
Estimation of Relevant Variables on High-Dimensional
Biological Patterns Using Iterated Weighted Kernel
Functions
Sergio Rojas-Galeano1,2, Emily Hsieh4, Dan Agranoff3, Sanjeev Krishna4, Delmiro Fernandez-Reyes1,2*

1 Division of Parasitology, National Institute for Medical Research, London, United Kingdom, 2 Department of Computer Science, University College London, London,

United Kingdom, 3 Department of Infectious Diseases and Immunity, Faculty of Medicine, Imperial College London, London, United Kingdom, 4 Division of Cellular and

Molecular Medicine, Centre for Infection, St George’s University of London, London, United Kingdom

Abstract

Background: The analysis of complex proteomic and genomic profiles involves the identification of significant markers
within a set of hundreds or even thousands of variables that represent a high-dimensional problem space. The occurrence
of noise, redundancy or combinatorial interactions in the profile makes the selection of relevant variables harder.

Methodology/Principal Findings: Here we propose a method to select variables based on estimated relevance to hidden
patterns. Our method combines a weighted-kernel discriminant with an iterative stochastic probability estimation algorithm
to discover the relevance distribution over the set of variables. We verified the ability of our method to select predefined
relevant variables in synthetic proteome-like data and then assessed its performance on biological high-dimensional
problems. Experiments were run on serum proteomic datasets of infectious diseases. The resulting variable subsets
achieved classification accuracies of 99% on Human African Trypanosomiasis, 91% on Tuberculosis, and 91% on Malaria
serum proteomic profiles with fewer than 20% of variables selected. Our method scaled-up to dimensionalities of much
higher orders of magnitude as shown with gene expression microarray datasets in which we obtained classification
accuracies close to 90% with fewer than 1% of the total number of variables.

Conclusions: Our method consistently found relevant variables attaining high classification accuracies across synthetic and
biological datasets. Notably, it yielded very compact subsets compared to the original number of variables, which should
simplify downstream biological experimentation.
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Introduction

High-throughput genomic and proteomic screening of biolog-

ical samples produces large data arrays [1–3] characterizing

instances of two different conditions in a very high dimensional

space; that is, the space consisting of a vast number of

observations or variables that are acquired for each sample.

This is the case for mass spectrometry profiles of complex protein

mixtures with hundreds of measures of mass-to-charge ratios for

polypeptide chains detected in samples such as serum, or

genomic microarray studies profiling tens of thousands of genes

expressed in tissue samples. The computational analysis of these

biological datasets involves the discovery of informative patterns

between sample instances and the identification of the specific

biomarkers of disease. These analyses facilitate the design of new

diagnostic tests or can be used to focus further biological research

on specific drug or vaccine candidate molecules. Intuitively, such

patterns should not span the entire spectrum of observations but

ought to be encoded in a few relevant variables, with the

remainder representing noise. The search for such a subset of

relevant variables would imply an exhaustive test of all possible

combinations, a task that even for the dimensionality of serum

proteomic datasets would prove unfeasible. The computational

complexity of such searches increases exponentially with the

number of variables; it is known as a NP-complete problem and

hence computationally intractable [4,5]. Consequentially heuris-

tic methods with the aim of selecting an approximate-best

variable subset must be considered.

There are two approaches to variable selection: filter and

wrapper methods [6]. Filter methods rank the complete set of

variables with a given criterion, independently from the applied

classifier. They have been widely-used in the analysis of proteomic

signatures of diseases such as prostate cancer, sleeping sickness and

tuberculosis [7–9]. Several variants which have also been applied

to genomic cancer datasets include lists of permutations of

significant variables that are filtered by genetic algorithms (GA)

coupled with support vector machines (SVMs) [10–13]. Wrapper

methodologies on the other hand, implicitly use the classifier to
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evaluate variables according to their contribution to its predictive

power. Although variable selection using wrapper strategies may

incur extra computational costs, this is compensated by the ability

to explore complex associations between variables detected within

the intrinsic patterns incorporated in the discrimination rules.

Recursive feature elimination (RFE) uses SVM functions to

iteratively rank and discard relevant variables via a greedy search

and has been applied to cancer microarray datasets [14–18]. The

main drawback of this approach lies in the greedy strategy that

may disrupt relationships between variables discarded in different

stages of the algorithm, leading to sub-optimal selected subsets. To

sidestep this difficulty, an alternative approach combines weighted

kernels with SVMs [19–22]; this approach assigns a weight to each

variable to indicate its relevance. In [19] the weight vector is

computed using a gradient-descent formulation, which uses

bounds on the expected generalization error of the SVM.

