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The chronological lifespan of eukaryotic organisms is extended by the mutational inactivation of conserved growth-signaling
pathways that regulate progression into and through the cell cycle. Here we show that in the budding yeast S. cerevisiae, these
and other lifespan-extending conditions, including caloric restriction and osmotic stress, increase the efficiency with which
nutrient-depleted cells establish or maintain a cell cycle arrest in G1. Proteins required for efficient G1 arrest and longevity
when nutrients are limiting include the DNA replication stress response proteins Mec1 and Rad53. Ectopic expression of CLN3
encoding a G1 cyclin downregulated during nutrient depletion increases the frequency with which nutrient depleted cells
arrest growth in S phase instead of G1. Ectopic expression of CLN3 also shortens chronological lifespan in concert with age-
dependent increases in genome instability and apoptosis. These findings indicate that replication stress is an important
determinant of chronological lifespan in budding yeast. Protection from replication stress by growth-inhibitory effects of
caloric restriction, osmotic and other stresses may contribute to hormesis effects on lifespan. Replication stress also likely
impacts the longevity of higher eukaryotes, including humans.
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INTRODUCTION
In eukaryotic organisms as diverse as yeasts and mice, lifespan is

extended by caloric restriction or mutations that inactivate

conserved growth signaling pathways (reviewed in [1,2]). Con-

served elements of these pathways include RAS proteins and

members of the AKT/PKB family of kinases that function in

glucose signaling in yeast and insulin/insulin-like growth factor (I-

(IFG-1)) signaling in higher eukaryotes, as well as elements of

TOR-dependent nitrogen signaling pathways. Mutations that

promote, rather than inhibit, signaling in these pathways shorten

lifespan.

The mechanisms by which caloric restriction or mutational

inactivation of growth signaling pathways extend lifespan remain

unclear. Both induce stress responses that depend on heat shock

and other proteins, including proteins that mitigate oxidative stress

[3,4,5]. The induction of oxidative stress responses, in particular,

might promote longevity by protecting against reactive oxygen

damage to lipids, protein and DNA, all of which accumulate

oxidative damage during aging [6]. Oxidative damage to DNA

could be responsible for some of the increased genome instability

associated with aging in all eukaryotes [7]. However, a definitive

role for oxidative damage in aging has not yet been established

[6,8]. For example, in mice, a mutation in the superoxide-

scavenging enzyme SOD2 elevates oxidative damage to DNA, but

does not shorten lifespan [9]. The absence of a correlation

between levels of reactive oxygen and longevity has also been

noted in Drosophila [10]. It also remains unclear how cellular

responses to other stresses might inhibit age-dependent increases

in DNA damage and promote longevity.

The budding yeast Saccharomyces cerevisiae has proved to be

a valuable model organism for investigating conserved pathways

regulating lifespan in all eukaryotes. Replicative lifespan in

budding yeast is assessed by determining the number of times

cells divide in the presence of nutrients before they senesce and die

[11] via an apoptotic-like mechanism [12]. An important factor

determining replicative lifespan is DNA replication stress–i.e.,

inefficient DNA replication that leads to replication fork stalling–

which stimulates recombination at a replication fork barrier in the

rDNA locus ([13] and references therein).

Chronological lifespan in budding yeast is distinct from

replicative lifespan and is measured by assessing the viability of

cells driven into a growth-arrested state by nutrient depletion [11].

The quiescent state of nutrient-depleted budding yeast cells shares

features with postmitotic cells in higher eukaryotes, including

growth arrest of a large fraction of cells with a G1 content of DNA.

Nutrient-depleted budding yeast cells can survive in this quiescent

state for an extended time, during which replenishing the medium

restores growth. Similar to replicatively aged budding yeast cells,

chronologically aged cells eventually die via an apoptotic-like

mechanism that includes degradation of DNA [14,15].

Most efforts to understand how alterations in nutrient-signaling

pathways impact chronological lifespan in budding yeast have

focused on changes in nutrient depletion-induced stress resistance,

especially resistance to oxidative stress. Stress resistance in this
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organism is mediated in large part by the ‘‘Rim15 regulon’’, which

is upregulated by the Rim15 kinase in response to depletion of

nutrients [16,17]. The Rim15 regulon includes a number of genes

that, like RIM15 [5], promote longevity in the chronological aging

model. This includes genes encoding the stress-responsive

transcription factors Msn2 and Msn4 and genes induced by

Msn2 and Msn4, such as SOD1 and SOD2 encoding superoxide

dismutases that mitigate oxidative stress [4]. In the presence of

glucose and other nutrients, Rim15 kinase activity and the

induction of stress resistance are inhibited by the Ras-cAMP

glucose signaling pathway, the constitutive activation of which

shortens lifespan [18]. Furthermore, nuclear localization of

Rim15, which is required for induction of the Rim15 regulon, is

negatively regulated by Sch9 in the presence of glucose [19].

Abrogation of this negative regulatory mechanism in sch9D cells

extends chronological lifespan [5]. Rim15 also is negatively

regulated by the nitrogen-sensitive TOR-dependent nutrient

signaling pathway [20], inhibition of which also extends

chronological lifespan [21], and by Pho80-Pho85 cyclin-CDK-

dependent pathways that respond to phosphate levels [22].

Chronological lifespan extension associated with the induction

of oxidative stress responses by Rim15 and other proteins is

consistent with the longstanding ‘‘free radical’’ theory of aging,

which posits oxidative damage as a major determinant of lifespan

in all eukaryotes [23]. However, Rim15 also mediates the G1

arrest induced by nutrient deprivation in budding yeast (reviewed in

[17]). In addition to the G1 arrest induced when medium is depleted

of nutrients [24], Rim15 is also required for G1 arrest when TOR-

dependent nitrogen-signaling pathways are inhibited [19]. Phos-

phate starvation also leads to the activation of Rim15 and entry into

a G0-like state [22]. Thus, Rim15 integrates signals from several

nutrient-signaling pathways to arrest cells in the G1 phase of the cell

cycle during nutrient deprivation, in addition to its induction of

oxidative and other stress responses. The possibility that alterations

in the Rim15-dependent G1 arrest induced by nutrient deprivation

impact chronological lifespan when nutrient signaling pathways are

altered has not been investigated previously.

The shorter lifespan of nutrient-depleted rim15D cells [5] is

accompanied by growth arrest throughout the cell cycle, including

S phase [19]. A similar growth arrest throughout the cell cycle is

observed during nutrient depletion of cells harboring the

constitutively activating RAS2val19 mutation, which also shortens

chronological lifespan [25]. Growth arrest of RAS2val19, rim15D
and other cells in S phase could be caused by a reduction in the

levels of nucleotides and other factors required for efficient DNA

synthesis, which would lead to replication stress. As in other

eukaryotes, replication stress promotes genome instability [26,27]

and apoptosis [28] in budding yeast. Both genome instability and

apoptosis are characteristic features of chronological aging in this

organism, [14,15,29] as well as in many other eukaryotes [8].

