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Hemangioblasts are bi-potential precursors for blood and endothelial cells (BCs and ECs). Existence of the hemangioblast in
vivo by its strict definition, i.e. a clonal precursor giving rise to these two cell types after division, is still debated. Using
a combination of mitotic figure analysis, cell labeling and long-term cell tracing, we show that, in chicken, cell division does not
play a major role during the entire ventral mesoderm differentiation process after gastrulation. One eighth of cells do undergo
at least one round of division, but mainly give rise to daughter cells contributing to the same lineage. Approximately 7% of the
dividing cells that contribute to either the BC or EC lineage meet the criteria of true hemangioblasts, with one daughter cell
becoming a BC and the other an EC. Our data suggest that hemangioblast-type generation of BC/EC occurs, but is not used as
a major mechanism during early chicken development. It remains unclear, however, whether hemangioblast-like progenitor
cells play a more prominent role in later development.
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INTRODUCTION
During pre-circulation development in chicken, clusters of blood

island cells give rise to both the vascular plexus and primitive

blood cells [1,2]. Because not all blood islands generate BCs, Sabin

used the term ‘‘angioblast’’ to describe the blood island [3–5],

which was later changed into ‘‘hemangioblast’’ by Murray [6].

Murray’s hemangioblast, however, was meant to describe a cell

population with the potential to differentiate into both BCs and

ECs. This definition was used in most of the later descriptions of

early hematopoiesis and vasculogenesis in chicken and other

vertebrates [7–9] (and references therein). More recently, work on

in vitro differentiation of stem/progenitor cells has indicated the

existence of clonal hemangioblasts [10–15], with in vivo lineage

tracing analyses in zebrafish embryos supporting the presence and

importance of such hemangioblasts [16], and in mouse arguing

against its importance in early development [17].

RESULTS
We decided to investigate the issue of hemangioblast by its strict

definition during early hematopoietic and vascular development in

chicken. In this work, we use ‘‘blood island’’ or ‘‘blood island cells’’

to describe Murray’s hemangioblast, and use ‘‘hemangioblast’’ or

hemangioblasts’’ to describe the strict clonal definition being

debated in recent literature. Since cell division is a necessary step

for hemangioblast-type generation of BCs and ECs, we first

analyzed the extent of mitosis taking place after the ingression of

ventral mesoderm cells at stage HH4 until stage HH10 when

morphologically distinct BCs and ECs can be recognized. We

stained embryos with an antibody against phosphorylated Histone

H3 (anti-phospho-S10-H3), which marks mitotic cells from late

G2-phase to early telophase [18]. Mitotic cells were seen in all

three germ layers (Fig. 1). Within the ventral mesoderm

population, from which BCs and ECs are generated, cell divisions

are not restricted to any particular region or stage (Fig. 1). Mitoses

were seen in undifferentiated ventral mesoderm cells at HH4-6

(Fig. 1A–C), in blood-island cells prior to terminal differentiation

(Fig. 1C–E; arrows) and in BC or EC populations at HH 9–10

after terminal differentiation (Fig. 1F,G; arrows). Statistical

analyses revealed that approximately 2% ventral mesoderm cells

were positive for phospho-S10-H3 staining at all stages (Fig. 2A,B).

The percentage of mitotic cells (so-called mitotic index),

however, has to be viewed in connection with the knowledge of

cell cycle duration and period of cell cycle marked by phospho-

S10-H3, neither of which has been studied for the ventral

mesoderm population. Similar analyses on the ectoderm, streak

and general mesoderm populations during gastrulation gave

a broad range of 2–10 hours for cell cycle duration and 2–8 hours

for S phase duration [19–30]. In order to know what percentage of

total ventral mesoderm cells undergo at least one round of cell

division prior the separation of primitive BCs and ECs at HH9-10,

we introduced an expression construct for Histone H2-GFP fusion

protein into ventral mesoderm at stage HH3-4, and followed

labeled cells (nuclei) by time-lapse imaging. The number of labeled

cells was adjusted by varying the concentration of DNA and the

size of electrode to yield ideal density for imaging. A few hours

after electroporation, when labeled ventral mesoderm cells started

migration toward the extraembryonic region, divisions can be

readily observed and traced using time-lapse microscopy (Fig. 3A–

C). Because the electroporation was targeted to the posterior

primitive streak, divisions observed in the extraembryonic region

represented only those in the mesoderm population, not in the

ectoderm or endoderm cells. Typical anaphase lasted for about

10 minutes (Fig. 3C), and for quantification purpose we scored the

mitosis (cell division) when chromatids separate at the beginning of

anaphase. Each embryo had on average 400 labeled cells, and

each time-lapse movie lasted 600 frames (one frame per minute)