However, the applicability of this method is restricted by

assumptions requiring the kernel and objective functions to be

continuous and differentiable, as well as the dataset being

separable. In a previous work [22] we proposed to adapt the

weighted-kernel SVM using a GA instead of the gradient descent

algorithm to improve model selection on weighted radial basis

kernels rather than to select variables. In a similar direction, a

recent technique using evolutionary strategies to adjust both

scaling and orientation of generalized Gaussian kernels in SVMs

has been reported [23]; the evolved matrices, however, must be

constrained to meet the requirements of proper kernels and,

similarly, the aim is to improve the performance of classification

instead of selecting variables.

The wrapper method we describe in this paper focuses on

estimating a relevance distribution encoded by the weight vector;

such a distribution becomes instrumental in the selection of

significant variables. For this end, the weighted Kernel-based Iterative

Estimation of Relevance Algorithm (wKIERA) combines a stochastic-

search estimation of distribution algorithm with a kernel pattern-

recognition method. The motivation behind using a stochastic

estimation of distribution algorithm [24] is three-fold: (i) the ability

to derive the parameters of the weighted kernel directly from the

resulting relevance distribution; (ii) its capability of avoiding

premature poor convergence on optimization of multiple-minima

cost functions; and (iii) the low memory-space requirements arising

from its compact representation, which is advantageous in the case

of dimensionalities of hundreds or thousands of variables. The

advantage of employing kernel-based classification is its ability to

handle nonlinear decision surfaces in data generated from high-

throughput experiments while still adhering to the simplicities of

linear classifiers. We reduced the computational cost of the

iterative estimation algorithm by using a kernel perceptron [25] as

an alternative to SVM, since it provides fast operation with

guarantees on upper bounds of misclassification errors. Conse-

quently, wKIERA combines the exploration-exploitation trade-off

exhibited by probabilistic model-building stochastic search algo-

rithms for combinatorics [26] with robustness to nonlinear

concepts in high-dimensional spaces provided by kernel-based

pattern analysis [27]. Our framework successfully selects relevant

variables in high-dimensional proteomic and genomic profiles of

complex biological processes.

Results

We performed experiments with wKIERA (Fig. 1) on a variety

of synthetic and biological datasets (Table 1). First, wKIERA was

run N times with different random training/test splits, obtaining an

average relevance vector ~v. This vector was then scaled to the

interval [0, 1] and its components were sorted in descending order

with highest values representing relevant variables. We selected

relevant variables by defining a cutoff threshold on ~v. We then

used SVMs to evaluate the performance of selected variables in

100 classification experiments using random training/test splits of

the dataset. We visualized the classification performance of the

subsets of variables obtained by applying a threshold with a step

size of 0.1 to the wKIERA relevance vector ~v (Figs. 2, 3 and 4

top). We then compared the subset of best performing variables

from the threshold plot, with the least relevant ranked variables by

wKIERA, as well as with the complete set of original variables and

with those rated as relevant according to rank correlation

coefficients (Figs. 2, 3 and 4 middle). The performance in ROC

space for the same subsets of variables is also shown (Figures 2, 3

and 4 bottom).

To assess the framework reliability we designed experiments

using linear and non-linear simulated proteomic-like datasets with

predefined sets of relevant variables. For all of the synthetic

datasets wKIERA selected the correct relevant variables among

the first top-ranked components of ~v except for the LH dataset

where one irrelevant variable was ranked before another relevant

(Table 2). Figure 2 shows the classification performance of two

representative proteomic-like artificial datasets: one with outlier

instances (LOI) and the other sampled from a mixture of

Gaussians (NLG). On the LOI dataset, the performance of

wKIERA is comparable to that of the rank correlation coefficients

but with a smaller set of relevant variables (Fig. 2A middle). The

accuracy obtained with the worst-wKIERA-ranked variables is

close to random classification as expected and shows that the best-

ranked variables were not selected by chance. Moreover,

classification using all variables is poor because excessive noise is

introduced by the non-relevant variables (Fig. 2A middle).

Similarly, in the NLG dataset, classification with selected variables

by wKIERA outperformed that of bottom-ranked or all variables

(Fig. 2B middle). On this dataset our method clearly outperformed

Figure 1. High level flow chart of the wKIERA Algorithm.
doi:10.1371/journal.pone.0001806.g001
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rank correlation coefficients and indeed it is known that the latter

method is sensitive to non-linear labeling functions (Fig. 2B

middle). Experimental results for the other synthetic datasets

followed similar trends (not shown); in all cases the predefined

relevant variables were successfully selected by wKIERA (Table 2).

