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Background. Recent studies suggest that the regulation of longevity may be partially conserved in many eukaryotes ranging
from yeast to mammals. The three yeast mutants sch9D, ras2D, tor1D show extended chronological life span up to three folds.
Our aim is to dissect the mechanisms that lead to the yeast life span extension. Methodology/Principal Findings. We obtain
gene expression profiles of sch9D, ras2D, tor1D as well as that for a wild type at day 2.5 in SDC medium using Affymetrix
Yeast2.0 arrays. To accurately estimate the expression differentiation between the wild type and the long-lived mutants, we
use sub-array normalization followed by a variant of the median-polishing summarization. The results are validated by the
probe sets of S. pombe on the same chips. To translate the differentiation into changes of biological activities, we make
statistical inference by integrating the expression profiles with biological gene subsets defined by Gene Ontology, KEGG
pathways, and cellular localization of proteins. Other than subset-versus-other comparisons, we also make local comparisons
between two directly-related gene subsets such as cytosolic and mitochondrial ribosomes. Our consensus is obtained by cross-
examination of these inferences. The significant and systematic differentiation in the three long-lived strains includes: lower
transcriptional activities; down-regulation of TCA cycle and oxidative phosphorylation versus up-regulation of the KEGG
pathway Glycolysis/Gluconeogenesis; the overall reduction of mitochondrial activities. We also report some different
expression patterns such as reduction of the activities relating to mitosis in ras2D. Conclusions/Significance. The
modification of energy pathways and modification of compartment activities such as down-regulation of mitochondrial
ribosome proteins versus up-regulation of cytosolic ribosome proteins are directly associated with the life span extension in
yeast. The results provide a new and systematic S. cerevisiae version of the free radical theory from the perspective of
functional genomics.
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INTRODUCTION
Recent findings suggest that ageing, like many other biological

processes, is subject to regulation by pathways that may have been

partially conserved throughout evolution [1,2]. In fact, the down-

regulation of the glucose-sensing/insulin/IGF-1 pathway pro-

motes life span extension in organisms ranging from yeast to mice.

In S. cerevisiae two different paradigms are used to measure

longevity: the replicative life span, which is defined as the total

number of daughter cells generated by a mother cell; and the

chronological life span which is measured by monitoring the

mean/maximum survival time of a population of non-dividing

yeast. Here we focus on the chronological life span, which

represents a simple but valuable system to study how post-mitotic

cells age [3]. The mutations of a single gene within the principal

yeast nutrient-sensing pathways can extend the chronological life

span dramatically [4,5]. Among these pathways, the Sch9, Ras2/

cAMP/PKA and TOR pathways are of most interest. Important-

ly, in higher eukaryotes pathways that appear to share a common

evolutionary origin with the Sch9 and TOR pathways are also

implicated in life span regulation. In budding yeast inactivation of

sch9, homolog of mammalian serine/threonine protein kinase Akt,

extends chronological life span by nearly three folds [6]. Deletion

of ras2 or down-regulation of cyr1 in the Ras2/cAMP/PKA

pathway nearly doubles the chronological life span of yeast [6,7].

In a large scale screening in yeast, several genes that encode

components of the nutrient-responsive TOR pathway were found

to increase the chronological life span [8].

A number of theories have been proposed to explain the

mechanism of ageing. Among them are the disposable soma

theory of ageing first suggested by Weismann and later developed

by Kirkwood et al. [9,10,11], the accumulated mutation theory first

proposed by Medawar in 1952 [12], the antagonistic pleiotropy

theory proposed by Williams in 1957 [13], the programmed and

altruistic ageing theory [14]. The free radical theory of ageing first

proposed by Harman in the 1950s [15] is particularly relevant to

the research reported in this article. According to this theory,

ageing is a consequence of free radical damage. Later Harman

extended the idea to implicate mitochondrial production of ROS

in the 1970s [16].

The partial conservation of the life-span regulatory pathways

suggests that they may have evolved in ancestral unicellular

organisms in order to overcome periods of starvation. Calorie

restriction (CR), which resembles the starvation conditions used to

assess chronological life span, causes longevity extension in all the

ageing model systems. In this article we analyze the gene

Academic Editor: Ji Zhu, University of Michigan, United States of America

Received June 11, 2007; Accepted October 9, 2007; Published October 31, 2007

Copyright: � 2007 Cheng et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Funding: This work is supported by the grant R01 GM75308-01 from NIH, and is
partially supported by Center of Excellence in Genome Science at University of
Southern California, the NIH P50 HG002790 grant.

Competing Interests: The authors have declared that no competing interests
exist.

* To whom correspondence should be addressed. E-mail: lilei@usc.edu

PLoS ONE | www.plosone.org 1 October 2007 | Issue 10 | e1095



expression profiles of chronologically long-lived yeast strains.

Under this ageing paradigm, haploid yeast are grown in synthetic

complete medium (SDC) until nutrients are depleted. Once yeast

stop dividing, they are kept in the depleted medium. The viability

of the cultures is monitored over time by measuring the colony

forming units (CFUs) [3]. Incubation in nutrient-depleted SDC

mimics the conditions normally encountered by yeast in the

natural environment where microorganisms survive for long

periods of time under starvation.

The modification of the chronological life span, is the end effect

of genetic interventions such as the knockout of sch9, and

environmental changes such as calorie restriction. Extensive

results have been obtained in relating genotypes and the

phenotype of life span. Our effort aims to understand the

intermediate steps of the ageing mechanism.

