient. Loci sharing homologous genomic context and

orientation with only one flanking ORF are denoted in the text

as having ‘conserved 39 synteny’ or ‘conserved 59 synteny’,

respectively; a locus is said to have ‘conserved synteny’ with

another locus ONLY if at least one of the two nearest upstream

genes AND at least one of the nearest downstream genes are

homologous AND their orientation relative to these homologous

genes on both sides is conserved.

Results and Discussion

A summary of SIPHT, a high-throughput program for
predicting and annotating bacterial sRNA-encoding
genes

A schematic of the SIPHT protocol is shown in Figure 1. Three

programs, RNAMotif, TransTerm, and FindTerm, are used to

predict Rho-independent terminators. Conserved intergenic

sequences are identified by comparing the IGRs of the replicon

of interest (ROI) to all appropriate IGRs from other replicons

using BLAST (see Methods). sRNAPredictHT then identifies

candidate sRNA-encoding genes by searching IGRs for putative

terminators located within or directly downstream of conserved

sequences and annotates these candidates for the following

features: the coordinate position and strand orientation of each

predicted sRNA-encoding gene; the distances between the

candidate gene and the genes flanking its IGR as well as the

name and orientation of these genes; the BLAST E value and

score of its associated conserved sequences; the number and

name(s) of the replicons in which it is conserved; which program(s)

predicted its associated terminator; and whether it corresponds to

a previously annotated regulatory RNA. Following candidate

prediction and annotation by sRNAPredictHT, several other

programs including BLAST, QRNA, Patser, and FFN_parse are

used to annotate the candidate genes for a number of features

including i) homology to previously identified regulatory RNAs ii)

homology to other candidates in the same replicon iii) association

with putative transcription factor binding sites (TFBSs) iv)

conserved secondary structure and v) conserved synteny with

previously identified regulatory RNAs. The output of the SIPHT

search is a tab-delimited file that can be opened in Excel and that

allows candidate loci to be sorted by any of the features described

above.

As shown in Figure 1, the entire SIPHT workflow was unified

and automated using DAGMan (Directed Acyclic Graph

Manager), a scheduler that coordinates the execution of a set of

programs that are inter-dependent due to input/output constraints

[39]. Management of the SIPHT workflow by DAGMan allows

the user to conduct an entire SIPHT search in one replicon or in

over one thousand replicons by a single invocation of a command

line. This command line is used to create a configuration file that is

accessed by various programs in the workflow. While DAGMan

allows SIPHT to be run as a unified, ‘‘launch and leave’’ process,

several of the steps in the SIPHT protocol are computationally

intensive and can each take several hours to complete for a search

of a single replicon. Thus a single SIPHT search of all 932

bacterial replicons would take over two months to complete if

executed on a single CPU. To increase the throughput of SIPHT

searches, distributed computing was incorporated into the SIPHT

protocol using Condor, a distributed batch system that manages

Kingdom-Wide ncRNA Annotations
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the allocation and execution of computational tasks to distributed

systems like computational grids [39]. By utilizing automated

workflow management and harnessing the collective computing

power of over 1500 computing cores in the Grid Laboratory of

Wisconsin (GLOW), SIPHT is able to complete a search in a

typical genome in 1–2 hours and in all 932 sequenced bacterial

replicons in the NCBI database in less than 12 hours without any

user intervention. Each kingdom-wide analysis consumes over

1600 computing hours (more than 60 computing days), incorpo-

rates tens of thousands of individual data files, and requires 11

different scripts to be executed a total of over 12,000 times and

thus would not be feasible without the high-throughput capabilities

employed by SIPHT.

Calibrating the SIPHT search parameters
The SIPHT protocol incorporates numerous adjustable search

parameters, including the maximum E value of BLAST

alignments, the minimum score or confidence thresholds for

terminator predictions, and the minimum and maximum lengths

of predicted loci. To determine appropriate search parameters for

our kingdom-wide searches, we conducted 4 SIPHT searches in 8

diverse species, increasing the stringency of each search by

coordinately adjusting the parameters described above (Searches

A–D; see Methods). The 8 species chosen for these analyses were

ones in which several intergenic loci had been subjected to

experimental validation and/or had been previously annotated

based on sequence homology to experimentally confirmed

Figure 1. Schematic of SIPHT. The two main stages of the SIPHT protocol are shown on the left. The two sets of non-interdependent programs in
the workflow that are executed in parallel are denoted by shaded ovals. The steps in the workflow surrounded by dotted lines are not executed in
every search but rather periodically to update local databases.
doi:10.1371/journal.pone.0003197.g001
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intergenic transcripts. In several of these species, a significant

number of candidate loci that had been subjected to experimental

testing had not been confirmed, suggesting they corresponded to

false predictions (referred to throughout as false predictions).