Based on these considerations, we hypothesized that inhibition

of nutrient-signaling pathways can extend the chronological

lifespan of budding yeast by inducing a more efficient nutrient

depletion-induced G1 arrest. This more efficient G1 arrest would

protect against replication stress-induced genome instability and

apoptosis by reducing the growth arrest of cells in S phase with

incompletely replicated chromosomes. To test this hypothesis, we

measured the frequency with which cells arrest in G1 and undergo

apoptosis during nutrient depletion under conditions previously

shown to alter the chronological lifespan of this organism,

including caloric restriction and osmotic stress. We also examined

the frequency with which nutrient depletion induces G1 arrest and

apoptosis in strains defective in responses to DNA replication

stress. The results of these experiments demonstrated that nutrient

depletion causes replication stress in cells that fail to enter into or

maintain a G1 arrest when deprived of nutrients and instead arrest

growth in S phase. They suggest that, in addition to its role in

replicative aging in budding yeast, replication stress is an important

factor determining chronological lifespan in this organism.

RESULTS

Correlation between lifespan and efficiency of G1

arrest in nutrient-depleted cells
SCH9 encodes a kinase that promotes glucose and nitrogen

signaling in budding yeast in parallel with the Ras-cAMP glucose-

sensing pathway ([20] and references therein). Sch9 is an

orthologue of AKT/PKB kinases that function in growth signaling

downstream of IGF-1 in higher eukaryotes (reviewed in [1]).

Deletion of SCH9 enhances Rim15-dependent stress responses and

extends chronological lifespan [5], similar to the lifespan-

extending effects of some mutations in AKT homologues in

higher eukaryotes [1,2]. To test whether deletion of SCH9 would

increase the efficiency of G1 arrest during nutrient depletion (as

predicted by our hypothesis), we compared the extent of this arrest

in wild type and sch9D cells by determining budding indices

(fraction of budded cells), since cells with buds have passed Start

and have entered or proceeded through S phase. We also

employed flow cytometry to determine the proportion of nutrient-

depleted cells that arrested with a G1 content of DNA.

Measurements of cellular DNA content also revealed cells

undergoing apoptotic DNA degradation indicated by less than

a G1 DNA content.

Consistent with our hypothesis, we found that during nutrient

depletion, sch9D cells arrested with a G1 content of DNA more

efficiently than did wild-type cells. A more efficient G1 arrest in

sch9D compared to wild type cells was indicated by the increased

height and narrowness of the G1 DNA-content peak in flow

cytometry profiles (Fig. 1A) in parallel with a reduced budding

index (Fig. 1B). As reported earlier by Fabrizio et al. [5], we found

that sch9D cells had a longer chronological lifespan than wild-type

cells (Fig. S1). Also consistent with lifespan extension in sch9D cells,

we found that at later times, sch9D cells suffered less apoptotic

DNA degradation (Fig. 1A).

Rim15 is a member of the PAS kinase family containing PAS

domains (reviewed in [17]). PAS domains are highly conserved

regulatory modules that respond to a variety of stimuli, including

oxygen, redox status and energy levels. As described above, Rim15

integrates signals from several nutrient-signaling pathways to

regulate stress responses and withdrawal from the cell cycle. In the

presence of nutrients, activation of Rim15 and the induction of

stress responses are inhibited by Sch9 and other elements of

nutrient signaling pathways. During nutrient depletion, cells

deleted of RIM15 have a shorter lifespan [5] and arrest throughout

the cell cycle, which was indicated by a higher budding index

compared to wild type cells [19]. We also found that nutrient-

depleted rim15D cells exhibit a higher budding index (Fig. 1B). In

addition, we found that compared to wild type cells, rim15D cells

arrest less efficiently with a G1 content of DNA and undergo more

rapid apoptotic DNA degradation (Fig. 1A). Deletion of SCH9

from rim15D cells suppresses their shortened lifespan ([5].

Compared to rim15D cells, sch9D rim15D cells exhibited a more

efficient G1 arrest and a reduced frequency of apoptotic DNA

degradation during nutrient depletion (Figs. 1A and B).

Ras2 plays a role in a glucose-signaling pathway that functions

upstream of Rim15 in parallel with the Sch9 pathway (reviewed in

[30]). Similar to deletion of SCH9, deletion of RAS2 extends the

chronological lifespan of nutrient-depleted budding yeast cells

Replication Stress and Aging
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Figure 1. Chronological lifespan is related to the efficiency with which nutrient-depleted cells arrest in G1. A. Changes in DNA content during
nutrient depletion of wild-type (DBY746) cells and cells harboring deletions of RIM15 and/or SCH9, which was previously shown to shorten (rim15D) or
lengthen (sch9D) chronological lifespan [5]. Length of time cells were depleted of nutrients after establishing exponential cultures (‘‘log’’) is indicated
to the left. B. Budding indices of cells in Panel A. C. Budding indices of wild-type cells and cells harboring the ras2D or RAS2val19 mutations. D.
Changes in DNA content during nutrient depletion of wild-type cells and cells harboring the RAS2val19 mutation. E. Changes in DNA content of wild
type and ras2D cells during nutrient depletion. F–H. Viability (F), budding index (G) and DNA content (H) of wild-type cells nutrient depleted in
synthetic complete medium (‘‘SC’’) or rich medium (‘‘YPD’’). Data in this and subsequent figures are representative of the data from three or more
independent experiments unless noted otherwise.
doi:10.1371/journal.pone.0000748.g001
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[18]. We found that it also decreases budding index, indicating

a tighter G1 arrest (Fig. 1C). A tighter G1 arrest in ras2D cells was

detected by flow cytometry as well (Fig. 1E). In contrast, constitutive

activation of Ras2 by the RAS2val19 mutation shortens chronological

lifespan [18]. In agreement with an earlier observation [25], we

found that the RAS2val19 mutation decreased the efficiency of G1

arrest during nutrient depletion (Fig. 1C and D).