The microarray technology allows us to measure the expression

profiles of a living cell. We obtain the gene expression profiles of

the long-lived mutants sch9D, ras2D, and tor1D together with a wild

type at day 2.5 in SDC medium using Affymetrix yeast2.0 arrays.

How to accurately estimate the differentiation between the wild

type and the long-lived mutants is a key problem in our functional

genomic study of ageing. Usually the estimation consists of two

steps: normalization and summarization. Normalization aims to

remove any non-biological difference generated in the reaction

and read-out process while keep the real biological differentiation

between a target and a reference sample. The invariant-set [17,18]

and quantiles [19,20] normalization are two widely used methods

in the literature. However, in our case, it is possible that the

expression profiles of the long-lived mutants have substantial

differentiation compared to that of the wild type. It is also possible

that the differentiation is not symmetric. Thereby we adopt the

sub-array normalization that is designed to preserve biological

differentiation [21,23].

How to translate the differentiation into changes of biological

activities is another key problem in the functional genomics of

ageing. Relatively complete bio- and genomic- databases exist of S.

cerevisiae. They provide us with instruments for statistical inference.

In this article, we infer significant modifications of biological

activities by integrating the expression differentiation with three

sources of biological knowledge: Gene Ontology (GO), KEGG

pathways, and cellular localization of proteins. Our consensus

inference is obtained by cross-examination of the inferences drawn

from the three perspectives. Furthermore, to reduce the gap of

statistical significance and biological significance, we compare the

transcriptional activities of two ‘‘directly-related gene subsets’’

such as the first half and second half of an energetic pathway, or

ribosome proteins in either mitochondria or cytosol. The idea of

local inference follows the basic principles of statistical design

proposed by Sir R. Fisher while the idea of consensus inference is

one statistical view of systems biology.

In this work, we study the yeast ageing mechanism from the

perspective of functional genomics. The three mutants, sch9D,

ras2D, tor1D share the same phenotype: longer chronological life

span. The significant and systematic expression differentiation

underlying the phenotype can shed light on the mechanism of

ageing. We show that the goal is achievable and from the current

data set we identify some common and characteristic changes of

biological activities, which may directly lead to longevity.

MATERIALS AND METHODS

Sample preparation and Affymetrix GeneChip arrays
We obtained the gene expression profiles of yeast strains including

wild type, sch9D, ras2D, tor1D cells at day 2.5. Specifically, all

strains used were obtained from frozen stocks. Each strain was

inoculated in 1 mL SDC and grown overnight. Saturated

overnight cultures were then diluted into 3 flasks each containing

50 mL of culture. All samples were incubated at 30uC with

shaking (2200 rpm) until day 2.5. Total RNA was isolated from

day 2.5 post-diauxic yeast cultures (2.06108 cells) according to the

acid phenol protocol. Briefly, yeast were collected by centrifuga-

tion, washed with cold water once, and resuspended in 400 ml of

10 mM Tris pH 7.5, 10 mM EDTA, 0.5% SDS. After adding

400 ml of warm acid phenol the cell suspension was incubated at

65uC for 20 minutes with vortexing every 5 minutes, centrifuged

and the supernatant extracted twice with acid phenol and once

with chloroform. Total RNA was recovered by precipitation with

ethanol and cleaned up by using the RNAsy kit (Qiagen). RNA

(5 mg/sample) was sent to the UCLA DNA array Core Facility.

Total RNA from independent cultures of each strain was used as

a template to synthesize complementary RNA (cRNA). The

biotin-labeled cRNA was hybridized to Affymetrix GeneChipH
Yeast2.0 Array. In sum, three biological replicates were obtained

for each of wild type, sch9D, ras2D, and tor1D.

In the SDC medium, a substantial proportion of yeast cells are

still dividing before day 2. At older ages, such as day 3–5, most of

the cells become hypometabolic, which is associated with

a dramatic drop in transcription. We harvest mRNA at day 2.5

so that we can extract enough mRNA for microarray experiment

while avoid the noise introduced by the transcriptional activities of

dividing cells.

Normalization and summarization
After imaging process, the expression of each sample is

represented by a CEL file, which includes the fluorescence

intensities of all probes. Denote the three arrays of wild type, sch9D
ras2D, and tor1D respectively by W1, W2, W3, S1, S2, S3, R1, R2,

R3, T1, T2, T3. The conversion of probe intensities to expression

values requires two statistical procedures: normalization and

summarization. We applied the Sub-Sub normalization [21] to

our data sets, aiming at giving enough protection to possible

differentiation between the mutants and the wild type. The

normalization is carried out in a pairwise fashion. Namely, for

each wild type sample, three replicates of a mutant are normalized

with respect to this reference. Take sch9D for example, the

normalized arrays with respect to W1, W2, W3 are respectively

denoted by S1\W1, S2\W1, S3\W1, S1\W2, S2\W2, S3\W2,

S1\W3, S2\W3, S3\W3.

Our summarization is a modified version of the median polishing

method [22] in RMA (the Bioconductor affy package http://www.

bioconductor.org/). The median polishing summarization method

is based on a two-factor model, which include the sample effect and

probe-specific effect. Namely, the gene expression of each sample is

estimated by adjusting each individual probe effect. In our

situation, we group the wild type and normalized mutant arrays

by the reference, and then summarize each group. Take sch9D for

example. We summarize the four arrays (the reference plus three

normalized) W1, S1\W1, S2\W1, S3\W1 together. This leads to

three estimates of expression fold changes of the mutant versus the

wild type. In total, we have nine estimates from three wild type

references, and we take their median difference as the final

estimate. Due to the nature of normalization [23], only the portion

of differentiation that is not confounded with the reference array is

estimable. In the above scheme, arrays in a summarization group

correspond to the same reference. Thus we expect that the

difference between a (normalized) mutant and a wild type is, for the

most part, real differentiation. The median is a robust estimate that

is consistent with the median polishing method. Our treatment of
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reference in normalization is somewhat different from existing

methods, and correspondingly we use this group median polishing

summarization to take into account the reference effect. We note

that summarization is done at the probe set level. Roughly

speaking, the modified median-polishing summarization aims to

remove the reference-specific effect for each probe set as well as the

probe-specific effect.

