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Abstract

Background: Synthetic lethal genetic interaction analysis has been successfully applied to predicting the functions of genes
and their pathway identities. In the context of synthetic lethal interaction data alone, the global similarity of synthetic lethal
interaction patterns between two genes is used to predict gene function. With physical interaction data, such as protein-
protein interactions, the enrichment of physical interactions within subsets of genes and the enrichment of synthetic lethal
interactions between those subsets of genes are used as an indication of compensatory pathways.

Result: In this paper, we propose a method of mapping genetically compensatory pathways from synthetic lethal
interactions. Our method is designed to discover pairs of gene-sets in which synthetic lethal interactions are depleted
among the genes in an individual set and where such gene-set pairs are connected by many synthetic lethal interactions. By
its nature, our method could select compensatory pathway pairs that buffer the deleterious effect of the failure of either
one, without the need of physical interaction data. By focusing on compensatory pathway pairs where genes in each
individual pathway have a highly homogenous cellular function, we show that many cellular functions have genetically
compensatory properties.

Conclusion: We conclude that synthetic lethal interaction data are a powerful source to map genetically compensatory
pathways, especially in systems lacking physical interaction information, and that the cellular function network contains
abundant compensatory properties.
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Introduction

Genetic interaction analysis, in which the combined mutations

of two genes exhibit phenotypes significantly different from the

single mutation of either one [1], is a powerful tool allowing

biologists to investigate the genetic components of an organism

[2]. The International Yeast Gene Deletion Consortium con-

structed a nearly complete collection of gene-deletion mutants for

yeast [3], providing an excellent starting point for the study of

genetic interactions [4]. Synthetic lethal interaction analysis, in

which the deletion of two viable genes makes the organism (yeast)

inviable, generated the first large-scale synthetic lethal interaction

data set [5]. The BioGRID database [6] contains 9,376 non-

redundant yeast synthetic lethal interactions involving 2348 yeast

genes (as of August, 2007).

All cells must manage biological information to survive. These

functions are frequently achieved through various cascades (e.g.

physical transport, transcription, translation, phosphorylation, etc.)

that involve proteins encoded by different genes in the genome.

Due to the involvement of multiple genes in such systems, there is

a potential for genetic interactions among members of these

pathways and among members of other pathways in the cell that

have similar/overlapping functions. Synthetic lethal interactions,

where mutations are only lethal in combination, are generally

considered to reflect such interactions within and between

cascades, with parallel or compensatory pathways explaining

most, though not all, synthetic lethal interactions [1,7–8]. This

view is illustrated in Figure 1A. Due to the existence of alternative

pathways for the information flow, disabling any single gene from

either pathway will not block the information flow. However,

disabling any two components, one from each pathway, will block

the information flow and leads to the death of the cell. Note the

depletion of interactions among components from the same

pathway, which means that disabling any two components from

the same pathway will not block the information flow. Shown in

Figure 1B is the fact that components from either of these two

pathways often have similar patterns of synthetic lethal interac-

tions with other genes from the organism. Note that an important

underlying assumption for Figure 1B is that the genes do not have

multifunction, i.e., no genes involved have two or more distinct

functions (Figure 1C). Finally, a relatively smaller proportion of

synthetic lethal interactions are within pathways that can sustain

one, but not two, mutations without loss of function (Figure 1D).

The fact that the compensatory pathway structure can be

reflected by synthetic lethal analysis is widely appreciated. For

example, Ye et al [7] used a congruence score, which measures

global similarity between the patterns of synthetic lethal

interactions of two genes, to predict that two genes with high
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congruence scores were likely in the same pathway and thus share

similar functional roles. However, the underlying compensatory

structure between pathways (Figure 1A) could not be revealed by

this method. Kelley and Ideker [1] proposed a between-pathway

model to score the compensatory relationship between pathways

in a probabilistic framework. Their method emphasized the

enrichment of synthetic lethal interactions connecting two

pathways. An equally important component in their work was

the enrichment of physical interactions within each pathway,

including protein-protein interactions [9–10] and protein-DNA

interactions [11]. Ulitsky and Shamir [8] extended this idea by

requiring that each pathway in a compensatory pair was a

connected graph in the physical interaction network rather than

enriched with physical interactions. They found that twice as

many genetic interaction pairs can be assigned to compensatory

pathways. Although the physical interactions within each pathway

increased the confidence that the resulting pathways are

biologically meaningful, some pathway pairs were sacrificed due

to the lack of support of physical interactions, owing to the fact

that current physical interaction data contain false positives and

false negatives. More importantly, their frameworks did not

impose any constraint on synthetic lethal interactions within each

pathway. A high-scoring compensatory pathway pair may contain

a pathway that has many within-pathway synthetic lethal

interactions, which is difficult to explain with the current model

(Figure 1A). In addition, in some species there is only genetic

screening data available, making it worthwhile to study the power

of mapping genetically compensatory pathways using only

synthetic lethal interactions.