We assessed the performance of wKIERA on real data using a

panel of high-dimensional biological patterns. We focused our

experiments on proprietary proteomic datasets of infectious

diseases such as Human African Trypanosomiasis (HAT) [9],

Tuberculosis (TB) [7] and Malaria (Table 1). On the HAT dataset,

classifiers trained with variables selected by wKIERA achieved an

accuracy of 99% with comparable performance to using those

selected by rank correlation coefficients (Fig. 3A). However, the

number of variables selected by wKIERA was much smaller (21%

of the total (44) compared to 55% (114)). Interestingly, classifiers

trained with all variables or the worst-wKIERA-ranked subset of

variables showed accuracies above 90%, which indicates that

discrimination patterns are widely distributed across all variables

in this dataset. Analyses of the TB dataset show that wKIERA

selected variables yielding an accuracy of 91% while for those

selected with rank correlation coefficients the accuracy was 89%

and using all variables 87% (Fig. 3B). As on the previous dataset

the wKIERA subset was the smallest (17% of total size (37))

compared to 52% (113) and 100% (219). A 74% accuracy

obtained by the worst-wKIERA-ranked may indicate the

occurrence of noise in this dataset. Lastly, results for the Malaria

dataset were wKIERA: 91%, rank correlation coefficients: 89%,

and all-variables: 88% (Fig. 3C). Consistently, the subset obtained

with wKIERA is much smaller (11 compared to 58 from a total of

170 variables). Once more, the 65% obtained with the worst-

wKIERA-ranked may also suggest the presence of noise in this

dataset.

In order to assess the scalability of our method to higher

numbers of variables, we subsequently conducted experiments on

publicly available microarray datasets (Table 1) where dimension-

ality was increased between two and three orders of magnitude

compared to the proteomic datasets described above. On the

COLON CANCER dataset, the wKIERA subset of variables

achieved 88% accuracy with only 2.5% (50) of the total variables,

whereas rank correlation coefficients achieved 82% with a size of

8.5% (171) (Fig. 4A). On the other hand, in the GLIAL CANCER

dataset the wKIERA subset attained 91% accuracy, outperform-

ing all the other subsets of variables that achieved accuracies below

60% (Fig. 4B). Again, the small number of variables selected by

wKIERA (just 0.4% or 48 out of 12626) is noteworthy. The poor

performance obtained with rank correlation coefficients indicates

Table 1. Description of simulated and biological datasets used in this study.

Dataset Size D R Description Ref

Linear with
redundant variables
(LR)

200 206 6 Occurrence of each condition is equiprobable. Six relevant variables are drawn as {yN(1,1), yN(2,1),
yN(3,1), N(0,1), N(0,1), N(0,1)} with prob. p, otherwise from {N(0,1), N(0,1), N(0,1), yN(1,1), yN(2,1),
yN(3,1)}. The remainder variables are drawn from N(0,20) The first six variables have redundancy.
See ref. for details.

[19]

Linear with outlier
variables (LOV)

200 205 5 Occurrence of each condition is equiprobable. Five relevant variables are drawn from N 5=4,1
� �

for a positive sample and N {5=4,1
� �

for a negative. The rest are drawn from N(0,1). Outliers in

variables are induced by selecting 5% of values on relevant variables and re-drawn them from

either N 5=4,10
� �

or N {5=4,10
� �

depending on the label. See ref. for details.

[15]

Linear with outlier
instances (LOI)

200 205 5 Same method as LOV but this time ‘‘instance’’ outliers are artificially induced by picking 5% of the
total samples and re-drawn them from the same distribution with an 10-fold augmented standard
deviation. See ref. for details.

[15]

Linear hyperplane
(LH)

200 205 5 Five relevant variables are drawn from normal distribution, N(0,1). A random normally-distributed
hypothesis vector h

–
is used to label positive samples when x*h

–
9$0 and negative otherwise. The

remainder variables are drawn from N(0,20).

N/A

Nonlinear Gaussian
(NLG)

200 206 6 Occurrence of each condition is equiprobable. Negative samples are drawn from multivariate
N({2L,…,23}, I) or N({L,…,3}, I) with equal probability. Positive samples are drawn from
multivariate N({3,…,23}, I) or N({23,…,3}, I) with equal probability. The rest of variables are noise
sampled from N(0,20). Relevant variables have redundancy. See ref. for details.

[19]

Nonlinear checkers
(NLC)

500 202 2 All variables are drawn uniform randomly from the interval [0,1]. Condition label is determined as
the logical exclusive-OR between the first 2 variables, y = XOR(x1,x2). The resulting 2-dimensional
subspace of relevant variables resembles a 262 checkerboard. The rest of variables are noise
sampled from N(0,20).See ref. for details.

[13]

Human African
Trypanosomiasis
(HAT)

231 206 ? SELDI-ToF Proteomic dataset of 85 serum samples from patients affected with Human African
Trypanosomiasis (sleeping sickness) plus 146 control serum samples. See ref. for full details on
demographics and data gathering.

[9]

Tuberculosis (TB) 349 219 ? SELDI-ToF Proteomic dataset consisting of 179 serum samples from patients affected with active
Tuberculosis plus 170 control serum samples. See ref. for full details on demographics and data
gathering.

[7]

Malaria 170 56 ? SELDI-ToF Proteomic dataset consisting of 28 serum samples from patients affected with Malaria
plus 28 control serum samples. To be published elsewhere.