The Yeast2.0 Array contains probe sets for both S. cerevisiae and

S. pombe. The observed fluorescence intensities of S. pombe probes

are primarily due to cross hybridization, and we only use them in

normalization. To some extent, they play the role of external

controls. Most genes correspond to only one probe set in Yeast2.0

Array, and for genes with multiple probe sets we take the average

of fold changes.

Wilcoxon scoring of gene subsets
Based on the expression fold changes of the three mutant strains with

respect to the wild type, we make inference about the modifications

of biological activities using gene subsets defined by Gene Ontology

(GO), KEGG Pathways, and cellular organelle (GFP fusion

localization). A common theme of these analyses is as follows.

Suppose we have m gene subsets S1,S2,…,Sm. From the log ratios of

expression levels of a mutant with respect to the wild type, we want to

identify those subsets whose expressions are significantly up-

regulated or down-regulated. Denote the union of these gene subsets

by G~
Sm

i~1 Si. Our strategy consists of two steps. In the first step,

for each subset Si, we compare their expressions against those in the

complement of Si in G denoted by G2Si. This is a typical two-sample

problem in statistics. We use the Wilcoxon rank test to calculate p-

value (one-sided) for each comparison. In the second step, we rank

these subsets according to their significances. These subsets could be

a GO category, a metabolic pathway, or protein genes localized in

an organelle. Other tests and methods such as GSEA [24] could be

applied to our study. We report the results by the Wilcoxon scoring

due to its well-established statistical properties such as robustness and

reasonably good efficiency.

Multiple test correction
To correct for multiple testing, we adjust the p-values by the

method introduced by Storey et al. [25,26]. In this method, the q-

value is defined to evaluate the false discovery rate. The

computation of q-values is implemented by the ‘‘qvalue’’ package

provided in the R software (http://www.r-project.org/).

Gene Ontology analysis
Gene ontology information is from ‘‘ftp://genome-ftp.stanford.

edu/pub/go/’’. The Gene Ontology subsets are defined from

three related yet different aspects: biological processes, molecular

functions and cellular components. Data structure for gene

ontology (GO) is a directed acyclic graph (DAG). Each node in

the DAG is a set of genes with specific annotation. The closer the

nodes are to the terminal, the more detailed annotations are given

and thereby are more informative. To avoid redundancy and

overlapping between GO nodes and to facilitate our statistical

analysis, we select from the DAG the nodes that are closest to the

terminal and have at least 30 genes. This selection ends up with

nodes of 44 cellular components, 53 molecular functions and 109

biological processes. The gene subsets defined by these nodes are

referred to as terminal informative GO categories (TIGO). Then

we apply the Wilcoxon scoring method and multiple test

correction to these TIGO categories. By taking only the terminal

informative TIGO categories rather than all the GO nodes, results

are easier to be interpreted.

KEGG Pathway analysis
The pathway information are from the KEGG database: http://

www.genome.jp/kegg/. In total our study uses 103 S. cerevisiae

pathways, most of which are well-established metabolic pathways.

To expand our knowledge of ageing, we seek pathways that are

significantly changed in the long-lived mutants. We regard each

pathway as a subset of genes, and apply our statistical scoring and

significance analysis to the 103 pathways and obtain a p-value and

a q-value for each of them.

Cellular organelle analysis
The cellular localization data are from http://yeastgfp.ucsf.edu/.

In this data set, 75% proteins were classified into 22 distinct

subcellular localization categories, including mitochondria, nucle-

us, nucleolus, vacuole, vacuole membrane, budding neck, etc.

Many research indicate that mitochondrion plays a central role in

ageing. We also expected that the cellular organelle analysis would

provide some information about the role of the different organelles

in ageing. In this analysis, genes that function in the same cellular

localization are regarded as one gene subset. The protein gene

subsets from the yeast GFP fusion localization database are

different from the cellular components in the GO categories.

Consensus and local Inference
After making inference using each of the three biological

instruments: Gene Ontology, KEGG Pathways, and cellular

organelle, we can report a consensus by cross-examination. Our

another approach is to compare two gene subsets in a natural

‘‘biological block’’. For one example, we consider the first half and

second half of an energetic pathway. For another example, we

consider ribosomes in cytosol and ribosomes in mitochondria.

Using this idea of local comparison, we get over the issue of

multiple testing and thereby improve the statistical significance.

The scheme of our inference is illustrated in Figure 1.

RESULTS

Preprocessing of microarray data
We obtained the gene expression profiles of yeast strains including

wild type, sch9D, ras2D, and tor1D cells at day 2.5 using Affymetrix

GeneChipH Yeast2.0 Array. In total, three biological replicates

were generated for each strain. RNA of these replicates was

obtained from independent populations which were grown in

separate flasks under similar conditions. The expression fold

changes of 5841 yeast genes were obtained for sch9D, ras2D, and

tor1D with respect to the wild type by the Sub-Sub normalization

[21] followed by the modified median-polishing summarization

(Materials and methods) that aims to remove the reference-specific

effect. We optimized the parameters in the Sub-Sub normalization

by examining the results among replicates, and by checking probe

sets of S. pombe on the Yeast2.0 Array. In this normalization, we

divide each array into sub-arrays and normalize probe intensities

within each sub-array by least trimmed squares to protect

differentiation. The subarray size is selected to be 50 by 50;

subarrays overlap by half the subarray size; and the trimming

fraction of least trimmed squares is 0.45.