To account for the above theoretical considerations, we

developed a graph theory method to group genes into distinct

but compensatory pathway pairs, based solely on the local

connectivity structure of the synthetic lethal interaction network.

Pathways in each pair were required to be connected by many

synthetic lethal interactions and depleted for synthetic lethal

interactions within each pathway. A heuristic algorithm was

proposed to realize our method. This approach had considerable

power in grouping genes into functionally homogenous sets and

identified many cellular functions exhibiting genetically compen-

satory properties. However, we must make it clear that our

method was not developed to identify pathways like Figure 1D,

which can be identified using the ‘‘within-pathway model’’ of

Kelly and Ideker [1].

Results

Pathway definition and identification
All genes in one organism interact, forming a gene-network.

Given the fact that some genes specifically cooperate to take over

some highly specialized cellular functions, pathways are often used

to represent part of the gene-network at a more detailed level. An

example compensatory pathway pair is shown in Figure 1A, where

the three genes shown in left and the two genes shown in right can

be defined as two distinct pathways. However, it is also

appropriate to group all the five genes (or plus the two master

genes) into one pathway. Both definitions make sense because the

first definition focuses on the functional redundancy of the two

smaller pathways while the second definition focuses on the fact

that all these genes are involved in one specific cellular function.

Since the synthetic lethal interactions are in general considered to

reveal the functional redundancy between pathways [1,7–8], the

pathways we pursued in this paper followed the first definition.

However, the pathways we identified do not necessarily adhere to

this meaning; rather, functionally distinct genes may be found to

be compensatory to a multifunction pathway since we did not use

the physical interaction data. This fact is discussed further in

section ‘‘Multifunction effect of pathways’’.

Shown in Figure 2 are several genetically redundant pathway

pairs identified by our method. For example, the dynein-dynactin

pathway (shown in boxes, P,1e-12, Hypergeometric test, herein

and after, Figure 2A left) and protein depolymerization pathway

Figure 1. Possible mode of synthetic lethal interactions. Solid
circles represent genes, arrows represent information flow, blue lines
represent physical interactions and red/pink lines represent synthetic
lethal interactions. Dashed circles group genes into pathways. (A–C),
Compensatory pathways: (A) The information flow from one master
gene (filled circle on the top) can go through either of the two
pathways and get to another master gene (filled circle on the bottom).
Thus mutation of any single genes in either pathway will not block the
information flow, while a double mutation where both pathways are
disabled will block the information flow and the cell will die, if this
information flow is critical to its survival. However, synthetic lethal
interactions are depleted from either pathway since a double deletion
in either pathway will not cause lethal effect. (B) Genes involved in the
same function generally have similar patterns of synthetic lethal
interaction with genes from other pathways. Heavy red lines indicate
that all genes grouped by the large dashed circle have synthetic lethal
interaction with the other genes. (C) Multifunction effect. A gene (or a
pathway) may have multiple functions. All single-function genes (empty
circles) grouped by the dashed circle tend to have similar synthetic
lethal interaction patterns. However, a multifunction gene, as indicated
by the pink circle, may have a synthetic lethal interaction pattern (the
additional synthetic lethal interactions shown with pink lines) that
differs from the other genes grouped by the dashed circle. (D) Single
pathway: A certain protein complex/pathway can sustain the mutation
of one, but not two, member genes without loss of function.
doi:10.1371/journal.pone.0001922.g001
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(diamonds, P,1e-6, Figure 2A right) were found to be genetically

compensatory. Genetically compensatory pathway pairs also

shown in Figure 2 include histone deacetylation (diamonds, P,1e-6)

and histone methylation (boxes, P,1e-6, Figure 2B), actin filament-based

process (boxes, P,1e-8) and chitin metabolic process (diamonds, P,1e-

11, Figure 2C), positive regulation of RNA elongation (diamonds, P,1e-

8) and double strand break via single strand annealing (boxes, P,1e-14,

Figure 2D), tubulin folding (diamonds, P,1e-12) and spindle checkpoint

(boxes, P,1e-8, Figure 2E) and Golgi to membrane protein transport

(boxes, P,1e-5) and endosome to Golgi retrograde transport (diamonds,

P,1e-9, Figure 2F). Known physical interactions that were listed

in Ulitsky and Shamir (2005), including protein-protein and

protein-DNA interactions, were also indicated in Figure 2 using

heavy blue lines.

By removing physical interaction data from the process of

identifying genetically compensatory pathways, there was also a

greater potential for spurious identifications (discussed later).