As shown in Figure 2, the lowest stringency search (Search A)

yielded over 70% of 212 confirmed transcripts but also 33% of 108

false predictions, suggesting that searches employing these

parameters have a high sensitivity but low specificity for real

sRNA-encoding loci. The most stringent search conducted, Search

D, yielded a marked reduction in sensitivity for confirmed loci

(Figure 2), especially in V. cholerae and P. aeruginosa, where the

proportion of confirmed transcripts identified dropped from 60%

to 10% and from 79% to 14%, respectively. These observations

suggest that the parameters used in Search A and Search D were

not stringent enough and too stringent, respectively. In contrast,

the search parameters used for Searches B and C yielded only

modest reductions in sensitivity compared with Search A but

significantly improved specificity (Figure 2). The parameters used

in Search C were employed in our kingdom-wide searches because

these parameters yielded higher specificity than those used in

Search B. The proportion of confirmed loci identified in Search C

varies significantly among the 8 species included in this search

(Table 1). In general the sensitivity of the SIPHT predictions were

markedly higher in proteobacteria than in other species. Of the

known sRNAs not predicted, most were missed because their

associated terminator was not identified. This was particularly true

for the sRNAs missed in Gm+ species.

Over 45,000 candidate loci were identified in the
kingdom-wide SIPHT searches

The SIPHT output files for each of the 932 bacterial replicons

included in our search, instructions for interpreting the data in

these files, and a web-accessible interface to SIPHT are available

at http://bio.cs.wisc.edu/sRNA. The SIPHT kingdom-wide

searches yielded a total of 47,273 loci, including 45,599 loci not

corresponding to previously tested sRNAs or included in the Rfam

database (v. 8.1) (referred to throughout as candidate loci). This

database contains putative homologues of previously confirmed

intergenic loci identified using a BLAST-based heuristic [4]. These

candidate loci were identified in the chromosomes of 461 of the

524 strains included in our search and in 260 of 364 plasmids.

Many of the genera in which no loci were predicted are obligate

intracellular symbionts such as Mycoplasma sp. and Buchnera sp.; it is

unclear whether the lack of predicted loci in these species reflects

an absence of RNA-mediated regulation or limitations of our

predictive algorithm in identifying regulatory RNA loci in these

organisms with reduced genomes. An average of 25 loci per

megabasepair of chromosomal sequence were predicted in the

SIPHT searches; however, the density of chromosomal loci

predicted among different species varied significantly, in some

cases even among species in the same genera (Figure 3 and Table

S1). Phylogenetic analysis of our results revealed that species with a

high density of predicted loci tend to be clustered among closely

related genera of certain phyla such as c- and b-proteobacteria

Figure 2. Influence of variations in search parameters on SIPHT predictions. The search parameters in searches A–D become increasingly
more stringent and are listed in the methods section.
doi:10.1371/journal.pone.0003197.g002

Table 1. Comparison between loci predicted by SIPHT and
those previously subjected to experimental validation in 8
diverse species.

Total #
experimentally
confirmeda

%
confirmed
predicted
by SIPHT

Total #
tested
but not
detected

%
unconfirmed
predicted by
SIPHT

E. coli K12 72 51.4 83 13.3

B. subtilis 4 50.0 0 -

V. cholerae 14 78.6 4 0.0

P._aeruginosa 20 60.0 11 9.1

S. aureus N315 8 12.5 0 -

S._meliloti 15 66.7 0 -

S. typhimurium 66 72.7 10 40.0

L. monocytogenes 13 30.8 0 -

Total 212 59.0 108 14.8

aThese numbers include sRNAs detected by Northern analysis and do not
include homologues of highly conserved ‘‘housekeeping’’ sRNAs such as
tmRNA, RnpB, 4.5S and 6S RNA, or the E. coli sense/antisense Sok and Rdl
sRNAs. These numbers correspond to searches conducted using Search C
parameters.