N/A

Colon cancer 66 2000 ? Publicly available gene expression microarray consisting of 40 tumor and 22 normal colon tissue
samples.

[29]

Glial cancer 50 12625 ? Publicly available gene expression microarray consisting of 28 samples of glioblastomas and 22
samples of anaplastic oligodendrogliomas. See ref. for further details.

[30]

D = dimension, R = number of relevant variables.
doi:10.1371/journal.pone.0001806.t001
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that labeled-correlated variables are insufficient to solve the

possibly non-linear separation surfaces contained in this dataset.

In summary, our wKIERA method consistently found relevant

variables attaining high classification accuracies in synthetic and

biological datasets, and yielded subsets that were very compact

compared to the original number of variables. This is highly

desirable for the feasibility of downstream biological experimen-

tation. The method reliably scaled-up to dimensionalities of much

higher orders of magnitude even when few instances were

available, as shown with the cancer microarray datasets.

Discussion

We propose an iterative framework for weighted kernel-based

relevance estimation for high dimensional biological patterns.

Variable relevance estimation assuming variable independence

was achieved using a kernel perceptron classifier coupled with a

probabilistic-model-building stochastic optimizer. We have shown

the viability of such a configuration in controlled synthetic

experiments. In a set of experiments involving proteomic profiles

for infectious diseases our method found sets of significant protein

clusters that achieved high classification accuracies but which were

three times smaller than sets derived using classic correlation

coefficients. The dimensionality of the overall datasets varied

between 170 and 219. We also tried our method in problems with

much larger dimensionalities such as cancer expression micro-

arrays with 2000 and 12625 genes where only a handful of

instances are available. The method scaled-up remarkably well in

these situations, revealing significant patterns.

Weighted polynomial or RBF data-pattern kernel representa-

tions can be used within the wKIERA framework. Use of weighted

RBF kernels was preferred for biological datasets because they are

considered to be polynomial kernels of infinite degree [27]. For

synthetic datasets such as LH, NLG and NLC we experimented

with polynomial weighted kernels in accordance with previous

studies in the literature where the non-weighted versions were used

[13,15,28].

The wKIERA framework modularity admits different config-

urations where faster online learning algorithms and more

complex probabilistic-based search models can be used. This

might allow us to analyze complex patterns of composite variable

interactions and multivariate dependencies. We are currently

investigating new mistake-driven algorithms with better general-

ization performance than the kernel perceptron but still showing

fast execution. We are also considering refining the estimation of

distribution algorithm by using probabilistic graphical models to

represent higher-degree, nonlinear, conditional, or even time

dependencies between variables. This research path may further

improve the ability of our method to find informative pattern

distributions that are likely to emerge given the dynamic nature of

protein interactions.

Materials and Methods

Datasets
Proteome-like synthetic datasets were designed in order to

perform controlled experiments using dimensionalities of two

hundred variables, from which two to six were relevant. We

encoded linear and non-linear labeling functions into the relevant

variables. A few hundred samples were included, resulting in

square-shaped data matrices. Sampling and labeling mechanisms

are described in Table 1. We generated four linear datasets: LR,

where some relevant variables can be discarded as redundant

without disturbing classification accuracy; LOV, where noise was

introduced to particular loci in randomly selected instances

simulating artifacts generated during array processing; LOI, where

noise was imposed on all variables in randomly selected instances,

simulating inaccurate collection of samples; and LH, where a

predefined linear discriminant for relevant variables was used to

label the instances. In addition, two nonlinear datasets were

generated: NLG, where clusters of mixtures of Gaussians were

generated for each class, and NLC, where the clusters follow a

tighter checkers-patterned distribution. The last two datasets also

included redundancy.

Experiments were also conducted on real biological datasets.

We tested proprietary proteomic profiles of infectious diseases

(HAT [9], TB [7] and MALARIA [Unpublished]). These high

dimensional datasets are almost square, i.e. the number of

variables and instances are similar (Table 1). We also used two

publicly available gene expression microarray datasets COLON

CANCER [29] and GLIAL CANCER [30]). These datasets have

a much higher dimensionality (2000 and 12625 respectively) and

fewer instances (66 and 50 respectively). Compared to the

proteomic datasets, the latter two datasets are rectangular in

shape posing a more challenging obstacle to variable selection

because of the curse of dimensionality phenomenon, i.e. shortage

of sufficient instances to correctly sample high dimensional spaces.

Notation
We denote D = {(x1,y1),…,(xm,ym)} a collection of m instance/

label pairs where each instance xi = (xi1,xi2…,xin) consists of n

observations representing one sample in an n-dimensional space,

yiM{1, 21} specifying its binary class label, and 1#i#m. The

coordinates of such a space are related to variables; each one

associated with a factor v̂iM{0,1} to indicate its relevance. The

vector v approximates these factors using continuous weights

viM[0,1]. The set of instance indexes is denoted by J = {1,2,…,m}.