Though the approach presented here is theoretically sound,

predictions should make sense in the face of known physical

interactions within and between pathways. Here we have detailed

an example to demonstrate the utility of identifying compensatory

pathways solely via genetic interaction information.

In Figure 2C, the functions of an actin filament-based process

and chitin metabolism were identified as compensatory processes

Figure 2. Example pathway pairs identified by our method. Each example is shown in a pair: left: pathway 1, right: pathway 2. Heavy blue
lines represent physical interactions (protein-protein interaction and/or protein-DNA interactions) between genes and red lines represent synthetic
lethal interactions. Diamonds and Boxes represent genes with the dominant function for pathway 1 and pathway 2, respectively (see text for details).
(A) The dynein-dynactin pathway and protein depolymerization. (B) Histone deacetylation and histone methylation. (C) Actin filament-based process
and chitin metabolic process. (D) Positive regulation of RNA elongation and double-strand break repair via single-strand annealing. (E) Tubulin folding
and spindle checkpoint. (F) Golgi to plasma membrane protein transport and retrograde transport, endosome to Golgi.
doi:10.1371/journal.pone.0001922.g002

Mapping Compensatory Pathways

PLoS ONE | www.plosone.org 3 April 2008 | Volume 3 | Issue 4 | e1922



in this analysis. Though these functions seemed superficially

disparate based on Gene Ontology [12], the potential mechanism

for their interaction became apparent when the loci involved were

investigated. The actin filament-based process genes are involved

in various aspects of endocytosis, which require the movement of

vesicles between the trans-golgi network and the cell membrane

via the actin cytoskeleton (www.yeastgenome.org). The movement

of vesicles within a cell depends in part on polysaccharide tags

attached to the membranes of the structures [13–15]. One of these

tags is mannan, a polymer of mannose that is important for vesicle

transport, cell wall structure, and other functions dependent on

protein glycosylation [14].

The genes in the identified actin filament-based process

pathway encode proteins for actin/myosin binding that are known

to affect secretion polarity within the cell, as well as a mannan

polymerase (VAN1) and a mannosyltransferase (MNN10) [16].

These mannose-processing proteins have been shown to be part of

golgi-bound complexes composed of either VAN1/MNN9, or

MNN10/ANP1/HOC1/MNN9/MNN11, both of which are

involved in protein mannosylation [14]. This information provides

a connection to the compensatory pathway involved in chitin

synthesis, as HOC1 also bears a physical similarity to several other

seemingly unrelated glycosyltransferases MNN1, OCH1, SUR1,

and CHS1 (a chitin synthase) proteins, indicating the presence of

necessary functional components [17] in proteins of both

pathways, and revealing the possibility of redundant functions

performed by those proteins. Since chitin is a polymer of N-

acetylglucosamine, which bears structural similarity to mannose,

and is also a critical component of the cell wall, it is not surprising

that a protein or complex could be involved in the transport or

polymerization of both molecules. N-acetylglucosamine is used to

link mannan to yeast proteins [14–15], indicating the necessity of

the mannan producing complex to recognize and bind sugars to

the molecule that is the building block for chitin. It is also possible

that the molecular outputs of both complexes (mannan and chitin)

are compensatory. Indeed, evidence of overlap between chitin and

mannan glycosylation exists as mutations in the MNN10 complex

alter chitin levels in yeast cells [16,18]. This indicates that either

the complexes themselves are partially redundant, or that cell wall

stress resulting from missing cell wall mannan can be relieved by

the increased production of chitin. Given these similarities in sugar

and protein structures and functions between mannan and chitin-

based biological processes, it was not surprising (and expected) that

they were identified as compensatory processes in this analysis.

Summary statistics of compensatory pathway pairs
Our search generated 2,590 pathway pairs (7.763.1 genes per

pair), which cover 5,284 (56% of 9,376) synthetic lethal interaction

pairs involving 689 yeast genes. Since we did not require the

physical interaction to support our pathway models, it was

expected that the pathways we identified to be larger than that

identified by integrating genetic and physical interaction data

[1,8]. To test this hypothesis, we compared the sizes of the

pathways from different methods. As shown in Figure 3 upper

panel, the pathways (redundancy removed, see Methods) identified

by our method were significantly (P,1e-16, Wilcox rank sum test)

larger than that of Kelley and Ideker [1], whereas the sizes of the

pathways in Kelley and Ideker [1] was significantly (P,1e-6,

Wilcox rank sum test) larger than that of Ulitsky and Shamir [8].