A relationship between chronological lifespan and efficiency of

G1 arrest during nutrient depletion was also suggested by the

effects of another experimental manipulation previously shown to

decrease the chronological lifespan of nutrient-depleted cells—

culturing cells in defined (SC) medium rather than rich (YPD)

medium [31,32]. Although the basis for the decreased chronolog-

ical lifespan in SC medium is not clear, nutrient-depleted cells

cultured in this medium exhibit a higher metabolic rate, which

correlates with shorter chronological lifespan [18]. The shorter

lifespan of DBY746 cells in SC compared to YPD medium (Fig. 1F)

was accompanied by a less efficient G1 arrest (Fig. 1G,H). It was

also accompanied by extensive apoptotic DNA degradation, which

was absent from cells cultured in YPD medium at the same time

points (Fig. 1H). These effects were also detected in a second

genetic background (W303; not shown).

In combination, these observations establish a strong correlation

between chronological lifespan and efficiency of G1 arrest under

nutrient-limiting conditions.

Caloric restriction and osmotic stress extend

chronological lifespan in parallel with a more

efficient G1 arrest during nutrient depletion
Caloric restriction extends the replicative and chronological

lifespans of budding yeast, as well as the chronological lifespans

of most other eukaryotic organisms [33]. To determine whether

caloric restriction also induces a more efficient G1 arrest during

nutrient depletion, we assessed the effects of long-term culture of

budding yeast cells in medium containing a reduced concentration

of glucose (0.5% instead of 2%). Reducing the concentration of

glucose to 0.5% extended the chronological lifespan of cells in the

DBY746 background (Fig. 2A) at the same time that it reduced the

budding index of these cells (Fig. 2B). Similar results were obtained

in the BY4741 genetic background (Fig. 2C and D). FACS analysis

of DNA content indicated that in both genetic backgrounds, cells

cultured in 0.5% glucose more slowly underwent apoptotic DNA

degradation indicated by fewer cells with less than a G1 content of

DNA (Fig. 2E and F). Therefore, similar to mutational inactivation

of Sch9-or Ras2-dependent nutrient signaling pathways, caloric

restriction extends chronological lifespan of budding yeast in

concert with a more efficient G1 arrest and less frequent apoptosis.

Unlike cells in which lifespan was extended by deletion of SCH9

or RAS2, however, calorie-restricted DBY746 cells exhibited

a progressive age-dependent increase in DNA content (Fig. 2E).

A progressive increase in DNA content was observed in calorie-

restricted BY4741 cells as well, although this increase occurred

more slowly (Fig. 2F). An increase in nuclear DNA content is not

consistent with the reduced budding index of calorie-restricted

cells, which indicates less frequent cell division. In mammals

(including humans), caloric restriction stimulates mitochondrial

biogenesis [34,35,36]. To determine whether increased mitochon-

drial DNA associated with mitochondrial biogenesis might be

responsible for the increased DNA content of calorie-restricted

budding yeast cells, we stained cells with the DNA-specific dye

DAPI. A substantial increase in the number of DAPI signals from

non-nuclear, cytoplasmic DNA was apparent in nutrient-depleted

DBY746 and BY4741 cells cultured for three days in medium

containing 0.5% glucose compared to 2% glucose (Fig. 2G).

Southern blot analysis of DNA isolated from DBY746 cells at this

time point confirmed that cells cultured in medium containing

0.5% glucose contained more mitochondrial DNA relative to

nuclear DNA compared to cells cultured in medium containing

2% glucose (Fig. 2H). We conclude that the increased DNA

content detected by FACS under caloric restriction conditions

corresponds to increased mitochondrial DNA.

Microscopic inspection of DAPI-stained cells suggested that

caloric restriction also increased the size of cells in both genetic

backgrounds (Fig. 2G). This was confirmed by measurements of

cell volume (Fig. 2I and J). The G1 cyclin CLN3 is downregulated

during nutrient depletion, and this downregulation occurs more

rapidly in calorie-restricted cells [37]. Downregulation of CLN3 in

cycling cells prolongs G1 and increases cell size [38,39].

Therefore, the larger size of calorie-restricted cells is consistent

with a tighter G1 arrest associated with more rapid down-

regulation of CLN3.

Similar to caloric restriction, increasing the osmolarity of culture

medium by adding sorbitol (a nonmetabolizable sugar alcohol)

extends both replicative [40] and chronological [41] lifespans of

budding yeast. The effects of osmotic stress on replicative lifespan

may be mechanistically related to those of caloric restriction [40].

In the absence of nutrient depletion, osmotic stress inhibits growth

by inducing a G1 arrest [42,43]. This suggested the possibility that

the effects of sorbitol on chronological lifespan of nutrient-depleted

cells might be related to a tighter G1 arrest. Consequently, we

examined the effects of sorbitol on nutrient depletion-induced G1

arrest in parallel with effects on viability. As reported previously

[41], adding sorbitol to medium extended the chronological

lifespan of BY4741 cells to a similar extent compared to caloric

restriction (Fig. 2K). Also similar to caloric restriction, lifespan

extension by sorbitol was accompanied by a reduction in budding

index (Fig. 2L) and in the number of cells undergoing apoptotic

DNA degradation (Fig. S2). These findings extend the correlation

between chronological lifespan extension, less frequent apoptosis

and more efficient G1 arrest.

Induction of DNA replication stress by nutrient

depletion
One of the potential benefits of the G1 arrest induced by nutrient

depletion is that it would protect cells from replication stress they

would suffer if they were in S phase under suboptimal conditions

for replicating DNA. These conditions might include the depletion

from medium of substrates required for synthesis of dNTPs.

Nutrient depletion also downregulates the transcription of many

genes encoding proteins required for DNA replication [44,45,46].

These genes include RNR1 encoding the large subunit of

ribonucleotide reductase, which is required for the synthesis of

dNTPs. The combined effects of reduced concentrations of

substrates for DNA synthesis and downregulation of genes

encoding proteins required for DNA replication is expected to

produce replication stress in nutrient-depleted cells that failed to

enter into or maintain a G1 arrest, and arrest growth in S phase

instead.

The MEC1 gene encodes a protein required for cellular

responses to both replication stress and DNA damage. RAD9

encodes a protein required for responses to DNA damage, but not

replication stress (reviewed in [47]). To determine whether

nutrient depletion induces replication stress, we compared the

phenotypes of nutrient-depleted wild type, mec1-21 and rad9D cells.