Instances are randomly split into a training subset S and a test

subset U to be used by a learning classifier. The kernel matrix of all

instances in D is denoted by K, the kernel matrix of training

instances by KS and the kernel matrix of training versus test

instances by KU. The class labels for training and test sets are

denoted by yS and yU respectively. A candidate weight vector that

approximates the optimal v is termed w. The collection of all such

vectors w is denoted W while the collection of vectors w with best

classification performance is B.

weighted Kernel-based Iterative Estimation of Relevance
Algorithm (wKIERA)

A high level depiction of wKIERA is shown in Fig. 1. The

method iteratively optimizes the parameters (v,a) of Eq. (13) by

executing the components marked as learn and estimate. We used a

kernel perceptron as a supervised learner [25] and an estimation of

Figure 2. Performance of variable subsets on simulated datasets. A) LOI dataset (wKIERA settings: poolsize = 10, maxiter = 400, rep = 2000,
wkRBF r = 0.1); B) NLG dataset (poolsize = 10, maxiter = 400, rep = 2000, wkPoly d = 2). Top: Average SVM accuracy on 100 randomly train/test splits
using subsets of variables obtained by thresholding the estimated factors of a weighted kernel with the corresponding cutoff on horizontal axis.
Resulting subset size (number of variables) is shown in brackets. Middle: Comparison of classification accuracy of SVM trained using variables
selected by best-wKIERA-ranked (red); worst-wKIERA-ranked (black); rank correlation coefficients (blue) and using all variables (green). Results are
averaged over 100 randomly training/test splits. Bottom: ROC-space analysis of the SVM classifiers shown in the mid plot.
doi:10.1371/journal.pone.0001806.g002
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Figure 3. Performance of variable subsets on proteomic datasets. A) HAT dataset (wKIERA settings: poolsize = 10, maxiter = 400, rep = 2000,
wkRBF r = 0.01); B) TB dataset (poolsize = 10, maxiter = 400, rep = 2000, wkRBF r = 1). C) MALARIA dataset (poolsize = 10, maxiter = 400, rep = 2000,
wkRBF r = 1). Top, Middle and Bottom: See legend on Figure 2.
doi:10.1371/journal.pone.0001806.g003
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distribution algorithm for the estimate component [24]. However,

the modular design of the wKIERA allows plugging of any linear-

threshold kernel classifier and any stochastic optimization

algorithm into these components.

The stochastic optimization module for estimation of v was

designed with a probabilistic model-building strategy known as

estimation of distribution algorithm [24] and is summarized in

Table 3. Inputs are a dataset D, the number of candidate weight

vectors w (poolsize), the maximum number of iterations (maxiter),

and the parameters of a base kernel. Depending on the kernel

type, this can be the degree of a polynomial kernel d or the width

of a RBF kernel r. This base kernel will be transformed to a

weighted version using every candidate weight vector w.

First, the pool of weight candidates W is uniformly randomly

initialized and the main loop (Table 3) is executed maxiter number

of iterations. The variables top and bestw are used to trace the

candidate with best score across all iterations. On each iteration

the set of instance indexes J = {1,2,…,m} is split into two subsets of

randomly permuted indexes, S and U. Then a weighted kernel

matrix K is computed using the corresponding weight vector w, the

input vectors xJ and the base kernel. The kernel matrix KS is fed

into a kernel perceptron to learn a discriminant function h that

classifies the examples in S within a supervised learning framework

using the corresponding labels yS. The fitness of the candidate

weight vector w is then evaluated with the multi-objective scoring

function of Eq. (1) which depends on classification accuracy in the

test set using KU and yU, and a measure of its length. A matrix B is

then created with half the best-scoring weight vectors from W. The

matrix B is now used to estimate a uniformly and independently

multivariate Gaussian distribution by computing the mean and

standard deviation vectors m and s. Two additional parameters for

noise d and skewness j are set using a predefined schedule of the

current iteration number and the top score. At this point a new

pool of weight vector candidates W is generated using the

estimated probability distribution with added perturbations. A

skewed multivariate normally distributed matrix Wnew,Nd(m,s+j)

is used for this purpose. Negative values generated by this

distribution are set to zero since only positive values are valid

weights vk in Eq. (10) and Eq. (11). Finally, the best candidate

bestw is carried over to the next iteration by assigning it to the first

slot of the new pool W (as suggested in [31]). These steps are

repeated a maximum number of iterations or until the algorithm

halts for a maximum period of consecutive iterations. At the end of

Figure 4. Performance of variable subsets on gene expression microarray datasets. A) COLON CANCER dataset (wKIERA settings:
poolsize = 100, maxiter = 1000, rep = 1000, wkRBF r = 0.1); B) GLIAL CANCER dataset (poolsize = 100, maxiter = 1000, rep = 1000, wkRBF r = 161025).
Top, Middle and Bottom: See legend on Figure 2.
doi:10.1371/journal.pone.0001806.g004

Table 2. Selected variables in synthetic datasets by wKIERA (poolsize = 10, maxiter = 400).