In addition, our investigation suggested that this result is not an

artifact of parameters specific to our method (Figure S1 and Text

S1). A close inspection revealed that many pathways (40%; 110/

280) identified by Ulitsky and Shamir [8] had one pathway

member of size 2 (however, we also noted that Ulitsky and Shamir

[8] had identified 5 pathways with more than 50 genes and the

largest one had 201 genes). This result implied that we can

potentially increase the size of gene sets at the cost of losing the

physical interaction support. However, the pathways we identified

can sometimes be smaller than the congruence score method by

Ye et al [7]. For example, BIK1 was absent from the dynein-

dynactin checkpoint pathway, as shown in Figure 2A, and it was

identified by the congruence score method. It should be noted that

Figure 3. Summary statistics of the pathway pairs we identified. Upper panel: Distribution of the sizes of the pathways of our analysis (GI
only; box) and that of Ulitsky and Shamir ([8]; circle) and Kelley and Ideker ([1]; star). Bottom panel: The distribution of the completeness of the
between-pathway synthetic lethal interactions in our identified pathway pairs.
doi:10.1371/journal.pone.0001922.g003
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pathway size distribution is not a measure of accuracy of our

method. In fact, the size of a pathway could be very arbitrary if we

take a gene-network perspective, where a pathway is used to

highlight a functionally homogenous sub-network (see section

‘‘Pathway definition and identification’’). However, we noted that

in functional genomics a practical problem is that many genes are

not functionally annotated, thus it may be helpful to provide

biologists reasonably larger lists of genes showing compensatory

interaction patterns. In fact, the example in Figure 2C discussed

previously suggests the value of providing a larger pathway.

We next asked how the synthetic lethal interactions were

depleted from either pathway of each pathway pair and how the

synthetic lethal interactions were enriched between pathways in

each pair. Since we imposed a stringent constraint on the within-

pathway synthetic lethal interactions (a= 0.01; see Method), we

found that only one of the pathways we identified have within-

pathway synthetic lethal interactions. Thus we proceeded to

determine how the synthetic lethal interactions were enriched

between pathways (defined as completeness d12, which represents

the proportion of all potential synthetic lethal interactions that

have been observed; see Equation (1)). According to the

assumptions in Figure 1A, if all possible pairs of genes between

the two compensatory pathways are connected by synthetic lethal

interactions, they have a completeness of 100%. In practice, two

compensatory pathways may have a completeness less than 100%,

due to either lack of experiments or biological reasons. As can be

seen from Figure 3 bottom panel, the pathway pairs we identified

had a typical completeness of between-pathway synthetic lethal

interactions at the range of [0.75, 0.85], which may have

indication to the false-negative rate of the synthetic lethal

interaction data (Text S2). Noticeably, some pathway pairs we

identified had completeness d12 = 100%.

We also determined the statistical significance of the pathway

pairs we identified. To achieve this goal, we generated 10,000

random networks by crossing pairs of edges as done in Kelley and

Ideker [1] and Milo et al [19]. For each pathway pair we identified

(with completeness d1, d2 and d12; see Equation (1)), we counted the

chances of observing this pathway pair to have d1
0#d1, d2

0#d2 and

d12
0$d12, where the superscript 0 means the score was under

permutation. As it turned out, all pathway pairs we identified had

P-value less than 1e-4. This result suggests that the constraint

b= 0.75 of Equation (1) was rather strict. In fact, we found from

our permutation study that given d1
0#0.01and d2

0#0.01, d12
0 had

a mean of 0.09 and a standard deviation of 0.06 (Figure S2 and

Text S2), which further suggests that our threshold b= 0.75 of

Equation (1) was very strict.

Physical interactions in the discovered pathways
Biologically, we expected the enrichment of physical interac-

tions within pathways we identified, which was an important

component in Kelley and Ideker [1] and Ulitsky and Shamir [8].

To study the enrichment of physical interactions within the

pathways identified by our method, we downloaded the physical

interaction data collected by Ulitsky and Shamir [8], which

included 67,856 physical interaction pairs. For each pathway pair

identified, we calculated the completeness scores d1, d2, d12 as

defined in Equation (1) using the physical interaction data to

measure the enrichment of physical interactions within pathway 1,

within pathway 2, and between pathway 1 and pathway 2,

respectively. Similar to the idea of Kelly and Ideker [1], we

expected completeness scores d1 and d2 to be large. On the other

hand, we hypothesized that physical interactions will be less

enriched between compensatory pathway pairs, i.e., d12 to be

relatively small, according to Figure 1A. The distribution of

completeness was shown in Figure 4. As can be seen, there were

significantly (P-value,10216, Wilcox rank sum test, one-sided)

more within-pathway physical interactions than between-pathway

physical interactions, suggesting that our identified pathway pairs

do have biological meanings.