During nutrient depletion in YPD medium, mec1-21 cells died

more rapidly than wild-type or rad9D cells (Fig. 3A). More rapid
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Figure 2. Caloric restriction and osmotic stress increase the efficiency with which nutrient-depleted cells arrest in G1. A–F. Viability (A and C), budding
index (B and D) and DNA content (E and F) of DBY746 (A, B and E) and BY4741 (C, D and F) cells cultured in medium containing 2% compared to 0.5%
glucose at beginning of experiment. Data in A–D are means and standard errors for three independent experiments. G. DAPI stained cells from log phase
cultures cultured in medium containing 2% glucose (day 0) or after 3 days of depletion of medium containing 2% or 0.5% glucose. H. Southern blot
analysis of mitochondrial and nuclear DNA content in DBY746 cells cultured for three days in medium containing 2% or 0.5% glucose. I and J. Mean
volume of BY4741 (I) and DBY746 (J) cells cultured in medium containing 2% or 0.5% glucose. K and L. Effects of increased osmotic stress during nutrient
depletion (produced by adding 1M D-sorbitol to medium) on viability (K) and budding index (L) of BY4741 cells.
doi:10.1371/journal.pone.0000748.g002
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cell death of mec1-21 cells occurred in parallel with a less efficient

arrest with a G1 content of DNA (Fig. 3B) and an elevated

budding index (Fig. 3C). At later time points, mec1-21 cells also

underwent apoptotic DNA degradation, which was largely absent

from wild-type or rad9D cells at the same time points (Fig. 3B).

Nutrient-depleted rad9D cells exhibited budding indices similar to

those of wild type cells (Fig. 3C). This is consistent with the

absence of a role for Rad9 in cellular responses to replication

stress, in contrast to the roles of Mec1 and Rad53. However, rad9D
cells died more rapidly than wild type cells, although not as rapidly

as mec1-21 cells (Fig. 3A). This suggests that nutrient depletion

induces DNA damage, in addition to replication stress.

RAD53 encodes a protein that functions downstream of Mec1 in

cellular responses to DNA damage and replication stress. [47].

Similar defects in G1 arrest were observed in rad53-21 and mec1-21

compared to wild-type and rad9D cells during nutrient depletion in

SC medium (Fig. 3D and E). Furthermore, apoptotic DNA

degradation was accelerated in rad53-21 and mec1-21 cells.

Apoptotic DNA degradation in wild type, mec1-21 and rad9D
strains was also accelerated in cells cultured in SC compared to

Figure 3. Nutrient depletion induces DNA replication stress. A–C. Viability (A), DNA content (B) and budding index (C) of wild-type (W303) cells and
cells with mutations in MEC1 or RAD9 undergoing nutrient depletion in YPD medium. D&E. DNA content (D) and budding index (E) of wild-type,
mec1-21, rad53-21 and rad9D cells undergoing nutrient depletion in SC medium.
doi:10.1371/journal.pone.0000748.g003
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YPD medium. Together with the data presented in Figs. 3A–C,

these findings indicate that nutrient depletion induces replication

stress, which is enhanced in SC compared to YPD medium.

An essential function shared by Mec1 and Rad53 is to maintain

sufficient dNTP pools to complete DNA replication during S

phase [47]. Maintenance of dNTP pools requires the induction of

Rnr1 activity by Mec1-and Rad53-dependent pathways that

inactivate Sml1, an inhibitor of Rnr1. Although inactivation of

Sml1 is required to maintain viability in mec1D and rad53D strains,

Sml1 is intact in the partial loss-of-function mec1-21 and rad53-21

strains.

To determine whether failure to maintain dNTP pools might

explain the effects of the mec1-21 and rad53-21 mutations, we

analyzed the effects of ectopic expression of RNR1 from a high

copy plasmid. In some, but not all, experiments, ectopic expression

of RNR1 in wild-type or rad9D cells enhanced arrest with a G1

content of DNA induced by nutrient depletion (Fig. 4A, ‘‘wild

type’’ and ‘‘rad9D’’; Fig. 4B and E). This enhanced G1 arrest was

accompanied by a reduction in the number of cells undergoing

apoptotic DNA degradation at later time points (Fig. 4A ‘‘wild

type’’). This is consistent with the possibility that replication stress

caused by insufficient dNTPs during nutrient depletion can trigger

apoptosis. In most experiments, however, effects of ectopic

expression of RNR1 were not detected in wild-type or rad9D cells.

We conclude that cells harboring wild-type Mec1 and Rad53

usually maintain sufficient levels of dNTPs at early stages of

nutrient depletion to complete the replication of chromosomes

before arresting in G1. The occasional effects of ectopic RNR1

expression in wild type and rad9D cells may reflect a critical

balance between the competing requirement during nutrient

depletion to maintain sufficient dNTPs to complete S phase at

early stages and to downregulate RNR1 at later stages.

In contrast to the occasional effects of ectopic expression of

RNR1 in wild type and rad9D cells, ectopic expression of RNR1 in

mec1-21 cells consistently suppressed the defective G1 arrest in

these cells as measured by DNA content (Fig. 4A; ‘‘mec1-21’’), as

well as bud indices (Fig. 4C). It also suppressed increased apoptotic

DNA degradation in these cells during nutrient depletion (Fig. 4A

‘‘mec1-21’’). In fact, ectopic expression of RNR1 reproducibly led to

a more efficient G1 arrest at earlier time points in mec1-21

compared to wild-type cells indicated by more cells with a G1

DNA content (Fig. 4A; compare ‘‘wild type pRNR1’’ with ‘‘mec1-

21 pRNR1’’) and fewer buds (compare Fig. 4C ‘‘pRNR1’’ with

Fig. 4B ‘‘pRNR1’’). This may be due to the combined effects of

elevated dNTP pools resulting from ectopic expression of RNR1

and the premature activation of late S phase-firing replication

origins that occurs in cells harboring mutations in MEC1 [48,49].

In the presence of excess dNTPs, activation of late replication

origins in early-S-phase cells would accelerate exit from S phase

during nutrient depletion. This may allow for exit from S phase

before other factors required for DNA replication have been

downregulated in response to nutrient depletion. In contrast to

mec1-21 cells, cells from which both MEC1 and SML1 had been

deleted did not exhibit a defective G1 arrest or increased apoptosis

(Fig. S3). This is consistent with a role for Mec1 in promoting G1

arrest during nutrient depletion related to its downregulation of

Sml1 and increased ribonucleotide reductase activity. Down-

regulation of Sml1 would lead to the induction of ribonucleotide

reductase activity and increased dNTP pools required for exit from

S phase before other factors required for DNA replication have

been downregulated.