If the experiment conditions and mRNA amount for the

reference and target samples are similar, we argue in [23] that

a simple linear function is a good approximation in normalization

even though the relationship between dye concentration and

fluorescent intensity is nonlinear. Namely, to normalize a target

array with respect to a reference, we shift and scale the probe

intensities by a+b*target intensity in such a way that the
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differences with reference intensities are minimized. Specifically,

the parameter a and b are estimated by least trimmed squares. In

Figure 2, we show the estimates of the relative scale b in each

subarray for sch9D versus wild type. Since we normalize each of

the three target (mutant) arrays versus each of the three reference

(wild type) arrays, total nine spatial patterns are shown in Figure 2,

in which each row corresponds to a reference and each column

corresponds to a target. The corresponding histograms of the scale

parameters are shown in Figure S1. The adjustment of spatial

effect can help reduce the variation between replicates, see

examples in [21,23]. In this case, for each gene the standard

deviation of the nine (three targets versus three references, see

Materials and methods) expression log-ratios of a mutant versus

wild type is calculated. The medians of these standard deviations

for sch9D, ras2D, tor1D are respectively 0.146, 0.125, 0.134.

In Figure 3 we show the M-A plots of expression levels of three

mutants versus the wild type. In the M-A plots, the x, y coordinate

value of a dot respectively show the average and difference of

a gene expression levels between a mutant and the wild type. The

differentiation for probe sets of S. pombe are around zero as

expected, especially at the left end. In fact, the medians of the

average log ratios for S. pombe genes are 0.018, 0.047, 0.031

respectively for sch9D, ras2D, tor1D. Some probe sets correspond to

homologs of S. pombe and S. cerevisiae, and are expected to be

expressed in both. We note that the results are obtained in a blind

fashion, for we do not separate S. pombe and S. cerevisiae probes in

normalization. Therefore, the probe sets of S. pombe are used in

both training and validation. Some differences among the three

M-A plots are observed. This is not a surprise because the three

genes sch9, ras2, tor1 do play some different roles according to what

we know.

We check the M-A plot of raw data without any normalization.

That is, for three replicates of a mutant and the wild type, we

summarize their expression values by the median polishing

method. Then we calculate the average and difference expression

of two strains and show the result by M-A plots, see Figure S2. The

differentiation for probe sets of S. pombe is mainly distributed along

the horizontal direction. This suggests that we can shift the

differentiation of S. cerevisiae genes by the median of the

differentiation of S. pombe genes. We compare the expressions

resulted from this simple median-shift normalization with

expression from the above method, the correlation coefficients

are respectively 0.990, 0.970, 0.988 for sch9D, ras2D, tor1D.

The similarity indicates that quality of the microarrays is

relatively good. Finally, the expression results are confirmed by

quantitative RT-PCR for eleven genes and northern blots for two

genes.

We calculated the one-sided Wilcoxon rank test score for each

TIGO subset versus the rest genes, and ranked these subsets

according to their corresponding q-values respectively for the up-

regulated and down-regulated case. The same computation was

carried out for KEGG pathways. These results are rather lengthy,

and we report the most significant parts later in an integrative way.

The complete spreadsheets can be found in the supplementary

materials, Text S1, Text S3 and Text S4. The result of the cellular

organelle analysis (GFP fusion localization) is summarized in

Table 1, and the details can be found in Text S2.

Lower transcriptional activities
Our analysis shows that the overall transcription activities of the

three long-lived mutants are relatively lower than those of the wild

type. In fact, in the comparison of KEGG pathway activities,

‘‘basal transcription factors’’ and ‘‘RNA polymerase’’, are among

the most negatively regulated pathways, which also include ‘‘DNA

polymerase’’, ‘‘Cell cycle’’ and ‘‘Proteasome’’, see Table 2. The

basal transcription factors form a complex that acts as a general

transcription machine. One explanation is that sch9D, ras2D, tor1D
mutants in the nutrient-depleted environment can live a more

economical life and hence a lower basal transcription is sufficient

to maintain survival. In consistent with lower transcriptional level,

proteasome, the complex in charge of protein degradation, is

negatively regulated in the long-lived mutants. Moreover, in

Table 3, we list the expression activities of relevant pre-

transcription and post-transcription TIGO categories, which are

all down-regulated with sufficient statistical evidence. From the

perspective of protein localizations, we see in Table 1 that the

expression activities of the compartment nucleus and nucleolus are

significantly lower in the mutants sch9D, ras2D, tor1D compared to

the wild type. It is noticed that reduction of transcriptional

activities is most significant in ras2D, and this is confirmed by the

overall expression profiles shown in Figure 3. All these evidences

lead to the consensus that the three long-lived mutants somehow

manage to lower their transcription activities in the SDC medium.