Functional homogeneity of discovered pathways
We next sought to study how different cellular functions were

enriched in the pathways we identified. The functional annotation

from Gene Ontology [12] was used for the evaluation. For each

pathway we identified, a hypergeometric distribution was used to

test the enrichment of genes annotated with a specific Gene

Ontology concept. Since there were 1720 Gene Ontology

biological process concepts being screened (see Methods), the

2log10 of the smallest P-value of all the 1720 P-values (not

corrected for multiple testing) was defined as the functional

homogeneity score of our pathways. Thus, a higher homogeneity

score implied a better grouping of genes into pathways. To provide

a comparison, we also ran the same enrichment test on the

pathways (redundancy removed, see Methods) identified by Kelley

and Ideker [1] and Ulitsky and Shamir [8]. As expected, the

pathways identified by our method (Figure 5, upper panel) had

lower functional homogeneity than those identified with the aid of

physical interaction data (Figure 5, bottom panel, stars and circles).

Figure 4. Physical interactions are enriched in pathways we identified and depleted from between-pathway gene pairs.
doi:10.1371/journal.pone.0001922.g004
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However, an interesting observation was that in each pathway

pair identified by our method, at least one of the two pathways had

high functional homogeneity. To show this fact, we took the

pathway with a smaller P-value from each pathway pair identified

by our method and drew the distribution of their functional

homogeneity (redundancy removed, see Methods). As shown in

Figure 5 bottom panel (boxes), these pathways showed enhanced

functional homogeneity compared to Figure 5 upper panel

(although still lower than that identified using physical interaction

support; Figure 5, bottom panel, stars and circles). This

phenomenon was actually a result of the multifunction effects of

the pathways. To explain, suppose a pathway A has compensatory

effects with pathways B and C. Then with a high probability our

method will group genes from pathway A into one set and genes

from pathways B and C into another set, resulting in one genuine

pathway corresponding to A with a high functional homogeneity

score and another spurious pathway corresponding to B and C,

with a low functional homogeneity score. Thus, at the cost of

reducing the accuracy of one of the two pathways in each

identified pathway pair, it was still possible to gain much insight of

the gene functions using synthetic lethal interaction data alone.

Network of compensatory biological functions
The above result showed that our method can group genes into

pathway pairs, and in most cases at least one pathway from each

pathway pair had specific biological functions. Since synthetic

lethal interaction data often predict functionally compensatory

pathways [1,7–8], we next determined how different cellular

functions compensated each other. To make the analysis strict, we

selected the pathways pairs where each member pathway had a

functional homogeneity score larger than 5.24 (or P-value 5.8e-6,

which corresponds to the bonferroni-corrected P-value 0.01) and

more than 30% of the member genes in each pathway had the

same function as the one annotated to the pathway. This

requirement resulted in 89 non-redundant pairs of Gene Ontology

concepts connected by extensive synthetic lethal interactions

(Table S1). As shown in Figure 6, the Gene Ontology concepts

could be arranged in a network. For example, the genes involved

in Golgi to plasma membrane protein transport were found to be synthetic

lethal with the genes involved in intra-Golgi vesicle-mediated transport;

retrograde transport, endosome to Golgi; and vesicle-mediated transport.

Interestingly, the obtained network showed considerable un-

evenness toward several Gene Ontology concepts, such as tubulin

folding and histone exchange. For example, the histone exchange was

found to be connected to many other functions, such as

transcription, DNA dependent; negative regulation of meiosis; chromatin

silencing; tubulin folding; etc. Another hub node was the positive

regulation of RNA elongation, which was also connected to many

functions, mostly involving DNA repair biology. The underlying

biological implications await additional exploration.

Multifunction effects of pathways
Since we deliberately excluded the physical interaction data when

searching for compensatory pathway pairs (see Methods), it was not

surprising that sometimes we discovered pathways containing

members that obviously deviated from the most common function

of these pathways (Figure 2). At least three possibilities can explain

this phenomenon. First, false positives might exist in the synthetic

lethal interaction data set. Thus, an obviously unrelated gene may

be incorporated into one pathway. However, the current synthetic

lethal interaction data is believed to contain only few false positives

[5]. Thus this explanation is unlikely true. Second, the ‘‘strange

member’’ might be a new member of that cellular function. In other

words, the Gene Ontology data contains false positives and false

negatives. The existence of physical interactions between this new

gene and other genes known to belong to that function will increase

the probability of this explanation. Third, it might be simply due to

multifunction (Figure 1C). In this case, the multiple functions

Figure 5. The distribution of the number of identified pathways as a function of the functional homogeneity. Upper panel: the
functional homogeneity of all the pathways from each pathway pair identified by our method. Although a considerable percentage of pathways
identified by our method had high homogeneity scores, many of them showed a low functional homogeneity due to multifunction effects. Bottom
panel: at least one of the two pathways of each pathway pair identified by our method had high homogeneity. Note that the functional homogeneity
score was still significantly lower than that of the pathways identified using physical interaction data.
doi:10.1371/journal.pone.0001922.g005
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contained in one identified pathway may suggest that its

collaborator pathway participates in more than one cellular

function.