doi:10.1371/journal.pone.0003197.t001
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Figure 3. Phylogram showing variations in the densities of predicted loci and in the conservation of known and candidate loci
among diverse bacterial genera. The phylogram is based on the 16S RNA sequences of a representative species in each genera. Gm+ and Gm2
genera are colored blue and black, respectively. BLAST analyses were performed for known and candidate loci from E. coli (Ec), V. cholerae (VcI for
chromosome I, VcII for chromosome II), and B. subtilis (Bs), which are colored red, green, and blue, respectively. Filled boxes denoted that the locus
was predicted based on intergenic conservation in the indicated genera. Columns shaded gray and unshaded columns show results with BLAST E set
to 1 e-15 and 1e-3, respectively.
doi:10.1371/journal.pone.0003197.g003
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and firmicutes. In certain cases, the variation in locus density

can be accounted for by differences in the number of predicted

intergenic terminators and differences in the total amount of

intergenic conservation. This was particularly true for variations

among species in the same genera. For example, the nearly 50-fold

difference in the number of loci predicted among Bacillus species

was almost entirely attributable to differences in the amount of

IGR conservation (Table S1). However, much of this variation

persisted even after normalization for IGR conservation and

terminator density. These findings suggest that RNA-mediated

regulation may be more prevalent in certain genera than in

others.

Estimating the accuracy of the SIPHT predictions
While the predictive approach employed in our kingdom-wide

searches have proven effective in identifying sRNA-encoding

genes in diverse species, they have often yielded a substantial

proportion of false predictions [5,7,13,18]. Due to the scope of our

analyses, employing experimental methods to determine the rate

of false predictions in all or even a representative sample of species

is unfeasible. To assess the accuracy of the SIPHT predictions, we

estimated the maximum false positive rate for the 8 species

described above by determining the proportion of loci predicted in

our searches that correspond to experimentally detected tran-

scripts or putative intergenic loci annotated in Rfam (Table 2). In

most of these species, this proportion ranged between 11% and

25%. If one assumes all regulatory RNAs expressed by these

species have been previously detected and/or annotated in Rfam,

these findings suggest that the maximal false positive rate among

these species is between 75% and 89%. However, it is unlikely that

the database of previously detected regulatory RNAs and their

homologues represents a comprehensive catalogue of all non-

coding transcripts. The experimental screens for E. coli sRNAs

have either been limited to highly abundant transcripts or have

specifically targeted transcripts that interact with the RNA

chaperone Hfq [40–43]. In addition, hundreds of intergenic E.

coli loci predicted in computational screens, many of them

identified by two or more distinct bioinformatic algorithms, have

never been subjected to experimental validation [5,10,44]. Thus,

even in E. coli, the species in which the most extensive

computational and experimental screens for sRNAs have been

conducted to date, it is likely that only a subset of regulatory RNAs

have been identified. Indeed, two recent studies have estimated

that E. coli expresses a total of 150–200 sRNAs [10,44].

As shown in Table 2, there is a considerable range in the ratios

of confirmed to total predicted loci in different species. This ratio

was greater than 50% for V. cholerae and P. aeruginosa and lower

than 10% for S. meliloti. The high ratio in V. cholerae reflects the

inclusion in this analysis of many novel small transcripts we have

recently identified in this organism using an unbiased high-

throughput sequencing approach for small RNA discovery (J. Liu,

J.L, M.K.W., and A. Camilli, unpublished data). Similarly, the

relatively low ratio of candidate to previously identified loci in S.

meliloti likely reflects the lack of comprehensive screens for sRNAs

conducted in this organism as well as the relatively limited

homology between S. meliloti and the species in which the vast

majority of regulatory RNAs have been identified. It is also

possible that the accuracy of SIPHT predictions varies among

diverse species, perhaps due to species-dependent differences in

the accuracy of terminator predictions or to differences in the

availability of appropriate BLAST partners for identifying

intergenic sequence conservation. As shown in Figure 2, the

minimum accuracy of SIPHT predictions can be improved by

increasing the stringency of the search parameters; however, as

discussed above, this increased accuracy will often result in

reduced sensitivity.