(Fig. 4C). Divisions were seen to spread out evenly throughout the

tracing period (Fig. 4A,B), in agreement with the phospho-S10-H3

staining pattern. A total of 30 embryos were analyzed with

1.36104 total labeled cells and 1.86104 total frames. Approxi-

mately 12.5% of GFP-labeled cells underwent mitosis within the

time-lapse period, which was typically from HH5-6 to HH9-10

(Fig. 4C). This means that about 0.02% of cells can be seen
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undergoing mitosis in any given minute. Taken together with

phospho-S10-H3 labeling results, this suggests that phospho-S10-

H3 marks about 100 minutes of the total cell cycle duration.

In order to assess the fate of daughter cells from each division,

we tested the possibility of tracking the daughter cells of all

divisions, regardless of when they take place, to the end of entire

time-lapse period. Frame-by-frame analyses suggested that this

was difficult to achieve and we lost track of most daughter pairs at

some point for two main technical reasons: 1) short periods of

being slightly out of focus; 2) migration of these cells close to other

labeled cells. Nonetheless, out of approximately fifteen hundred

total divisions observed, we were able to track 221 daughter pairs

with 100% confidence to the end of time-lapse period. To assess

whether any of them could be progenies of the hemangioblast, we

fixed the embryos immediately after time-lapse tracking and

processed them for anti-GFP antibody staining, followed by

paraffin sectioning of each embryo. Based on the final frames of

time-lapse tracking, daughter pairs in whole-mount anti-GFP

stained embryos were marked as shown in Figure 5. GFP-labeled

cells in sections were then carefully matched to those in the whole-

mount. Of 221 daughter pairs, we were able to match 105 with

100% confidence in final sections. Among them, 24 pairs became

ECs (Fig. 6A,B), 28 BCs (Fig. 6A,B) and 4 of the hemangioblast

type (Fig. 6C,D). The remaining 49 pairs were of undetermined

contribution, mainly due to insufficient resolution to assign a BC

or EC fate, and to the contribution to non-BC/EC cell types in the

extraembryonic mesoderm. These numbers suggest that, among

dividing ventral mesoderm cells contributing the BC or EC fate,

about 7% are hemangioblasts.

DISCUSSION
Our analyses indicate that hemangioblasts exist in the early

chicken embryo, but that they do not serve as a main mechanism

to generate BCs and ECs during primitive hematopoiesis and

Figure 1. Mitotic profile from stage HH4 to HH10 by phospho-S10-H3 staining. A) HH4; B) HH5; C) HH6. Arrows indicate mitotic cells in forming
blood islands; D) HH7; E) HH8; F) HH9; G) HH10. Arrows in D–G indicate dividing blood island cells.
doi:10.1371/journal.pone.0001228.g001
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vasculogenesis. We observed that about one eighth of labeled

ventral mesoderm cells undergo division before reaching stage

HH10. Even if we factor in the variable length of tracking time

(average 10 hours with a maximum of 13 hours, in comparison

with 15–20 hours of normal development time from HH4-HH10),

at least three quarters of ventral mesoderm cells do not divide

throughout the entire differentiation process, suggesting that the

original definition of hemangioblast (as a population of cells with

dual potentials) by Murray may be more appropriate in the

context of early development in chicken. In addition, on two

occasions when we observed a second round of division of one of

the daughter pair, we were able to calculate the cell cycle time to

be 510 and 600 minutes. Taken together, our data may be

interpreted to reconcile contradictory results from analyses in

mouse and zebrafish embryos. On the one hand, the rarity of

hemangioblasts we have seen is in agreement with the mouse

analysis [17]. On the other hand, among cells that do divide, we

show that 7% of BC or EC contributing cells are of the

Figure 3. Time-lapse imaging of cell divisions in the ventral mesoderm population. A) Imaging set-up. B) Overview of a field of ventral mesoderm cells
with a few dozen labeled cells. C) Two cells marked in B (red and white arrowheads) undergo division. Actual film was taken with one minute intervals.
doi:10.1371/journal.pone.0001228.g003

r

Figure 2. Percentage of mitotic cells in ventral mesoderm popula-
tion. A) Numbers of mitotic cells scored in 19 embryos from HH4-10.
For HH4-5 embryos, cells in the lateral half of the mesoderm population
from the posterior half the embryo are scored. For HH6-10 embryos,
mesoderm cells in blood-island forming lateral region are scored. B)
Statistical representation of mitotic index in ventral mesoderm
population from HH4-10.
doi:10.1371/journal.pone.0001228.g002
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hemangioblast type, a number comparable to what was obtained