The third consideration was identified in this analysis. In

Figure 2E, the prefoldin complex (GIM3, GIM4, GIM5, YKE2,

PAC10) was found to be compensatory to the spindle checkpoint

complex (BUB1, BUB2, BUB3, MAD1, MAD2, BMH1).

However, the VID21 gene was found to be grouped with prefoldin

complex, which had synthetic lethal interaction with spindle

checkpoint complex except BMH1. VID21 is a component of the

NuA4 histone acetyltransferase complex. Thus, this fact suggested

that the spindle checkpoint complex may also participate in a

function in collaboration with histone modification. In this sense,

we determined that the spindle check point was a multifunction

pathway.

The multifunction effect of pathways is better illustrated using a

network representation in Figure 6. The fact that a pathway with a

given function may be connected to many other pathways, each

with a distinct function, suggests the multifunction effects of a

pathway. In this sense, the ‘‘hub’’ pathways such as those involved

in positive regulation of RNA elongation and histone exchange are

good examples of pathways with multifunction effects.

Discussion

High throughput bio-techniques are generating more and more

extensive descriptions of the gene networks. Unlike physical

interaction data, which is conceptually straightforward, the

synthetic lethal interaction data implies structural properties of

the gene network at a higher level. Namely, synthetic lethal

interactions often imply compensatory pathway structures, while

physical interactions suggest that the participating genes reside in

the same pathway. Thus, integrating synthetic lethal interaction

and physical interaction data is an efficient way to gain biological

insights from the network data. In particular, enrichment of

physical interactions such as protein-protein and protein-DNA

interactions within a set of genes increases our confidence that the

gene set is biologically meaningful. For example, the work of

Kelley and Ideker [1] and Ulitsky and Shamir [8] revealed a great

number of pathways supported by physical interactions. However,

the size of the pathways identified by them could be very small,

sometimes with only two genes. We postulate the reason is that the

current physical interaction data is far from complete and

therefore it will be difficult to reconstruct most pathways. Although

the size distribution of pathways is still an unknown fact, it is likely

Figure 6. Network of compensatory biological functions revealed by synthetic lethal interaction data. Each node represents a Gene
Ontology concept. Each edge represents the existence of extensive synthetic lethal interactions between gene-pairs from the two connected Gene
Ontology concept pairs.
doi:10.1371/journal.pone.0001922.g006
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that many pathways consist of more than two genes. In fact, our

example in Figure 2C demonstrates that the small pathway size

can be a consequence of lacking physical interaction support. We

stress that in functional genomics a practical problem is that many

genes are not functionally annotated, thus it may be helpful to

provide biologists larger list of candidate genes showing compen-

satory interaction patterns. More importantly, given that in some

model organisms only genetic screening data is available, our

findings suggest that we can obtain substantial biological insights

about genetically redundant pathways without inquiring the

physical interaction data.

The mannan/transport compensation of chitin synthesis

identified here exemplifies some important features that should

be considered when using genetic interactions alone to predict

compensatory pathways. One potential weakness in predicting

compensatory interactions is that there is a minor subset of

physically interacting genes that are also synthetically lethal. In the

analysis presented here HOC1 was identified as a chitin synthase

member, likely due to within-pathway redundancy, while MNN10

and VAN1 were correctly identified as mannan synthesis genes as

a result of their genetic interactions with chitin synthesis genes.

However, published data on mannan synthesis [14] allowed for a

quick interpretation of the HOC1 interaction with VAN1 as a

probable within-function interaction.

Another feature of this analysis is that one pathway is often

compensated by multiple pathways, as exemplified by cytoskeletal

components (necessary for moving complexes through the cell) and

the two mannan polymerase complexes that were both identified

as belonging to the same group of proteins compensating chitin

synthesis. Ulitsky and Shamir identified a CHS3/BIN4/SKT5

complex compensation by both MY02/SHE4 and VRP1/SLA1

separately (BMP-48 and -130, respectively; [8]). In predicting a

larger set of interactions, this analysis yielded a more complete

picture of chitin compensating functions than previous analyses

with these data that included physical interactions. A result of such

fragmentation presents the possibility that pieces of the whole

interaction will be missed due to human error and indicates the

requirement of more post analysis evaluation of the data to achieve

the same big-picture view provided with the approach presented

here. Given that there are also errors in the protein interaction

data that must be considered when vetting the output of analyses

based on genetic and protein interactions, the production of a

larger list of interactions in one cluster is likely to save researchers

time and error at the end of analysis.