Dataset 10-top-ranked variable index
Matched/true
relevant Kernel settings

LR 3 6 2 5 1 4 45 116 76 191 6/6 wkRBF (r = 0.1)

LOV 2 4 1 3 5 28 53 93 75 7 5/5 wkRBF (r = 0.1)

LOI 4 3 5 2 1 87 132 54 20 142 5/5 wkRBF (r = 0.1)

LH 5 3 1 4 162 2 169 27 191 85 5/5 wkPoly (d = 1)

NLG 3 4 1 2 5 6 141 73 170 78 6/6 wkPoly (d = 2)

NLC 2 1 178 64 150 162 84 101 3 27 2/2 wkPoly (d = 2)

Type of kernel used in each dataset, weighted RBF kernel (wkRBF) or weighted Polynomial kernel (wkPoly), is showed in rightmost column. Numbers in bold-italic
represent true relevant variables.
doi:10.1371/journal.pone.0001806.t002

Table 3. Weighted Kernel-based Iterative Estimation of
Relevance Algorithm (wKIERA).

Algorithm wKIERA

Inputs

Dataset: D = {(xJ,yJ)}, J = {1,…,m}; Base kernel: kerbase;

Pool size: poolsize; Max. iterations: maxiter;

Output

bestw

Algorithm

n = dim(x1);

W = rand_matrix_01 (poolsize,n)

repeat for (t = 1, top = 0; t,maxiter; t++)

[S,U] = random_split (J,n/2)

repeat for each row w in W

K = compute_wkernel (w,xJ,kerbase)

h = train_kperceptron(KS,yS)

scorew = 0.99*test_kperceptron (h,KU,yU)+0.01*len(w)

if(scorew.top)

top = scorew; bestw = w;

end_if

end_repeat

B = select_half_best (W,scorei = 1:poolsize);

m = mean(B); s= std_dev(B);

[d,j] = skewness_schedule (t,top);

Wnew = m+((s+j)*rand_matrix_skewed_01 (poolsize,n,d))

Wnew
1 = bestw; W = Wnew

end_repeat

doi:10.1371/journal.pone.0001806.t003
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the loop the best candidate bestw containing the estimated vector of

weights v is returned.

The [d,j]-schedule was defined according to the best param-

eters found in preliminary experiments. The amount of noise d
added by the random number generator was initialized in 0.2

and linearly declines to zero by the final iteration. This is intended

to encourage a broader exploration of the search space at the

beginning stages of the algorithm while further exploitation of

the feasible subspace is performed in the later stages. On the

other hand, the skewness of the distribution j is set to zero up

to the point where top score achieves a safety-net value of 0.9

when it starts to decrease towards a value of 21. When this

happens, the random number generator becomes biased to

produce negative weight values which in turn will be set to zero.

This is meant to promote downscaling of irrelevant variables in

classifiers obtaining high classification scores. A safety-net value of

0.9 will ensure that classifiers with less than 90% accuracy are

penalized.

Scoring function
The score function guides the search of the wKIERA algorithm.

It is defined as a multi-objective function made of an estimate of

the accuracy of a weighted kernel classifier and a measure of the

size of the weight vector:

f wð Þ~0:99 � ACC hw

� �
z0:01 � LEN wð Þ ð1Þ

The first term in Eq. (1), corresponding to the accuracy of a

classifier, computes the proportion of correctly classified examples

in an unseen test set. Classifiers with higher rates of accuracy get

values close to 1. The second term in Eq. (1) is intended to solve

ties between candidates with the same accuracy, in which case

those with lower scale factors are preferred. For this purpose the

average of w is used to calculate LEN(w) = 12AVG(w); thus

candidates comprising plenty of null weights get length values

approaching to 1. We weight the first term of the multi-objective

function with 0.99 as classification accuracy should be the

dominant criterion of the search.

We consider other measures of classification performance,

including sensitivity (SE) and specificity (SP) of a classifier. They

are defined in Eq. (2) and Eq. (3), where TP and TN denote the

number of positive and negative correctly classified cases, and

FP and FN denote the positive and negative misclassified cases.

The accuracy, then, can be computed as Eq. (4). We used TP and

TN to plot classifiers in a receiver operator characteristic (ROC)

space where the performance (positive diagnostic likelihood ratio)

of a classifier is expressed by its true positive rate (TPR = SE) and

false positive rate (FPR = 12SP).