Switch of energy pathway
The universal ‘‘currency’’ of chemical energy ATP in animal cells

and most other non-photosynthetic cells is generated mainly by the

aerobic oxidation process. In aerobic oxidation, glucose is

metabolized to CO2 and H2O, and the released energy is

converted to the chemical energy of phosphoanhydride bonds in

ATP. The initial steps of oxidation of glucose, referred to as

glycolysis, convert glucose into pyruvate. The reactions of

glycolysis occur in the cytosol in both eukaryotes and prokaryotes

and do not require O2. In contrast, the final steps of oxidation

require O2 and occur in mitochondria in eukaryotes. The synthesis

of ATP in mitochondria is driven by the flow of electrons from the

reduced coenzymes NADH and FADH2 to O2. This oxidative

Figure 1. Scheme of consensus inference and local inference. After
the preprocessing of the microarray data for the long-lived cells versus
the wild type, we translate the differentiation into changes of biological
activities by consensus and local inference using three kinds of
biological instruments: Gene Ontology (GO), KEGG pathways, and
cellular localization of proteins.
doi:10.1371/journal.pone.0001095.g001
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phosphorylation process depends on the generation of proton-

motive force across the inner membrane, with electron transport

and proton pumping. Other than glycolysis, reactions in the

mitochondria such as the citric acid cycle (TCA) also generate the

reduced coenzymes NADH and FADH2.

In our KEGG pathway analysis, the most up-regulated

metabolic pathways common to all three mutants with respect to

the wild type is Glycolysis/Gluconeogenesis. Since much is known

about the aerobic oxidation process, we examine the details of the

expression differentiation between the long-lived strains and wild

type. Specifically, we compare the expression activities of the

initial steps and final steps using the Wilcoxon rank test. At the

bottom of Figure 4 we show the statistical results for the

comparison of the KEGG pathways: glycolysis/gluconeogenesis

versus TCA and oxidative phosphorylation. The analysis implies

that in the long-lived mutants, TCA cycle and oxidative

phosphorylation are negatively regulated compared with Glycol-

ysis/Gluconeogenesis. The comparison is shown by box plots at

the top of Figure 4. Usually yeast becomes hypo-metabolic

(respiration rates decrease) around day 3–5. One explanation to

the observation is that the long-lived become hypometabolic faster

than the wild type.

Hxt2 and Hxt4 are both high-affinity glucose transporters, whose

expressions are induced by low levels of glucose and repressed by

high levels of glucose [27,28]. Our result indicates that dysfunction

of either sch9D, ras2D, or tor1D leads to significant up-regulation of

Hxt2 (log-ratios 1.63, 0.83 1.54) and Hxt4 (log-ratios 1.15, 1.66,

0.67), and thereby a more efficient usage of glucose. Consistently,

the TIGO category associated with monosaccharide catabolism is

also positively modified. Genes in this TIGO category participate

in chemical reactions that lead to breakdown of monosaccharides

and polyhydric alcohols.

Significant changes of other related pathways are also observed.

The fructose and mannose metabolism are positively regulated in

sch9D, ras2D, and tor1D, the galactose metabolism, starch and

sucrose metabolism are positively regulated in ras2D, although not

as significant as the Glycolysis/Gluconeogenesis pathway. They

indicate that the up-regulation of Glycolysis/Gluconeogenesis is

associated with modifications of other catabolic pathways in the

mutant cells.
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Figure 2. Non-homogeneous spatial patterns of relative scales. The estimates of the normalization scale in each subarray are shown by their spatial
locations. We normalize each of the three target (sch9 mutant) arrays versus each of the three reference (wild type) arrays, and total nine spatial
patterns are shown. Each row corresponds to a reference and each column corresponds to a target.
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Table 1. Positively- and negatively-regulated cellular organelles.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Positively regulated cellular organelles

sch9D/wt ras2D/wt tor1D/wt

cellular organelle p-value q-value p-value q-value p-value q-value

ER 6.3E-06 3.8E-05 0.0 0.0 6.7E-16 9.4E-15

vacuole 1.2E-05 4.7E-05 0.0 0.0 2.3E-11 1.6E-10

vacuolar membrane 2.5E-04 6.4E-04 1.3E-04 4.8E-04 2.3E-06 8.1E-06

actin 2.6E-04 6.4E-04 0.18 0.24 2.3E-04 5.5E-04

punctate composite 0.0062 0.011 0.11 0.18 8.9E-06 2.5E-05

cytoplasm 9.1E-13 1.1E-11 2.1E-05 1.1E-04 1.1E-09 5.0E-09

Negatively regulated cellular organelles

mitochondrion 2.6E-34 5.0E-33 1.2E-11 9.7E-11 6.8E-27 1.2E-25

nucleus 3.6E-06 2.3E-05 1.7E-23 2.7E-22 6.2E-12 3.7E-11

nucleolus 2.9E-11 2.8E-10 7.4E-08 3.9E-07 2.0E-17 1.8E-16

nuclear periphery 0.37 0.82 0.015 0.031 0.060 0.15

bud neck 0.31 0.82 5.3E-05 1.7E-04 0.017 0.051

spindle pole 0.0055 0.026 4.8E-05 1.7E-04 0.0053 0.019

bud 0.69 0.82 0.016 0.031 0.13 0.29

microtubule 0.010 0.040 0.0046 0.012 0.0020 0.0088

doi:10.1371/journal.pone.0001095.t001..
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Table 2. Most negatively regulated KEGG pathways in the long-lived mutants compared to the wild type.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