Additionally, from a biological perspective, it is one thing to

singularly know either that chitin synthesis mutations can be

compensated by a mannan polymerase or by a few secretion

polarity molecules; and a completely different thing to see that

there are several secretion polarity mechanisms and two mannan

polymerase complexes that interact with chitin synthesis mutants.

A partitioned view of the interactions among groups of genes (or a

big-picture created from a poorly reconstructed set of smaller

interactions) limits the types of questions that can be asked of the

analyses (i.e. ‘‘How many cellular systems affect chitin synthesis?’’),

whereas, simpler questions (such as ‘‘Does mannan synthesis

compliment chitin synthesis?’’) are unaffected by having a fuller

picture of how genes interact, as subsets of the output can be

ignored. Moreover, the interactions provided by assessing the data

used with this method have been demonstrated to a much greater

degree in subsequent analyses of chitin synthesis synthetic lethal

analyses [16], indicating that the expanded list of interactions was

also more appropriate in this case.

Several parameters in this analysis require optimization. It

is necessary to determine optimal values for pathway size,

completeness, and how the sizes of each pathway in a

compensatory pathway pair are balanced. However, several

practical considerations make this study challenging. First, the

current synthetic lethal interaction network is heavily biased. Due

to the formidable number of possible combinations

(,600066000/2) and the sparse nature of synthetic lethal

interactions [5], the query genes are generally selected carefully,

despite the fact that all genes are used as bait. Thus, any study of

the global characteristics of the gene network should take special

care with this sampling bias. Second, the evaluation standard of

pathways, such as the Gene Ontology, is a fast evolving standard.

Other well studied metabolic pathways, such as that documented

in the KEGG database [20], have few, if any, overlap with the

current query genes. The lack of an extensive definition of

pathways focusing on the current query genes makes it hard to

accurately evaluate parameter estimations.

In addition to the binary synthetic lethal interactions,

quantitative genetic epistasis data [21] can be another rich source

of genetic interactions. Epistasis refers to the phenomenon in

which the phenotypic consequence of altering one gene is

differentially modulated by the specific alleles of a second one,

including both negative (aggravating) interactions and buffering

(relieving) interactions [21]. Synthetic lethal interaction is an

extreme of the negative interactions. It has been demonstrated that

the quantitative epistasis data contains rich information regarding

pathways and protein complexes [21]. More importantly, due to

the existence of essential genes [22], analyses focusing on synthetic

lethal interactions are not fully genome-wide and thus not really

systematic. With the advance of biotechnology, such as decreased

abundance by mRNA perturbation (DAmP) [21] and promoter-

replacement techniques [23], genetic interaction data are being

generated in a systematic fashion. Future work will be devoted to

studying this broader network of interactions.

Materials and Methods

Data
We downloaded the synthetic lethal interaction data from

BIOGRID ([6]; version 2.0.31). It contains 9376 non-redundant

synthetic lethal genetic interactions, involving 2348 yeast genes.

Note that in this paper we focused on the synthetic lethal genetic

interactions. Other genetic interactions, such as 7,233 synthetic

growth defect and synthetic rescue interactions were not included.

The 68172 protein-protein and protein-DNA interaction data

covering 6814 yeast genes was obtained from Ulitsky and Shamir

[8]. The functional annotation data of yeast genes is downloaded

from SGD [24], as of August 2007. We parsed the Gene Ontology

[12] data structure and mapped yeast genes to all ontology nodes

and the resulting 1720 biological process nodes, each with no more

than 500 genes, are selected to perform functional analysis.

Network visualization
Network figures were created using Cytoscape [25].

Algorithm
By viewing genes as nodes and synthetic lethal interactions

between genes as edges, the synthetic lethal interaction data can be

represented as a network. Our goal was to identify approximately

complete bipartite graphs within the synthetic lethal interaction

network which satisfied the following criteria: 1) there were no or

few edges within each sub-network; 2) there was an abundance of

edges connecting the sub-network pairs; 3) the sub-networks

contained at least four genes. Mathematically, we denote the

original network as G(V, E), where V is the set of yeast genes and E
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is the set of edges connecting yeast genes: each element eij in E

takes value 1 if there is synthetic lethal interaction between genes i

and j and 0 otherwise. Our goal was to find all node set pairs (V1,

V2) that satisfied

min V1j j, V2j jð Þ§4

d1 ¼^
X

i,j[V1I eij~1
� �, V1j j

2

 !
va

d2 ¼^
X

i,j[V2I eij~1
� �, V2j j

2

 !
va

d12 ¼^
X

i[V1,j[V2I eij~1
� �.

V1j j| V2j jð Þwb

ð1Þ

where I(N) is the identity function, |N| is a function on sets, counting

the number of elements in it. a and b are any pre-chosen numbers

so that a is close to 0 and b is close to 1. Here we set a= 0.01,

b= 0.75 (Text S3 and Text S2).