SE~
TP

TPzFN
ð2Þ

SP~
TN

TNzFP
ð3Þ

ACC~
TPzTN

TPzFPzTNzFN
ð4Þ

Linear-Threshold Discriminants
A linear-threshold discriminant corresponds to a hyperplane in

the space of instances in D, that is, an n-dimensional plane defining

two half-spaces. An instance is hence classified as positive or

negative depending on the side of the hyperplane it lies on. A

hyperplane is characterized by its normal n-dimensional weight

vector w and a bias term b (b?0 refers to a non-centered

hyperplane). A linear discriminant function can be specified as a

rule to discriminate instances in D:

h xð Þ~sign Sw,xTzbð Þ ð5Þ

where Æ?,?æ denotes inner product. By weighting input variables in

x with v, the contribution of variables with non-significant factors

to the inner product in Eq. (5) is diminished. The linear

discriminant therefore becomes:

hv xð Þ~sign Sw,x � vTzbð Þ ð6Þ

where * denotes element-wise product. The parameters (w,b) are

obtained by solving an optimization problem on the misclassifi-

cation error incurred by hv:

min
w,b

Xm

i~1

E yi,hv xið Þ
� �

ð7Þ

here E( yi,hv(xIi)) measures the discrepancies between the predicted

and the real label on every instance in D.

Weighted kernels
A kernel is a continuous, symmetrical and positive semi-definite

function between two vectors in a given Hilbert space H. Mercer’s

theorem [32] states that such a function corresponds to the inner

product between images of the input vectors in a transformed

feature space (usually of a larger dimensionality). Therefore, when

vectors from the input space are mapped to a feature space

xi¨w(xi) using the nonlinear transformation w(?), their inner

products in the feature space becomes Æw(xi), w(xj)æ¨k(xi,xj)

where k : H6H¨R is a function mapping a pair of points in H to

the real set R. By means of w(?), nonlinearities in the input space

can be solved with linear discriminants in the feature space if a

proper function k(?,?) is used. In the present study H is defined by

Rn.

Two widely-used kernel functions are the Radial Basis Function

(RBF) and polynomial kernels defined in Eq. (8) and Eq. (9)

respectively:

k xi,xj

� �
~exp {r xi{xj

�� ��2
� �

ð8Þ

k xi,xj

� �
~Sxi,xjT

d ð9Þ

where the parameter r.0 is the width of a symmetric radial

function similar to a Gaussian bell centered in one of the input

patterns and the parameter d.0 is the polynomial degree. A

weighted version of these kernels assigns a scale factor, 0,vk,1,

for each input dimension as shown in Eq. (10) and Eq. (11)

respectively [19]. In the weighted polynomial kernel the scale

factors vk adjust the contribution of each variable to the inner

product. In the weighted RBF kernel vk shape the width of the

radial function in every dimension. Null scale factors prevent the
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corresponding variables affecting the kernel computation, making

them irrelevant in practice.

kv xi,xj

� �
~exp {r

Xn

k~1

vk xik{xjk

� �2

 !
ð10Þ

kv xi,xj

� �
~

Xn

k~1

vk xik
:xjk

� � !d

ð11Þ

Any kernel defines a so-called Reproducing Kernel

Hilbert Space (RKHS) where an inner product between two

arbitrary vectors amounts to the evaluation of the correspond-

foing kernel function. In this way a hyperplane in the RKHS

can be characterized by replacing inner products with kernel

functions and hence the linear discriminant of Eq. (5) becomes

[33]:

hv xð Þ~sign
X

i

aik xi,xð Þ
 !

ð12Þ

and the weighted version of Eq. (6) corresponding to:

hv xð Þ~sign
X

i

aik xi � v,x � vð Þ
 !

ð13Þ

The expression k(xi * v,xj * v) in Eq. (13) matches one of the

above-defined weighted kernels which we have denoted kv(xi,xj).

Note that a kernel matrix Kv can be computed off-line for every

pair of instances in D, i.e. as tKvsij = kv(xi,xj).

Kernel Perceptron
A Perceptron classifier [34,35] uses a hyperplane to separate

examples from a dataset D onto different half-spaces correspond-

ing to binary classes. The hyperplane is represented by the

parameters (w,b) of Eq. (5) which are learned by a mistake-driven

algorithm conducting incremental updates from a stream of

instances. It has been shown [36,37] that given two separable sets

of positive and negative examples in a Hilbert space, the

Perceptron algorithm converges to a discriminant hyperplane

with a number of mistakes theoretically bounded in terms of the

distance of separation between the sets (also know as their margin).

The linear separability constraint which is certainly difficult to

ensure in realistic situations, can be solved by using kernel

functions to transform the input space to a higher dimensional

RHKS [33]. The resulting Kernel Perceptron algorithm [25], is

able to learn a linear discriminant with implicit kernel represen-

tations as in Eq. (12). Additional advantages of this algorithm

include ease of implementation and fast computation; given its

incremental character, the number of updates grows as O(n) where

n is the number of examples in D.