Not all SIPHT predictions that correspond to bona fide

intergenic transcripts will correspond to sRNAs. Some predictions

may correspond to conserved UTRs of mRNAs or conserved

intergenic repeat elements; others may correspond to cis-encoded

regulatory RNAs such as riboswitches. Riboswitches are regula-

tory elements encoded in the untranslated regions (UTRs) of

mRNAs that typically modulate gene expression by switching

between termination and anti-termination conformations in

response to interactions with specific metabolites or, in the case

of T-boxes, tRNAs [45]. As described below, SIPHT annotations

of the predicted loci can be used to identify particularly strong

candidates for sRNA-encoding genes, to differentiate between

putative sRNA-encoding genes and other types of intergenic loci,

and to provide insights into the potential biological roles and/or

evolution of candidate regulatory RNA-encoding loci. Thus, in

addition to increasing the stringency of the search parameters,

filtering candidate loci using these annotations can significantly

increase the accuracy of the SIPHT predictions (see below).

Table 2. Proportion of loci predicted by SIPHT corresponding to previously detected or annotated RNA-encoding loci.

HR includeda HR excludeda

# loci predicted by SIPHT
% previously detected or
annotatedb # loci predicted by SIPHT

% previously detected or
annotatedb

E. coli K12 401 11.0 308 13.8

B. subtilis 155 25.2 136 24.3

V. cholerae 78 43.6 42 57.1

P. aeruginosa 32 51.6 32 51.6

S. aureus N315 61 23.0 47 29.8

S. meliloti 218 6.4 186 7.5

S. typhimurium 410 12.3 355 13.9

L. monocytogenes 124 18.5 122 18.9

Total 1479 15.9 1228 17.6

aHR loci share homology with more than 4 other loci predicted in different IGRs but in the same replicon.
b% of the total number of loci previously experimentally confirmed or annotated in the Rfam database.
doi:10.1371/journal.pone.0003197.t002
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Identification of strong candidates for regulatory RNA-
encoding loci

As shown in Table 1, our searches yielded 16 presumed false

predictions in several species. We reasoned that these 16 loci were

likely identified by SIPHT based on false terminator predictions

and/or on primary sequence homology that does not correspond

to conserved RNA sequences or structures. Indeed, we found that

if we limited our predictions to loci that are associated with

terminators predicted by all three programs and predicted by

QRNA [12] to encode conserved secondary structure (‘ZQ’ loci),

23 of the 125 (18%) experimentally confirmed loci but none of the

16 unconfirmed loci identified in our initial searches were

predicted. Similarly, 28 (18%) of 152 confirmed loci but none of

the 35 unconfirmed loci predicted in Search A were ZQ loci.

Moreover, among all loci predicted in our kingdom-wide searches,

the proportion of ZQ loci was higher among previously annotated

or confirmed intergenic loci (23%) compared to candidate loci

(14%) (Table S1). These finding suggest that limiting SIPHT

predictions to ZQ loci, while markedly decreasing their sensitivity,

also significantly increases their specificity. Thus, the 6,561 ZQ

candidate loci predicted in our search represent particularly strong

candidates for real small intergenic transcripts.

Identifying loci corresponding to UTRs or intergenic
repeat sequences

In previous studies, numerous loci predicted to encode

intergenic sRNAs were ultimately shown to be UTRs of mRNAs

by Northern analysis. To help identify predicted loci that may

correspond to conserved UTRs rather than sRNA-encoding

genes, SIPHT annotates all candidates overlapping a region up

to 30 bp upstream of an ORF and/or associated with a terminator

within 80 bps of its upstream ORF as potential 59 and/or 39

UTRs, respectively. A total of 8,028 candidate loci predicted by

SIPHT were annotated as potential UTRs (Table S1), including 4

(25%) of the 16 unconfirmed loci predicted and 17 (14%) of the

125 confirmed loci identified. While 3 of the previously confirmed

transcripts annotated as UTR loci (E. coli sgrS and V. cholerae qrr1

and spot42) have been shown to function as trans-acting regulatory

transcripts, previous reports have suggested that 4 others (E. coli

and S. typhimurium sroC and sraF) may correspond to cis-regulatory

RNAs rather than to sRNAs [43,46].