KEGG Pathway (down-regulated) # genes sch9D/wt ras2D/wt tor1D/wt

p-value q-value p-value q-value p-value q-value

Basal transcription factors 23 3.2E-05 1.3E-03 2.1E-09 3.6E-07 1.6E-05 9.5E-04

RNA polymerase 29 0.0056 0.055 0.011 0.086 6.7E-03 0.060

DNA polymerase 9 0.017 0.117 5.8E-05 0.0017 0.0033 0.039

Aminoacyl-tRNA synthetases 37 0.0038 0.040 1.4E-04 2.7E-03 9.1E-05 2.0E-03

Cell cycle 105 0.0064 0.060 2.7E-12 9.4E-10 4.2E-05 0.0014

Proteasome 11 0.0037 0.040 9.2E-05 0.0020 0.0065 0.060

doi:10.1371/journal.pone.0001095.t002..
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Table 3. Down-regulation of TIGO categories relating to transcription.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TIGO category (down-regulated) # genes sch9D/wt ras2D/wt tor1D/wt

p-value q-value p-value q-value p-value q-value

general RNA polymerase II transcription factor activity 62 6.2-03 3.7E-02 2.7E-07 5.8E-06 7.3E-03 2.9E-02

DNA-directed RNA polymerase II, holoenzyme 74 2.0E-05 3.8E-04 8.6E-10 3.8E-08 1.7E-04 1.9E-03

transcription from RNA polymerase III promoter 38 9.8E-03 4.7E-02 5.8E-03 1.5E-02 9.5E-03 3.7E-02

nuclear mRNA splicing, via spliceosome 97 6.4E-04 7.1E-03 4.2E-09 1.4E-07 4.6E-04 3.7E-03

RNA splicing factor activity, transesterification mechanism 42 1.3E-02 5.9E-02 1.1E-04 8.2E-04 1.1E-02 3.9E-02

mRNA-nucleus export 60 3.2E-02 0.11 1.8E-04 1.2E-03 2.9E-04 2.7E-03

nuclear pore 50 3.3E-02 0.11 3.7E-04 2.1E-03 2.5E-03 1.3E-02

doi:10.1371/journal.pone.0001095.t003..
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Change of compartment activity
In yeast, the reactions of TCA cycle, electron transport and

oxidative phosphorylation occur inside mitochondria whereas

those of glycolysis occur in cytosol. In aerobic conditions, oxidative

phosphorylation is efficient to generate ATPs, but at the same time

it produces the reactive oxygen species (ROS) as byproducts,

which is thought to be one of the causes of ageing.

The change of energy pathways leads us to consider change of

compartment activities. From Table 1, the overall expression levels

of mitochondria is significantly lower in sch9D, ras2D, tor1D.

Moreover, in Table 4 we examine the expression differentiations

for all five TIGO categories specifically associated with mitochon-

dria, which include mitochondrial large ribosomal subunit,

mitochondrial small ribosomal subunit, mitochondrial inner

membrane, mitochondrion organization and biogenesis and

protein-mitochondrial targeting. Their expression activities are

consistently down-regulated in all three mutants. Thus we

hypothesize that the reduction of biological activities in mito-

chondria may lead to elongation of chronological life span in S.

cerevisiae. In contrast, our GO analysis shows that the TIGO

Figure 4. Comparison of Glycolysis/Gluconeogenesis, TCA, and Oxidative phosphorylation. Top panel: The box plots of the log-ratios of gene
expressions for Glycolysis/Gluconeogenesis, TCA, and Oxidative phosphorylation in the long-lived mutants with respect to wild type; bottom:
statistical significances of the above comparisons using the Wilcoxon rank test.
doi:10.1371/journal.pone.0001095.g004

Table 4. The transcription activities of the long-lived strains with respect to the wild type yeast for five TIGO categories that are
associated with mitochondria.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mitochondrial TIGO category (down-regulated) # genes sch9D/wt ras2D/wt tor1D/wt

p-value q-value p-value q-value p-value q-value

mitochondrial large ribosomal subunit 43 4.3E-18 6.6E-16 1.5E-18 2.0E-16 1.6E-17 2.3E-15

mitochondrial small ribosomal subunit 34 1.9E-12 9.5E-11 1.8E-12 1.2E-10 7.5E-12 5.4E-10

mitochondrial inner membrane 158 7.1E-16 5.4E-14 6.7E-03 1.7E-02 5.4E-10 2.6E-08

Mitochondrion organization and biogenesis 95 6.5E-04 7.0E-03 1.4E-03 5.9E-03 6.5E-03 2.6E-02

protein-mitochondrial targeting 47 1.8E-05 3.8E-04 4.8E-02 8.6E-02 1.8E-04 1.9E-03

doi:10.1371/journal.pone.0001095.t004..
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categories, cytosolic large ribosomal subunit (GO:0005842), and

cytosolic small ribosomal subunit (GO:0005843) are positively

regulated in all the long-lived mutants. Consistent with the GO

analysis, the ribosome pathway excluding mitochondria ribosomal

subunits is positively regulated in the KEGG analysis. Further-

more, we directly examine expression differentiation between

cytosolic ribosomes and mitochondrial ribosomes by the Wilcoxon

rank test and all p-values are less than 10210. The comparison is

illustrated by box plots in Figure 5.

As shown in Table 1, ER-located and vacuole-located proteins

are positively affected. The GO category (GO:0005789) endo-

plasmic reticulum membrane is up-regulated too. The endoplas-

mic reticulum is part of the endomembrane system, which

modifies proteins, makes macromolecules, and transfers substances

throughout the cell. In budding yeast cells, vacuoles are the storage

compartments of amino acids and the detoxification compart-

ments. Under conditions of starvation, proteins are degraded in

vacuoles, which is called autophagy. The up-regulations of

vacuole-located proteins may imply that autophagy in the cells

of these long-lived mutants is enhanced to maintain survival in low

nutrient conditions such as SDC medium.