In contrast to its effects in mec1-21 cells, ectopic expression of

RNR1 had no detectable effect on the defective G1 arrest and

increased apoptotic DNA degradation phenotypes of rad53-21 cells

(Fig. 4A; ‘‘rad53-21’’ and Fig. 4D). This may reflect the existence of

lethal defects in Rad53-dependent, but Mec1-independent regu-

lation of histone levels in cells subjected to DNA damage or

replication stress [50]. An additional function of Rad53 that is not

shared by Mec1 has been suggested by other studies as well

[51,52,53,54]. This includes the demonstration that rad53D, but

not mec1D cells exhibit a slow-growth phenotype when Sml1 is

inactivated in these cells [54], which suggests a Mec1-independent

function of Rad53 that is not related to the regulation of nucleotide

levels. We conclude that nutrient depletion-induced replication stress

is mitigated in wild-type cells by Mec1-dependent induction of Rnr1

activity. Regulation of Rnr1 activity by Mec1 during nutrient

depletion likely occurs in collaboration with Rad53, but in

conjunction with other Mec1-and Sml1-independent effects of

Rad53 that also impact nutrient depletion-induced G1 arrest.

Ectopic expression of Cln3 abrogates G1 arrest,

shortens lifespan and accelerates genome instability

and apoptosis during nutrient depletion
The findings described above are consistent with the hypothesis

that inhibition of nutrient signaling pathways extends chronolog-

ical lifespan by promoting a more efficient arrest in G1 that

protects against DNA replication stress. Progression past Start in

G1 and entry into S phase require the activity of the Cdc28 cyclin-

dependent kinase, which is regulated by the G1 cyclin Cln3

upstream of the cyclins Cln1 and Cln2 (reviewed in [55]). The

expression of all three Clns is down-regulated in nutrient-depleted

cells [37,56]. We next asked whether ectopic expression of CLN3

during nutrient depletion would attenuate the G1 arrest induced

by nutrient depletion and shorten chronological lifespan in the

absence of increased nutrient signaling.

In initial experiments, ectopic expression of CLN3 paradoxically

increased the fraction of viable cells at later time points (compared

to empty vector-transformed control cells) in concert with

increased apoptotic DNA degradation (Fig. S4). At later time

points in chronological aging experiments, strains with shorter

chronological lifespans often exhibit a phenomenon called

adaptive regrowth, which occurs stochastically in association with

the release of substances from apoptosing cells into the medium.

These substances promote the growth of cells that at earlier time

points were growth-arrested due to nutrient depletion [14,15].

Adaptive regrowth could explain the relative increase in viable

cells detected at later time points in populations of cells ectopically

expressing CLN3, despite an increased frequency of apoptosis in

these cell populations (Fig. S4). Consequently, in subsequent

experiments, we measured the effects of ectopic CLN3 expression

on chronological lifespan under conditions that avoided adaptive

regrowth by periodically reseeding cells in medium that had been

pre-depleted of nutrients. This blocked the accumulation of

substances released from apoptosing cells without altering the

nutrient-depleted status of surviving cells.

Pre-depleted medium was prepared by long-term (seven days)

culture of sch9D cells, since these cells are less susceptible

(compared to wild type cells) to apoptosis (Fig. 1A) or adaptive

regrowth [29]. CLN3-overexpressing and vector-control cells were

reseeded into this pre-depleted medium (from which sch9D cells

had been removed) every other day beginning one day after

cultures of these cells were first established. Analysis of wild type

and sch9D cells cultured for an extended time period using this

regimen indicated that periodic reseeding in pre-depleted medium

did not alter the chronological lifespan of wild type cells or the

tighter G1 arrest and reduced apoptotic DNA degradation that

occurs in sch9D cells (Fig. S5). Therefore, the use of pre-depleted
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Figure 4. Ectopic expression of RNR1 suppresses increased apoptotic DNA degradation and less efficient G1 arrest in mec1-21, but not rad53-21
cells during nutrient depletion. A. DNA content of wild-type (W303) and indicated checkpoint mutant strains transformed with an empty vector or
a high copy plasmid expressing RNR1 (‘‘pRNR1’’) during nutrient depletion in SC medium. B–E. Budding index of these strains during nutrient
depletion in SC medium. Error bars depict the standard error for measurements made in three or more independent experiments.
doi:10.1371/journal.pone.0000748.g004
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medium does not alter the mechanisms by which nutrient

signaling pathways impact chronological lifespan.

In pre-depleted medium, cells ectopically expressing CLN3

reproducibly exhibited a less efficient G1 arrest compared to cells

transformed with an empty vector, and frequently arrested growth

in S phase instead (Fig. 5A and B). The less efficient growth arrest

in G1 of cells ectopically expressing CLN3 was accompanied by

accelerated apoptotic DNA degradation (Fig. 5A) and a shorter

chronological lifespan (Fig. 5C; note logarithmic scale). Shorter

chronological lifespan associated with ectopic expression of CLN3

during nutrient depletion was recently reported by others as well

[57]. The shorter lifespan of CLN3-expressing cells during nutrient

depletion is similar to reports of shortened lifespan associated with

ectopic expression of CLN3 in cells undergoing growth arrest

induced by inhibiting TOR signaling pathways with rapamycin

[57,58].

Figure 5. Ectopic expression of CLN3 during nutrient depletion shortens lifespan and accelerates age-dependent genome instability and
apoptosis. A–C. DNA content (A), budding index (B) and viability (C) during nutrient depletion of cells transformed with an empty vector or a plasmid
expressing CLN3 using the CUP1 promoter (‘‘pCLN3’’). D. Mutation frequency during nutrient depletion measured by resistance to canavanine in cells
transformed with an empty vector or with pCLN3. Error bars depict the standard error for measurements made in three independent experiments. An
exception is canavanine resistance measurements in cells transformed with pCLN3 at day 5 (panel D), where it represents the range of values from
two of three independent experiments (due to a technical problem at this timepoint in one experiment).
doi:10.1371/journal.pone.0000748.g005
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Genome instability is an important component of chronological

aging in budding yeast [29] and other organisms [8]. To

determine whether the less efficient growth arrest in G1 and

shortened lifespan of nutrient-depleted cells ectopically expressing

CLN3 are accompanied by accelerated age-dependent genome

instability, we asked whether these cells suffer an increase in the

frequency of mutations in the CAN1 gene, as measured by

increased resistance to the toxic amino-acid analogue canavanine.

We found that, similar to a previous report [29], nutrient depletion

induced a chronological-age-dependent increase in mutation

frequency in wild-type cells (Fig. 5D; ‘‘vector’’). This mutation

frequency was dramatically elevated in chronologically aged cells

ectopically expressing CLN3 (Fig. 5D; ‘‘pCLN3’’). Therefore, in

addition to shortening chronological lifespan and stimulating

apoptosis, the failure to efficiently arrest growth in G1 during

nutrient depletion contributes to chronological age-dependent

genome instability.