SIPHT annotations also revealed that nearly 18% of the

candidate loci share homology with more than 4 other loci

predicted in different IGRs but in the same replicon (HR loci)

(Table S1). Many of these loci correspond to previously described

intergenic repeat sequences in Burkholderia sp. [47] and to

enterobacterial repetitive intergenic consensus sequences (ERICS)

in E. coli, Yersinia sp., and Vibrio sp. [48–50]. Previous studies have

suggested that ERICS function as cis-acting RNA regulatory

elements [48,50]. Of the 226 HR loci previously annotated in

Rfam, nearly all correspond to confirmed or putative riboswitches.

Only 3 of the 125 confirmed transcripts identified in our searches

were annotated as HR loci, and the functions of these small

transcripts have yet to be determined [20,40]. Since numerous

replicons encode a significant number of HR loci (Table S1),

filtering out HR loci can significantly decrease the number of

candidate loci in numerous species. For example, as shown in

Table 2, excluding HR loci in E. coli leads to a 26% reduction in

the number of candidate loci; in V. cholerae, applying this filter leads

to a 59% decrease in the number of candidate loci. Interestingly,

most of the HR loci in V. cholerae were concentrated within the

superintegron of chromosome II. The exclusion of HR loci

increased the proportion of previously detected or annotated loci

predicted in E. coli, S. aureus, and V. cholerae, suggesting this filter

increases the specificity of SIPHT predictions for regulatory RNA-

encoding genes in some species (Table 2). However, excluding HR

loci did not increase the specificity of SIPHT predictions in all

species (Table 2). Since the number of HR loci varies significantly

among different species (Table S1), applying this filter to the

SIPHT output can only be effective for those replicons in which a

significant number of HR candidate loci were predicted.

Identifying loci corresponding to putative riboswitches
In addition to identifying most known sRNAs, SIPHT also

identified 769 (31%) of 2447 riboswitches previously annotated in

Rfam. The vast majority of riboswitches reported to date have

been identified in 59 UTRs in Gm+ species and most regulate the

expression of biosynthetic enzymes or metabolite transporters. In

B. subtilis, an organism in which riboswitches have been extensively

studied [51], SIPHT identified 29 (58%) of the 50 riboswitches

annotated in the Rfam database, including 27 (74%) of the 34

known or putative T-box, SAM, and TPP riboswitches.

Recent studies suggest that riboswitches regulate the expression

of many more groups of genes in more diverse bacterial species

than previously thought [22,46]. In examining predicted loci

corresponding to previously annotated cis-encoded regulatory

RNAs, we found that the vast majority are i) encoded on the same

strand as their 39 ORF ii) predicted by QRNA to have conserved

secondary structure iii) annotated as having at least one other

homologue in the same replicon and iv) are found less than

100 bps upstream of the start codon of their associated gene.

Thus, to help identify candidate loci corresponding to putative

riboswitches, we modified the SIPHT protocol to annotate

predicted loci as potential riboswitches (RS loci) based on their

association with these 4 features and repeated the kingdom-wide

searches. A total of 1,978 candidate RS loci were predicted in our

searches. Additionally, 439 RS loci corresponding to previously

annotated RNAs were identified by SIPHT, of which 419 (95%)

correspond to confirmed or putative riboswitches. These included

22 (76%) of the 29 confirmed or putative B. subtilis riboswitches

predicted. Importantly, only 1 of the 125 previously confirmed loci

identified in our search (the S. typhimurium omrA homologue) were

annotated as RS loci. Taken together, our findings suggest that RS

annotations can be reliably used to help distinguish between loci

corresponding to sRNAs and those corresponding to riboswitches.

In summary, a total of 29,780 candidate loci predicted in our

searches were not annotated as RS, HR, or UTR loci, suggesting

that they are more likely to correspond to sRNA-encoding genes

than to other types of intergenic loci. Of these 29,780 loci, 3,919

are ZQ loci and thus represent particularly strong candidates for

novel sRNA-encoding genes.