Differences among mutants
Despite the common expression patterns in sch9D, ras2D, and

tor1D, we do observe various differences. ras2D shows the lowest

overall transcriptional activities. In addition, we found those

activities relating to mitosis in the mutant ras2D are all down-

regulated, see Table 5. They include regulation of mitosis, mitotic

sister chromatid segregation, and mitotic spindle organization and

biogenesis. The activities in the cellular components (GO

categories) such as spindle pole body, spindle pole body and

microtubule cycle, bud neck, bud tip and incipient bud site,

provide additional evidence. Similar and independent results are

found in the cellular location analysis (Table 1). Other activities

relating to DNA replication and DNA repair are down-regulated

too. It is in consistency with the lower mitotic activities. It is known

that Ras proteins regulate cell growth in response to nutrient

availability through protein kinase A (PKA) activity, see [29] for

references. Also Ras proteins have PKA-independent functions in

mitosis and actin repolarization [30]. The expression profiles from

our experiments provide systematic evidences to these stories. The

Figure 5. Box plots of fold changes between cytosolic and
mitochondrial ribosome proteins. The box plots of expression log-
ratios for the cytosolic and mitochondrial ribosome proteins in the
long-lived mutants with respect to wild type. We also compare the
expression differentiation by the Wilcoxon rank test and all three p-
values are 0.00.
doi:10.1371/journal.pone.0001095.g005

Table 5. The transcription activities of ras2D with respect to
the wild type yeast for TIGO categories relating to mitosis.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TIGO category (down-regulated) # genes p-value q-value

regulation of mitosis 48 5.1E-03 1.4E-02

mitotic sister chromatid segregation 55 5.6E-05 5.0E-04

mitotic spindle organization and biogenesis 42 1.3E-02 2.8E-02

spindle pole body 58 8.9E-03 2.1E-02

spindle pole body and microtubule cycle 37 5.5E-03 1.5E-02

condensed nuclear chromosome kinetochore 47 3.6E-05 3.4E-04

bud neck 108 1.1E-03 4.6E-03

bud tip 50 3.8E-04 2.1E-03

incipient bud site 35 9.5E-04 4.2E-03

invasive growth 30 9.5E-04 4.2E-03

DNA strand elongation 30 2.1E-03 7.2E-03

replication fork 39 4.9E-04 2.6E-03

chromatin remodeling complex 71 1.9E-08 5.0E-07

histone modification 59 1.2E-06 2.1E-05

double-strand break repair 41 7.0E-03 1.7E-02

nucleotide-excision repair 31 4.0E-04 2.2E-03

doi:10.1371/journal.pone.0001095.t005..
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down-regulation of the MAPK signaling pathway is significant in

ras2D (q-value = 0.009), less slight in tor1D, and not in sch9D.

Some differences in metabolisms are also observed. For example,

the inositol phosphate metabolism is down-regulated in ras2D, and

tor1D (q-value = 0.013, 0.039), but not in sch9D. The phosphatidy-

linositol signaling system is down-regulated in ras2D, and tor1D (q-

value = 0.036, 0.059), but not in sch9D. Although it is difficult to

enumerate them all, differences among the three long-lived mutants,

from another angle, suggest that the common expression patterns

reported above are strongly linked to longevity.

DISCUSSION
To understand the mechanisms of ageing, we identified the

common and characteristic differentiation in the transcriptional

profiles of the three long-lived strains sch9D, ras2D, and tor1D. The

success of our effort hinges on the measurement accuracy of

mRNA expression levels. In the design of Affymetrix GeneChipH,

multiple (11-20) 25-mer probes are used for each ORF (open

reading frame) and they serve as within-block statistical replicates.

In addition, we do observe higher probe specificity and other

improvement in the recent yeast2.0 chips. It should be noted that

cross-hybridization always exists and the measured values tend to

be smaller than real differentiation.

Our analysis is based on the sub-array normalization that aims

to improve accuracy and preserve differentiation. A simple linear

function is sufficient, if not perfect, for the purpose of normalizing

our yeast microarrays. First, all the microarray experiments were

conducted under the same condition. Second, the estimated scale

values are mostly in the range [0.7, 1.3]; see the histograms in

Figure S1. It is argued in [23] that a simple linear function is

sufficient in such a normalization case. Third, the hybridization is

a complicated process with various uncontrollable factors. It is

important to use a highly robust estimator of the linear function to

eliminate unpredictable probe intensities. Least trimmed squares is

an appropriate choice due to its robustness in several senses.

Fourth, the fair modification of expression profiles from normal-

ization should vary from one situation to another. In our case, by

comparing Figure 3 and Figure S2, we feel the fair modification of

expression profiles from normalization should not be large. We made

an effort to preprocess this yeast microarray data set and examined

the validity of the presented results from the perspectives of S. pombe

probes sets, non-normalized expression profiles, and other con-

siderations and supporting examples reported in our previous work.

It is our belief that the future of functional genomics and proteomics

lies not only in scale but also in measurement accuracy. To be

consistent with the sub-array normalization, we use the median

polishing summarization stratified by the reference selected from raw

wild type arrays. Additional investigation of the reference effect is

worthwhile in the future research.

The common changes of biological activities in the differenti-

ation are inferred by integrating the expression profiles with

biological subsets defined by cellular organelles, metabolism

pathways, biological process, and molecular functions. We choose

to use those instruments from three sources: cellular localization of

proteins, KEGG, and Gene Ontology. Gene Ontology compiles

results from literature along three dimensions, and some categories

overlap with those from the other two sources. Similarly, we can

make inference about the transcriptional regulation in long-lived

mutants using expression profiles together with information of

ChIP-chip and binding motifs. The results are described in other

reports. We use the q-value method developed by Storey et al.