DISCUSSION

Impact of altered nutrient signaling on

chronological lifespan
Most efforts to understand how alterations in nutrient signaling

pathways impact the chronological lifespan of budding yeast have

focused on changes in oxidative stress responses regulated by these

pathways downstream of Rim15. Our findings point to an efficient

Rim15-dependent growth arrest in G1 that also requires down-

regulation of Cln3 as an additional factor determining chrono-

logical lifespan in this organism (Fig. 6A). Caloric restriction,

mutational inactivation of Sch9 or Ras2 and growth in YPD

rather than SC medium enhance this G1 arrest and extend

lifespan. In contrast, constitutive activation of nutrient signaling

by RAS2val19 or deletion of RIM15 increases the frequency with

which nutrient-depleted cells growth-arrest in S phase instead of

G1 and shortens chronological lifespan. During nutrient depletion,

Figure 6. Models for longevity regulation by growth signaling pathways in budding yeast (A) and deregulation of growth regulatory pathways
leading to replication stress and aging in all eukaryotes (B). A. In budding yeast, nutrient signaling pathways that respond to glucose, nitrogen and
phosphate converge upon Rim15, which is downregulated by signaling through these pathways when nutrients are plentiful. Activation of Rim15
when nutrient signaling is inhibited induces stress response factors (including Msn2 and Msn4) and stress responses mediated by Sod1, Sod2 and
other proteins that mitigate oxidative damage and other effects of stresses. Reduced nutrient signaling also downregulates Cln3 and downstream
Clns1 and 2, which are required for activation of the cyclin-dependent kinase Cdc28. Inactivation of Cdc28 during nutrient depletion contributes to
a G1 arrest that protects against replication stress. Osmotic stress (and perhaps other stresses) also contribute to G1 arrest during nutrient depletion.
G1 arrest in response to nutrient depletion and other stresses may be mediated in part by induction of the transcriptional repressor Xbp1, which
inhibits Cln transcription. Enhancement of G1 arrest by caloric restriction, osmotic stress or mutational inactivation of nutrient signaling pathways
protects against replication stress and promotes longevity in combination with Rim15-dependent responses to oxidative-and other stresses. B.
Replication stress associated with uncoordinated entry into or exit from S phase downstream of the activation of some, but not all, growth signaling
pathways may be an important factor determining lifespan in all eukaryotes. In both panels, question marks indicate hypothetical or undefined
effects.
doi:10.1371/journal.pone.0000748.g006
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sustained expression of CLN3–which is normally downregulated

under these conditions–also increases the frequency with which

cells growth arrest in S phase in concert with a shorter lifespan and

age-dependent increases in genome instability and apoptosis.

Therefore, downregulation of Cln3 is required for G1 arrest and

long-term survival in nutrient-depleted cells. Importantly, the

effects of ectopic CLN3 expression occur in the absence of altered

nutrient signaling that would impact oxidative stress. Therefore,

changes in the efficiency of G1 arrest associated with altered

nutrient signaling can impact chronological lifespan and age-

dependent genome stability independently of changes in stress

responses that would affect oxidative damage to DNA and other

cellular constituents.

How downregulation of Cln3 occurs during nutrient depletion

remains unclear. Xbp1, a transcriptional repressor of CLN genes,

may contribute to this downregulation. XBP1 is induced by

nutrient depletion, and ectopic expression of Xbp1 in cycling cells

slows growth by lengthening G1 phase [59]. Induction of XBP1 by

nutrient depletion may occur downstream of Rim15 activation

and its induction of Msn2 and Msn4. The promoter for XBP1

harbors binding sites for these and other stress factors induced by

Rim15 activation during nutrient depletion [59]. Msn2 and Msn4

antagonize PKA-dependent growth [60]. This establishes a role

for these stress response factors in growth regulation–perhaps

upstream of the induction of XBP1-in addition to the role they play

in responses to oxidative and other stresses.

Nutrient depletion-induced G1 arrest is enhanced by osmotic

stress, similar to the effects on G1 arrest of mutational inactivation

of nutrient signaling pathways and caloric restriction (Fig. 2). In

cycling cells, osmotic stress inhibits growth by inducing a G1 arrest

accompanied by the downregulation of Clns and Cdc28 activity.

This G1 arrest depends on stabilization of the Cdc28 inhibitor

Sic1 by the Hog1 MAP kinase [61]. Hog1 may also downregulate

the expression of Clns in osmotically stressed cells, which would

contribute to Sic1 stability [61]. The CLN transcriptional repressor

XBP1 is also induced by osmotic stress [59], and therefore may

contribute to the downregulation of Clns and Cdc28 activity in

osmotically stressed cells. Similar to ectopic expression of CLN3

during medium depletion, abrogation of the Hog1-dependent G1

arrest in osmotically stressed cells is accompanied by genome

instability [61]. We think it is likely that the chronological lifespan-

extending effects of osmotic stress during nutrient depletion are

related to enhanced downregulation of Clns and Cdc28 activity by

Hog1-and Xbp1-dependent mechanisms that leads to a tighter

nutrient depletion-induced G1 arrest.

Replication stress and chronological lifespan
What is the mechanism by which a more efficient G1 arrest during

nutrient depletion enhances chronological lifespan? Our results

also indicate that nutrient depletion causes DNA replication stress.

The induction of replication stress during nutrient depletion is

indicated by the finding that cellular responses mediated by Mec1

and Rad53 (which respond to replication stress and DNA damage)

are more important to the survival of nutrient-depleted cells than

responses mediated by Rad9 (which responds to DNA damage,

but not replication stress). At least at initial stages of nutrient

depletion, Mec1 mitigates replication stress, most likely by

increasing levels of dNTPs (Figs. 3 and 4). This is indicated by

the ability of ectopically expressed RNR1 to suppress the shorter

lifespan and increased apoptosis in nutrient-depleted mec1-21 cells

(Fig. 4). Ectopic expression of RNR1 would have the effect of

increasing dNTP pools that in wild type (but not mec1-21) cells are

upregulated by Mec1 and Rad53 in response to replication stress.

Mec1 and Rad53 upregulate ribonucleotide reductase by

a mechanism that leads to destabilization of the ribonucleotide

reductase inhibitor Sml1. Therefore, replication stress at early

stages of nutrient depletion is mostly or entirely a consequence of

starvation for dNTPs. Consistent with this possibility, mec1D cells

from which SML1 has also been deleted (which leads to increased

levels of dNTPs [54]) are phenotypically similar to wild type cells

(Fig. S3). The absence of effects in mec1D sml1D compared to wild

type cells also suggests that the checkpoint function of Mec1,

which is separate from its role in regulating dNTP metabolism,

does not play a role in regulating chronological lifespan.