Adjusting BLAST stringency yields more sensitive
annotation of locus conservation and reveals candidate
loci with unusual patterns of sequence conservation

Each locus predicted by SIPHT is annotated for the number

and names of all replicons in which it was found to be conserved in

the initial SIPHT BLAST search. Loci corresponding to

housekeeping RNAs such as tmRNA, RnpB, and 4.5S RNA were

among the most highly conserved, along with homologues of E. coli

Spot42 [52], RyhB [53] and GcvB [54]. However, with the

BLAST parameters used for the kingdom-wide search, the extent

of conservation of several previously characterized sRNAs as

annotated by SIPHT was more limited than expected based on

previous reports. For example, E. coli RyhB, which has been

shown to be conserved in numerous genera of Enterobacteriaceae, was
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not conserved in Y. pestis and V. cholerae Spot42, which was

identified based on its homology to E. coli Spot42 was only

conserved among other Vibrio species (Figure 3). We reasoned that

this was likely due to the relatively high BLAST stringency used in

our kingdom-wide searches. Indeed, when SIPHT searches were

repeated with the BLAST E value set to 1e-3, the patterns of

conservation of these loci were consistent with previously

published results (Figure 3). These findings suggest that while a

high BLAST stringency yields more accurate predictions of sRNA-

encoding loci, lowered BLAST stringency may be useful in more

sensitively identifying primary sequence conservation of these loci

in less closely related species.

Based on the results above, we repeated the SIPHT searches

with the BLAST E value set to 1e-3. Even at this reduced

stringency, most confirmed sRNAs and candidate loci identified

were conserved only among closely related species. However, as

shown in Figure 3, SIPHT identified several candidate loci that,

like RyhB, Spot42 and GcvB [54], are conserved among more

diverse genera. None of the candidate loci shown in Figure 3 share

significant homology with previously characterized RNAs, sug-

gesting they may represent new classes of well-conserved sRNAs.

Annotation of primary sequence homology to and
conserved synteny with known regulatory RNAs gives
insights into the potential function and evolution of
thousands of candidate loci

A total of 5,359 predicted loci were found to share significant

homology with previously predicted or confirmed sRNAs or cis-

encoded regulatory elements, including 3,962 loci not previously

tested or annotated in Rfam (Table S2). With the exception of

homologues of well-conserved RNAs such as tmRNA, RnpB, and

Spot42, homologues of known sRNAs were generally found only

among strains in the same genera or, in the case of E. coli, in the same

family. Thus, consistent with previous findings [4,5], we found that

using primary sequence conservation to known regulatory RNAs has

limited efficacy in deciphering the function of candidate loci among

most of the diverse species included in our analyses.

In most cases, homologous sRNAs encoded by closely related

species share conserved synteny (i.e. are flanked by homologous

ORFs and encoded in the same orientation relative to these ORFs

(see Methods)). Interestingly, we found 3,562 loci that share

conserved synteny with but no significant primary sequence

homology with previously annotated or confirmed RNA-encoding

loci (Table S3). These include candidate loci in diverse species

encoded in the same genomic context as the E. coli sRNAs Spot42,

SgrS, SraA, SraG, and tff, P. aeruginosa RsmZ, and B. subtilis SurC

(Figure 4 and Table S3). Several previously confirmed loci were

also found to share conserved synteny but not sequence homology

with other known loci. For example, SraG was found to share

conserved synteny with the sRNA RliD recently confirmed in

Listeria monocytogenes [55], and the P. aeruginosa sRNA P15 [7] was

found to share conserved synteny with a TPP riboswitch in L.

monocytogenes, suggesting it may correspond to a riboswitch rather

than a trans-encoded sRNA. It seems likely that non-homologous

loci with conserved synteny arose from a common ancestral gene

but have since diverged at the level of their primary sequence.

Previous studies have shown that non-homologous sRNAs

encoded by different species can still perform analogous regulatory

roles and even target homologous mRNAs [15,53,56]; thus it is

possible that syntenous sRNA-encoding loci still share conserved

regulatory functions even in the absence of primary sequence

homology. Conserved genomic context may therefore be useful in

lieu of primary sequence homology in annotating putative

candidate loci for their potential biological functions. This is

particularly true for the 1,138 loci that share conserved 39 synteny

but no significant homology with previously identified cis-acting

regulatory RNAs (Table S3), since the function of these elements is

dependent on their genomic context.