Another consideration was the balance between the sizes of

node set pair (V1, V2). Due to the formidability of the searching

space, we wanted to first focus on the sub-network pairs with

similar sizes. Taking the above issues into consideration, we use

the following objective function to search for candidate node set

pairs:

maximize V1j jz V2j j
subjecto to score V1,V2ð Þ~

d12{d1{d2{
d|abs V1j j{ V2j jð Þ

V1j jz V2j jð Þ wT

ð2Þ

where d is a tuning parameter to control the penalty to the size

differences between node sets V1 and V2 and abs(N) is the absolute

value. A larger d gives more penalties to the size differences

between set V1 and V2. Here we set d= 1.5 (Figure S3, Figure S4

and Text S4).

To implement the above objective, we proposed the following

heuristic algorithm.

Input: (1) G(V, E), the network;

(2) a= 0.01, b= 0.75, T = 0.4, parameters in

Equation (2).

Output: R = (G1, G2, …, Gm), superset of m sub-networks

Gi(V1,V2,E9) to be discovered and returned.

1: R =W. C = 0.

2: repeat

3: Set V1 =W, V2 =W. S(V1, V2, E9) is the sub-network pair

we will discover.

4: Randomly select an edge eij = 1 from E. Set V1 = {i},

V2 = {j}.

5: while there are nodes that can be added to S do

6: Find the set of all nodes in G that are connected to S:

V9 = {v | vMV and evk = 1, for some kMV1<V2}

7: if V9 is empty then

8: break

9: for all vMV9 do

10: Calculate score(v) = max(score(V1<v, V2), score(V1,

V2<v))

11: set score(v) = 0 if score(v),T

12: end for

13: if score(v) = 0 for all vMV9

break

14: sample a node v randomly from V9 according to

vector score(v), vMV9

15: add v to V1 if score(V1<v, V2). = score(V1, V2<v); to

V2 otherwise

16: end while

17: add S into R if |V1|.3, |V2|.3, and S1R

18: C = C+1

19: until C.C*

Our algorithm randomly chose an edge from the whole set of

edges and initialized the sub-network pair V1 and V2. It then

enumerated all other nodes and assigned them score according to

Equation (2). We then sampled a node from these candidates

according to the probability proportional to their scores. Note that

a candidate with a score less than our threshold (T = 0.4) was not

sampled. The sampled node was added into the sub-network

according to its score. A pre-defined number C* ( = 10000 in this

work) of searches are performed.

Redundancy
Similar to Kelley and Ideker [1], repeat pathway pairs were

removed. Specifically, if pathway pair A and pathway pair B

shared more than 50% synthetic lethal interaction edges, the

smaller pathway pair was removed. For summary statistics and

function enrichment analysis of the identified pathways, if pathway

A and B shared more than 50% member genes, the smaller

pathway was removed. The same procedure applies to pathways

from Kelley and Ideker [1] and Ulitsky and Shamir [8].

Supporting Information

Figure S1 Comparison of the size distribution of pathways

identified by our method with that identified by Kelly/Ideker and

Ulitsky/Shamir, using the same size constraint parameters and

original datasets. Upper panel: size distribution of non-redundant

pathways identified by our algorithm on the data used by Kelly/

Ideker; Bottom panel: size distribution of non-redundant pathways

identified by our algorithm on the data used by Ulitsky/Shamir.

Found at: doi:10.1371/journal.pone.0001922.s001 (0.02 MB TIF)

Figure S2 Permutation distribution of b. A large fraction (21%)

of permutation b had value of 0. For non-zero b, the mean was

0.091 and the standard deviation was 0.058.

Found at: doi:10.1371/journal.pone.0001922.s002 (0.01 MB TIF)

Figure S3 Distribution of pathway size differences under

different penalty parameter d.

Found at: doi:10.1371/journal.pone.0001922.s003 (0.01 MB TIF)

Figure S4 Distribution of pathway completeness under different

penalty parameter d.

Found at: doi:10.1371/journal.pone.0001922.s004 (0.01 MB TIF)

Text S1 Minimum pathway size parameter

Found at: doi:10.1371/journal.pone.0001922.s005 (0.03 MB

DOC)

Text S2 Between-pathway completeness b.

Found at: doi:10.1371/journal.pone.0001922.s006 (0.03 MB

DOC)

Text S3 Within-pathway completeness a.

Found at: doi:10.1371/journal.pone.0001922.s007 (0.02 MB

DOC)

Text S4 Pathway size imbalance penalty d.
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Found at: doi:10.1371/journal.pone.0001922.s008 (0.03 MB

DOC)

Table S1 Network of compensatory biological functions.

Found at: doi:10.1371/journal.pone.0001922.s009 (0.05 MB

XLS)
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