Deletion of RAD9 also shortens lifespan and accelerates

apoptosis, although not to the same extent as the mec1-21 and

rad53-21 mutations (Fig. 3). Therefore, nutrient depletion likely

induces DNA damage in addition to replication stress. Nutrient

depletion-induced DNA damage is consistent with the age-

dependent accumulation of mutations during chronological aging

(Fig. 5D and [29]). Importantly, the induction of DNA damage or

replication stress during nutrient depletion is not inconsistent with

our failure to detect a role for Mec1-dependent checkpoint

responses in the survival of nutrient-depleted cells. Mec1-

dependent pathways are inactivated by superoxide anions [62],

which accumulate during nutrient depletion [63]. Since Mec1-

dependent pathways also contribute to the stability of stalled

replication forks [64], inactivation of these pathways by superoxide

anions at later stages of nutrient depletion might contribute to

DNA damage in nutrient-depleted cells undergoing replication

stress.

Although replication stress-induced recombination in the rDNA

locus is a major determinant of budding yeast replicative lifespan

([13] and references therein), replication stress has not been

considered a factor in chronological aging in this organism. Most

likely this is because during nutrient depletion, most cells appear to

arrest without buds and with a G1 content of DNA, which suggests

they are not in S phase. It is difficult to detect minor increases in

DNA content by flow cytometry, however, and small buds are

difficult to detect microscopically. Furthermore, the activation of

some, but not all, nutrient signaling pathways may lead to

uncoupling of events required for budding from progression past

Start. Consequently, although DNA content and bud counts

provide useful relative measures of the number of cells that arrest

in G1 during nutrient depletion, they likely overestimate the

number of G1 cells and underestimate the number of cells that

arrest growth while in S phase.

This view is consistent with a recent report that nutrient

depletion leads to the accumulation of a substantial fraction of less

dense cells, which includes all the cells that remain budded during

nutrient depletion plus many cells that do not appear to have buds

[65]. These less-dense cells differentially express a number of genes

encoding proteins required for the resolution of stalled DNA

replication forks, suggesting they are under replication stress.

These cells also more frequently undergo apoptosis compared to

denser cells that do not express these genes. These phenotypes are

consistent with our proposed role for nutrient depletion-induced

replication stress in chronological aging.

How does nutrient depletion cause replication

stress in S phase cells?
Several factors likely contribute to replication stress in cells that

arrest growth in S phase during nutrient depletion. In addition to

the potential depletion from medium of substrates required for

synthesis of dNTPs, these factors include downregulation of genes

encoding proteins required for DNA replication [44,45,46].

Interestingly, ectopic expression of the constitutively activating
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RAS2val19 mutation induces transcription of CLN3, but not

transcription of RNR1 and other DNA replication-related genes

([66], including supplementary information). Consequently, dur-

ing nutrient depletion, cells harboring the RAS2val19 mutation may

enter S phase with a reduced capacity to replicate DNA. Similar

uncoordinated entry into S phase when only a subset of growth-

regulatory pathways are active could explain an earlier report of

growth-promoting, but lethal apoptosis-inducing effects of glucose

added to stationary phase cultures in the absence of other nutrients

[67].

Aberrant initiation of DNA replication is another factor that

likely contributes to replication stress in nutrient-depleted cells.

Deregulated Cln expression inhibits the assembly of pre-replicative

complexes (pre-RCs) required for initiation of DNA replication at

replication origins [68]. Inhibition of pre-RC assembly induces

genome instability [68,69], as well as DNA damage [69] and

apoptosis [28].

Caloric restriction and chronological lifespan
In cycling budding yeast cells, the effects of caloric restriction on

replicative lifespan are related to reduced signaling through PKA,

TOR and Sch9-dependent pathways, because caloric restriction

does not extend replicative lifespan further when these pathways

have been inactivated [70,71]. Our findings are consistent with the

possibility that caloric restriction during nutrient depletion extends

chronological lifespan via a similar reduction in signaling through

these pathways, which leads to a tighter nutrient depletion-

induced G1 arrest and reduced replication stress (Fig. 2). This

tighter G1 arrest may be related to the accelerated downregulation

of CLN3 mRNA when glucose concentration is reduced [37].

Both caloric restriction and deletion of CLN3 suppress the

shorter chronological lifespan of nutrient-depleted polyploid

compared to haploid cells in parallel with a more efficient G1

arrest [72]. This is also consistent with the possibility that caloric

restriction can extend chronological lifespan by downregulating

Cln3. Although deletion of CLN3 extended the chronological

lifespan of polyploid cells, it did not extend the chronological

lifespan of haploid cells in this prior study or in our experiments

(not shown). This might reflect the existence of redundant, Cln3-

independent pathways that contribute to G1 arrest during nutrient

depletion, some of which may be inoperative in polyploid cells.

Whatever the explanation, our experiments clearly suggest that the

increased chronological lifespan of cln3D or calorie-restricted

polyploid cells reported in this earlier study was related to

attenuation of replication stress.

Replication stress and hormesis effects on aging
Many of the genes induced by nutrient depletion are also induced

by other stresses, including oxidative and osmotic stress, heat and

DNA damage [45]. Specific stresses often confer cross-resistance to

other stresses, for reasons that are not clear. Cross-resistance to

multiple stresses and the lifespan-extending effects associated with

mild exposures to these stresses is the basis for the ‘‘hormesis

hypothesis’’ of aging [33]. This hypothesis posits a general stress

response induced by caloric restriction and other stresses that

protects against a variety of different stresses as an important

component of longevity in all eukaryotes. The nature of this

putative general stress response is not clear.

In addition to nutrient depletion and osmotic stress, other

stresses including oxidative stress [73], heat [74], and DNA

damage [75]—all of which also have been implicated in hormesis

effects that extend lifespan—inhibit growth by inducing a G1

arrest in budding yeast. The CLN transcriptional repressor Xbp1 is

induced by all these stresses, in addition to its induction by nutrient

depletion and osmotic stress [59]. The growth-inhibitory effects of

stresses and the hormesis-like lifespan-extending effects of osmotic

stress in concert with a tighter G1 arrest reported here (Fig. 2)

clearly point to the existence of a general response to environ-

mental stresses that enhances longevity by inhibiting growth, and

thus replication stress and age-dependent genome instability.

Inhibition of replication stress under these conditions likely

contributes to cross-resistance to various stresses that underlies

the hormesis hypothesis. Similar to genes induced by nutrient

depletion, genes induced by other stresses are nonrandomly

distributed in the budding yeast genome and are more likely to be

repressed by chromatin structure in the absence of stress. This is

consistent with the possibility that hormesis effects of stresses on

lifespan in budding yeast are coordinately regulated by chromatin

structure within clusters of stress-related genes [76].