Identification of predicted loci associated with putative
transcription factor binding sites

SIPHT identified 740 previously confirmed or annotated loci

associated with putative TFBSs. Twenty-one of 22 alternative

sigma factor or transcription factor binding sites associated with

known sRNAs were identified in our search. Moreover, of the 22

putative s70-dependent or SigA-dependent promoters identified

upstream of known sRNAs, the great majority were within 10 bp

of the transcriptional start site as experimentally determined or as

predicted based on the observed length of the sRNA and the

position of its predicted terminator. In addition to identifying

known sRNA-associated TFBSs, SIPHT identified several previ-

ously unannotated putative TFBSs upstream of confirmed sRNA-

encoding genes that may provide clues into the function of these

uncharacterized sRNAs. For example, an RpoE-dependent

promoter was found associated with the E. coli sRNA RygC [57]

and in the same relative position upstream of putative homologues

of RygC in several other species. Moreover, putative s54 binding

sites were predicted upstream of P11 and P30 [7] in Pseudomonas sp.

and of sraJ/ryiA [11,57] in several strains of Enterobacteriaceae.

Most of the candidate loci predicted in our searches do not

share significant homology or conserved synteny with previously

characterized sRNAs or riboswitches. To begin to elucidate the

potential roles of these candidate loci, we analyzed whether they

are associated with putative binding sites for s54, LexA, and Fur.

These transcription factors are well-conserved across both Gm2

and Gm+ species and their regulatory roles have been determined

in diverse bacteria. Moreover, all three have been shown to

regulate the expression of previously characterized sRNAs.

s54 is an alternative sigma factor that regulates numerous

functions including motility and nitrogen fixation. s54 has recently

been shown to control the expression of several V. cholerae sRNAs

involved in quorum sensing [58]. Putative s54 binding sites were

associated with 121 candidate loci (Table S4), including several

previously unannotated homologues of Qrr loci [58] in Vibrio sp.

LexA is a global regulator of the SOS response. In E. coli, LexA

has been shown to inhibit expression of the sRNA IstR2 [59]. A total

of 113 candidate loci associated with putative LexA boxes were

identified in both gram-negative and gram-positive species (Table

S4), including several candidate loci predicted in several species of

Enterobacteriaceae that share significant homology with IstR2.

Presumably, many of the remaining candidates correspond to

LexA-regulated sRNA loci that are involved in the SOS response.

Fur modulates expression of genes involved in iron homeostasis.

In several gram-negative species, Fur mediates the upregulation of

numerous genes through its repression of sRNAs that negatively

modulate mRNA stability [15,30,53,56,60]. Our searches yielded

a total of 325 loci associated with putative Fur binding sites (Table

S4). Seventy-four of these showed significant homology to

previously characterized Fur-regulated sRNAs (FRSs) in E. coli,

V. cholerae, P. aeruginosa, and N. meningitidis [15,30,53,56,60]. These

included loci corresponding to all previously known FRSs (RyhB,

NrrF, and the PrrF loci), nearly all homologues of these FRSs in

the Rfam database, and 36 previously unannotated candidate loci.

For all previously characterized FRSs, the location of the putative

Fur box relative to the predicted terminator was consistent with

their experimentally determined lengths. Strikingly, for 73 of the

74 loci sharing homology with known FRSs, including all loci
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corresponding to characterized FRSs and previously annotated

FRS homologues, the putative Fur binding site overlaps a putative

s70 promoter with the predicted 39 end of the Fur box located

exactly 1 nucleotide downstream of the predicted 39 end of the

putative s70 promoter. These findings suggest a highly conserved

organization of FRS operators. Further analysis revealed 26

additional loci that are associated with the canonical FRS operator

described above but that do not share significant homology with

known FRSs. These include candidate loci in Bacillus sp. that

represent the first putative FRSs identified in Gm+ species. They

also include the first putative FRSs identified in Haemophilus,

Actinobacillus, and Lactobacillus species.