Support Vector Machines
The SVM [27,33,38] is a kernel machine that learns a

hyperplane with the maximal margin of separation between

vectors of two distinctive classes in a RKHS. The discrimination

function of an SVM is similar to that of the Kernel Perceptron and

takes the form showed in Eq. (14),

h xð Þ~sign
Xm

i~1

aiyik xi,xð Þzb

 !
ð14Þ

where the coefficients ai and the bias term b are found by solving a

constrained quadratic optimization problem aimed to minimize

the misclassification rate and the complexity of the classifier while

maximizing the margin. Notice that only those patterns whose

ai?0, participate in the computation of Eq. (14) and hence they

are called the support vectors. The motivation for maximizing the

margin is rooted in the theory of Structural Risk Minimization

[38] and its aim is to maximize the generalization ability of the

discriminant by reducing its capacity. In this sense, the SVM

learns the optimal separating hyperplane whereas the Kernel

Perceptron learns an approximation to that optimum. However

the computational complexity of the SVM is quadratic in time

since it requires O(n2) computations to solve the quadratic

optimization problem.

Rank correlation coefficients
The Pearson correlation coefficients are computed using

Eq. (15) where Xk represents the random variable corresponding

to the k-th component of the input instance vectors (k = 1,2,…n)

and Y is the random variable representing the class labels.

R kð Þ~ cov ariance Xk,Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var iance Xkð Þvar iance Yð Þ

p ð15Þ

Since only a finite sample of the input instances is available,

the estimate of R(k) is given by Eq. (16) where xik corresponds

to the k-th variable value of the i-th sample and yi is its class

label.

R̂R kð Þ~

Pm
i~1

xik{�xxkð Þ yi{�yyð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i~1

xik{�xxkð Þ2
� � Pm

i~1

yi{�yyð Þ2
� �s ð16Þ

Source code
The proposed method was implemented in Matlab 7.0

including scripts for wKIERA, kernel perceptron, scoring and

evaluation functions. The source code is available upon

request. For evaluation of SVM classifiers we used the

SVMLight [39] library with the MEX-SVMLight interface for

Matlab [40].

Acknowledgments

Dr. Mark Herbster, Department of Computer Science, UCL, London,

UK, for valuable comments and revision of the work. Dr. A. A. Holder,

Division of Parasitology, NIMR, London, UK for support and valuable

comments.

Author Contributions

Conceived and designed the experiments: DF SR. Performed the

experiments: DF DA SR EH. Analyzed the data: DF SR. Contributed

reagents/materials/analysis tools: SK DF DA SR. Wrote the paper: DF

SR.

Selection of Relevant Patterns

PLoS ONE | www.plosone.org 10 March 2008 | Volume 3 | Issue 3 | e1806



References

1. Baldi P, Hatfield W (2002) DNA Microarrays and Gene Expression:: Cambridge

University Press.
2. Wagner M, Naik D, Pothen A (2003) Protocols for disease classification from

mass spectrometry data. Proteomics. pp 1692–1698.
3. Issaq HJ, Veenstra TD, Conrads TP, Felschow D (2002) The SELDI-TOF MS

approach to proteomics: protein profiling and biomarker identification. Biochem

Biophys Res Comm 292: 587–592.
4. Davies S, Russell S (1994) NP-completeness of searches for smallest possible

feature sets.
5. Garey M, Johnson D (1979) Computers and Intractability: A Guide to the

Theory of NP-Completeness: W.H. Freeman and Company.

6. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection.
Journal of Machine Learning Research 3: 1157–1182.

7. Agranoff D, Fernandez-Reyes D, Papadopoulos M, Rojas Galeano S,
Herbster M, et al. (2006) Identification of diagnostic markers for tuberculosis

by proteomic fingerprinting of serum. Lancet 368: 1012–1021.
8. Wagner M, Naik D, Pothen A, Kasukurti S, Devineni R, et al. (2004)

Computational protein biomarker prediction: a case study for prostate cancer.

BMC Bioinformatics 5.
9. Papadopoulos MC, Abel PM, Agranoff D, Stich A, Tarelli E, et al. (2004) A

novel and accurate test for Human African Trypanosomiasis. Lancet 363:
1358–1363.

10. Conrads T, Fusaro V, Ross S, Johann D, Rajapakse V, et al. (2004) High-

resolution serum proteomic features for ovarian cancer detection. Endocrine-
Related Cancer. pp 163–178.

11. Li L, Jian W, Li X, Moser K, Guo Z, et al. (2005) A robust hybrid between
genetic algorithm and support vector machine for extracting an optimal feature

gene subset. Genomics. pp 16–23.
12. Liu J, Gutler G, Li W, Pan Z, Peng S, et al. (2005) Multiclass cancer

classification and biomarker discovery using GA-based algorithms. Bioinfor-

matics 21: 2691–2697.
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