from the zebrafish analysis (12.5%) [16]. The significance of

hemangioblasts may be more relevant from the perspective of

progenitor/stem cells. During normal ventral mesoderm de-

velopment, most cells undergo terminal differentiation, with a very

small percentage of them being maintained as undifferentiated

mesenchymal cells (unpublished data). Among these progenitor/

stem cell populations may exist potential hemangioblasts set aside

for later development, similar to what has been suggested in dorsal

aorta [31], the study of which will require the identification of

proper molecular markers.

MATERIALS AND METHODS

Molecular reagents
Anti- phospho-S10-H3 antibody was purchased from Upstate Cell

Signaling (NY, #06-570), anti-GFP antibody from Invitrogen

(OR, #A11122) and secondary goat anti-rabbit HRP from

DakoCytomation (Glostrup, Denmark; #0448). Histone H2-

GFP fusion protein expression construct was a kind gift from

Dr. Hadjantonakis (MSKCC, NY).

Embryology and embryo processing
Fertilized chicken eggs were purchased from Shiroyama Farm

(Kanagawa, Japan). Embryos were cultured in ovo to HH3-4 for

GFP electroporation (Intracel electroporator; Intracel, UK), or to

desired stages for phospho-S10-H3 staining. For imaging, GFP-

electroporated embryos were grown in New culture setting [32] to

HH5-6 and were then flipped dorsal-side up and cultured in agar-

albumin setting [33] with the agar concentration lowered to 0.3%.

Normal cover-glass (0.12–0.17mm thick) and sealing film (Paraf-

ilm) were used to keep the moisture inside agar-albumin culture

dish during imaging. A home-made chamber, additionally

moisturized with a beaker of tap water and temperature-controlled

with two Thermostats (Kokensha Engineering, Tokyo, Japan), was

used for incubation during live imaging. Post-imaging fixation,

staining and paraffin sectioning followed normal protocols [34].

Care was taken to ensure the integrity of all sections for proper

Figure 4. Summary of mitoses observed during time-lapse imaging. A) Three examples of scored mitoses throughout 11-hour live imaging. Images
were captured with the frequency of one frame per minute. Multiple dots in a given frame represent multiple mitoses. B) Division rate (as
a percentage of total labeled cells) in any given 100 frames (100 minutes). C) Summary.
doi:10.1371/journal.pone.0001228.g004
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matching to the whole-mount images. Section images were taken

with an Olympus BX51 microscope fitted with DP70 camera

(Olympus, Japan).

Imaging
Time-lapse imaging and tracking were carried out with an

Olympus BX51 microscope (Olympus, Japan), fitted with long

working distance 10X objective (NA = 0.3 and WD = 6.5 mm) and

r

Figure 5. Tracking of labeled cells. Labeled cells (dividing and post-
division) were tracked throughout the time-lapse imaging process and
embryos were processed for anti-GFP staining immediately after the last
frame. Successfully tracked and matched daughter pairs are shown in
this example (whole-mount, anti-GFP stained embryo). The area shown
is located in the right-lateral and posterior region of an HH10 embryo.
Each daughter pair is also marked with the time of observed mitosis
(e.g., d161 represents the division observed at the 161th minute of
filming). Three green highlighted stripes (i, ii and iii) indicate regions of
sections shown in Fig. 6A and B.
doi:10.1371/journal.pone.0001228.g005

Figure 6. Most divisions have daughter cells of the same fate. A)
Section view of three regions indicated in Figure 5 (i, ii and iii). Three
divisions (d149, d161 and d328) give rise to 2 BC pairs (d149 shown in
Fig. 6Ai; d328 shown in Fig. 6Aiii) and one EC pair (d161 shown in Fig.
6Ai and 6Aii). B) Magnified view of blue highlighted region in A.
Arrowheads: ECs; Arrows: BCs. C) Occasional hemangioblast-type
divisions are seen, represented by d266 (with d266a becoming EC
and d266b becoming BC). D) Section view of highlighted regions in C (i
and ii). Black arrows: ECs; Red arrows: BCs.
doi:10.1371/journal.pone.0001228.g006
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occasional use of 50X objective (NA = 0.5 and WD = 10.6 mm),

cool CCD camera and Metamorph software (Olympus, Japan).

Images were taken with one minute intervals and 100–500 ms

exposure, and the focus was manually adjusted periodically.
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