Conclusions
By taking advantage of automated workflow management tools

and distributed computing capabilities, SIPHT is the first

computational tool that enables kingdom-wide prediction and

annotation of intergenic RNA-encoding loci. The prediction of

candidate intergenic loci by SIPHT in nearly 800 replicons in the

NCBI database helps to fill significant gaps in the current

annotations of bacterial genomes. Moreover, annotation of these

loci for several features offers clues into the potential functions of

many of these predicted loci and provides insights into the

evolution of ncRNAs among diverse bacterial species. SIPHT also

represents the first web-accessible tool by which researchers

interested in studying RNA-mediated regulation can flexibly

conduct searches for intergenic RNA-encoding loci in their species

of interest. The SIPHT web-interface allows 19 different search

parameters to be modified, including several affecting the

stringencies of terminator predictions and BLAST, and thus will

be particularly valuable to those researchers who want to adjust

the sensitivity or specificity of their searches. By greatly enhancing

the throughput and accessibility of ncRNA prediction and

enabling more comprehensive annotations of both known and

putative regulatory RNA-encoding loci, SIPHT provides a unique

and important resource for the many groups studying RNA-

mediated regulation in diverse bacterial species.

While examples of RNA-mediated regulation have been found

in all branches of life, we are only now beginning to recognize the

importance and ubiquity of this regulatory paradigm. The SIPHT-

Figure 4. Examples of conserved synteny between candidate loci and previously identified sRNAs. Predicted loci are colored black; the
previously annotated name or candidate number for each locus is indicated. ORF names are based on NCBI annotations and dashed lines connect
homologous ORFs (BLAST E,1e-3). Additional candidate loci with conserved synteny are shown in Table S3.
doi:10.1371/journal.pone.0003197.g004
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generated predictions discussed here generate many questions that

warrant future experimental investigation. First, what is the

number and variation of ncRNAs per genome? We identified

candidate intergenic loci in the vast majority of bacterial replicons.

Most genomes of 3–4 Mbp were predicted to contain ,80–300

candidate ncRNAs, corresponding to about 3%–10% of the total

number of predicted ORFs. Our findings also suggest that the

density of ncRNAs varies among different species, but how

significantly these apparent differences are determined by inter-

species variations in sequence homology and recognizable Rho-

independent terminators is unclear. Second, do syntenous but

non-homologous sRNAs (e.g. the loci shown in Figure 4 and listed

in Table S3) target homologous mRNAs and/or regulate similar

functions? If so, characterizing the interactions between these non-

conserved but functionally homologous sRNAs and their cognate

target transcripts will give insights into sRNA-mRNA co-evolution

and help elucidate the sequence and structural constraints

governing RNA-mediated regulation. Finally, how widespread is

riboswitch-mediated regulation and how diverse are the processes

that these cis-acting elements control? Riboswitches have tradi-

tionally been thought to modulate relatively few pathways, mainly

those involved in biosynthesis and transport, and to be significantly

more common among Gm+ species. However, consistent with

recent findings by Weinberg et al. [22], our analyses suggest that

riboswitches may govern more diverse processes and be more

widespread among Gm2 organisms than previously believed.

While many thousands of novel candidate ncRNAs were

identified by SIPHT, many bona fide sRNA-encoding loci were

likely missed in these searches because they overlap real or

misannotated ORFs, are not well conserved, and/or are not

associated with predictable transcription terminators. Presumably,

these loci may be amenable to prediction by algorithms that do not

rely on one or more of these parameters. The modular design of

SIPHT will allow it to be easily modified to incorporate new

programs and novel predictive algorithms designed to discover

more elusive classes of sRNAs. This modularity will also allow new

programs and/or improved versions of existing programs to be

added to SIPHT to improve the reliability of its predictions and

annotations. The speed and ease with which searches can be

executed using SIPHT will enable kingdom-wide predictions and

annotations to be updated frequently as new data become

available. Thus, SIPHT predictions and annotations will become

increasingly effective as more genomic sequences become

available, as more regulatory RNAs are confirmed and charac-

terized, and as new TFBS consensus sequences are determined. In

addition to facilitating the study of ncRNAs, SIPHT also serves as

a reference framework for the development of a new generation of

bioinformatic tools. As genome sequence databases continue to

expand at rapidly increasing rates, computational approaches such

as those employed by SIPHT that effectively integrate and

efficiently execute a variety of novel and pre-existing bioinformatic

tools will become indispensable in our attempts to decipher the

complex regulatory networks inherent in biological systems.
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