[25,26] to deal with the multiple test issue. The definitions and

algorithms of q-values were initially obtained based on several

assumptions, one of which is that the null distribution of the p-

value is uniform[0,1]. In Figure S3, we show the histograms of p-

values from the KEGG pathway analysis. Besides, the same genes

could be shared by multiple subsets and dependence among

hypotheses exists. The sensitivity of q-values to these assumptions

in our study is a subtle problem and it is worth more investigation

in our future work.

Other than subset-versus-all comparisons, we also make local

comparisons between two directly-related subsets such as cytosolic

and mitochondrial ribosome proteins. If the ‘‘directly-related gene

subsets’’ are appropriately selected, in our opinion, the conclusion

drawn from microarray studies can be greatly strengthened by this

local inference approach. Our consensus inference is obtained by

the cross-examination of the inferences drawn from different

instruments.

Our results show that mutants sch9D, ras2D, and tor1D, which

share the same phenotype: longer chronological life span, do share

some common differentiation patterns. The commonality is

particularly interesting in the presence of various differences. For

example, the activities relating to mitosis in ras2D are significantly

reduced. The significant and systematic expression differentiation

underlying the phenotype is critical for understanding ageing in

yeast. One such feature is lower pre- and post-transcriptional

activities.

Another common characteristics in long-lived strains is the

down-regulation of TCA cycle and oxidative phosphorylation. In

contrast, the upstream of this process, the Glycolysis/Gluconeo-

genesis pathway, is slightly or moderately up-regulated. The up-

regulation of genes relating to Glycolysis/Gluconeogenesis implies

that mutant cells consume the carbon sources in a different

manner compared to the wild type. The adaption may be achieved

through a mechanism similar to that in CR. On the other hand,

the down-regulation of genes relating to TCA cycle and oxidative

phosphorylation indicates that mutant cells switch to alternative

energy pathways that likely depend on glycolysis. Rea et al. [31]

proposed a metabolic model to describe the ‘‘Energy switch’’

hypothesis for longevity mutants in C. elegans. They suggested that

most, if not all, long-lived mutants in C. elegans utilize anaerobic

mitochondrial fermentation, which do not involve the electron

transport chain and generate fewer radical species. Our results

indicate that the notion of ‘‘energy switch’’ may be relevant for

explaining life span extension in S. cerevisiae. However, rather than

anaerobic mitochondrial fermentation, in the yeast strains sch9D,

ras2D, and tor1D, the alternative energy pathway is likely to involve

glycolysis and occur in cytosol or organelles other than

mitochondria.

Evidences from the analysis of cellular organelle, GO, and the

comparison of cytosolic and mitochondrial ribosomes all indicate

that activities of mitochondria are significantly reduced in sch9D,

ras2D, and tor1D. In contrast, the expressions of cytosolic

ribosomes are up-regulated. This change of compartment activities

supports the ROS theory, which says reactive oxygen species

(ROS) damage macromolecules and thereby accelerate ageing.

The majority of cellular ROS (approximately 90%) is generated in

mitochondria as a byproduct of oxidative phosphorylation during

respiration [32]. A number of mutations affecting respiration have

been found to increase life span, and at least some may achieve

this by decreasing ROS levels [34]. According to our analysis,

many of the down-regulated genes encode mitochondrial proteins;

conversely, the expression levels of genes that encode proteins

localized in mitochondria tend to be negatively regulated in the

long-lived mutants. Particularly, in the long-lived mutants, TCA

and oxidative phosphorylation are negatively affected, both of

which occur in the mitochondria. As a consequence, respiration is

reduced and thereby less ROS are produced. Our observations
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and implications are consistent with results from a systematic RNA

interference (RNAi) screen of 5,690 Caenorhabditis elegans genes for

gene inactivations that increase lifespan [34]. They found that

genes important for mitochondrial function stand out as a principal

group of genes affecting C. elegans lifespan. Our results in yeast

suggest that reduction of mitochondrial activities closely relates to

extension of the yeast chronological life span.

SUPPORTING INFORMATION

Figure S1 Histograms of the scale values in Figure 2.

Found at: doi:10.1371/journal.pone.0001095.s001 (0.02 MB EPS)

Figure S2 M-A plots of data without normalization. In the M-A

plots, the x, y coordinate value of a dot respectively show the

average and difference of a gene expressions between the wild type

and a mutant. Black: S. cerevisiae; Magenta: S. pombe. Top: sch9

mutant; Middle: ras2 mutant; Bottom: tor1 mutant. Two

horizontal lines at 60.15 are also plotted.

Found at: doi:10.1371/journal.pone.0001095.s002 (0.86 MB EPS)

Figure S3 Histograms of the p-values in the KEGG Pathway

analysis. p-values are calculated for one-sided Wilcoxon tests that

compare differentiation between mutants and wild type on gene

subsets defined by KEGG Pathways. Left: sch9 mutant vs. wild;

Middle: ras2 mutant vs. wild type; Bottom: tor1 mutant vs. wild

type.

Found at: doi:10.1371/journal.pone.0001095.s003 (0.01 MB EPS)

Text S1 Spreadsheet of KEGG analysis

Found at: doi:10.1371/journal.pone.0001095.s004 (0.05 MB

XLS)

Text S2 Spreadsheet of Cellular organelle analysis

Found at: doi:10.1371/journal.pone.0001095.s005 (0.00 MB

XLS)

Text S3 Spreadsheet of TIGO analysis

Found at: doi:10.1371/journal.pone.0001095.s006 (0.03 MB

XLS)

Text S4 Information of the TIGO categories

Found at: doi:10.1371/journal.pone.0001095.s007 (0.01 MB

TXT)
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