Replication stress and aging in higher eukaryotes
In addition to their effects on replicative and chronological lifespan

in budding yeast, caloric restriction, low levels of stress and

mutations that inactivate growth signaling pathways extend the

lifespans of many higher eukaryotes as well [1]. We propose that,

similar to budding yeast, these factors promote longevity in all

eukaryotes by inhibiting replication stress associated with un-

coordinated entry into or exit from S phase (Fig. 6B). This may be

particularly important during differentiation leading to a quiescent,

non-dividing state, which requires downregulation of the Cln3

homologue cyclin D1. Consistent with this model, in mice, caloric

restriction extends lifespan in concert with a reduction in the

number of cells in S phase in a variety of tissues containing

differentiating cells, including intestinal epithelium, spleen, thymus

and mesenteric lymph nodes [77]. Other studies have also

detected a relationship between caloric restriction and reduced

cellular proliferation in higher eukaryotes (reviewed in [78]).

In fact, accumulating evidence points to replication stress

downstream of aberrant growth signaling as a determinant of

lifespan in higher eukaryotes, including humans. This includes the

recent discovery that replication stress-induced DNA damage and

apoptosis are present in preneoplastic human cells that eventually

give rise to various cancers, for which age is a dominant risk factor

[79,80]. Replication stress-induced DNA damage and apoptosis at

early stages of neoplasia likely arise downstream of the mutational

activation of genes that promote growth, similar to the constitutive

activation of RAS2 by the RAS2val19 mutation in budding yeast. For

example, it was recently shown that sustained mitogenic signaling

induced by ectopic expression of activated RAS in quiescent rat

fibroblasts stimulates G1 cyclin-dependent kinase activity, entry

into S phase, genome instability and apoptosis [81,82], all of which

correspond to phenotypes detected in the yeast experiments

reported here. Similar to the RAS2val19 mutation, which induces

CLN3 but not genes encoding proteins required for efficient DNA

replication [66], the oncogenic activation of Ras and other

proteins in mammalian cells may induce a subset of the complex,

interacting growth-regulatory pathways normally required for

progression into and through S phase. Induction of a subset of

these pathways in the absence of the parallel induction of proteins

required for efficient DNA replication would create replication

stress (Fig. 6B). Depending on the type of cell and the status of cell

cycle checkpoint pathways, DNA damage produced by replication

stress could induce a number of aging phenotypes. In addition to

neoplastic transformation, these include senescence of stem cells or

their proliferating progeny and cell death.

Age is also a dominant risk factor for many neurodegenerative

diseases [83]. Apoptosis associated with entry into S phase and
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inefficient DNA replication in normally quiescent postmitotic

neurons has been implicated in the etiology of a number of these

diseases as well ([84] and references therein). In fact, a causal role

for the activation of TOR signaling pathways in neurodegenera-

tion was recently demonstrated in a Drosophila model of neuro-

degenerative disease [84]. Although this role can be explained by

other models [84], our findings suggest replication stress as

a potential explanation.

In summary, the findings reported here point to DNA

replication stress downstream of deregulated nutrient signaling

as an important determinant of chronological aging in budding

yeast. They suggest that caloric restriction and other exper-

imental manipulations that inhibit growth—including mild

stresses—can extend chronological lifespan by decreasing the

frequency with which cells arrest growth in S phase during

nutrient depletion. This reduces replication stress, as well as age-

dependent DNA damage and genome instability caused by

replication stress. Accumulating evidence suggests that replica-

tion stress induced by aberrant growth regulation is an

important factor in age-related pathologies in higher eukaryotes,

including humans. Although the destabilizing effect of replication

stress in the rDNA locus associated with replicative aging in

budding yeast has not been detected in other eukaryotes,

a universal role for replication stress in aging is suggested by the

fact that that in many eukaryotic organisms, mutations in RecQ

helicases required for accurate and efficient DNA replication

promote genome instability and premature aging (reviewed in

[7,85,86]. Our findings suggest that some of the genome

instability associated with aging is related to DNA damage

caused by replication stress instead of oxidative stress. Deregu-

lated growth signaling and inappropriate entry into, or exit from,

the cell cycle in nutrient-starved budding yeast cells provide

a new paradigm for investigating how oncogenic activation of

growth-regulatory pathways and the induction of replication

stress in mammalian cells contribute to cancer and other age-

related diseases.

MATERIALS AND METHODS

Yeast strains and plasmids
Strain backgrounds employed in this study were DBY746 (MATa

leu2-3, 112, his3D1 trp1-289, ura3-52, GAL+); W303-1A (MATa,

ade2-1, ura3-1, his3-11, trp1-1, leu2-3, can1-100), JC482 (MATa,

leu2, ura3, his4) and BY4741 (MATa, his3D1, leu2D0, met15D0,

ura3D0). Mutant strains employed were PF102 (DBY746

sch9::URA3); MWY420 (DBY746 rim15::TRP1); rim15D sch9D
(DBY746 sch9::URA3 rim15::LEU2); RAS2val19 (JC482 RAS2-
val19); Y604 (W303 mec1-21); Y301 (W303 rad53-21); HKY845

(W303 rad9::HIS3). All strains in the DBY746 background were

from V. Longo (USC) except MWY420, which was constructed

for this study. Strains in the JC482 background were from M.

Breitenbach (University of Salzburg). Y604 and Y301 were from

S. Elledge (Harvard). HKY845 was from H. Klein (NYU). The

plasmid Yep-RNR1 was from E. Vallen, Swarthmore College.

Yep 24 (vector control for YEp24-RNR1) was purchased from

ATCC. pCCul expressing CLN3 from the CUP1 promoter and its

control vector pJ16 were from W. Heideman (U. of Wisconsin).

pSR17 containing rim15::TRP employed for construction of

MWY420 and PMF100 containing ras2val19 (employed in the

construction of MWY421) were from V. Longo (USC). To

construct MWY420, rim15D::TRP1 was excised as a Xho1-Sal1

fragment from pSR117 and inserted in DBY746 by trans-

formation and selection for TRP+ growth. To construct

MWY421, RAS2val19 :: URA3 was excised as an EcoR1-HindIII

fragment from pMF100 and inserted into W303 by transformation

and selection for URA+ growth.

Cell culture conditions, flow cytometry

measurements of DNA content, bud measurements
To assess chronological lifespan, cells from exponentially pro-

liferating cultures were inoculated into 50 mls. SC or YPD

medium containing 2% glucose [87] in 250 ml. flasks at an initial

density of 56105/ml. and continuously cultured at 30uC with

rotary shaking for indicated times. To assess the effects of osmotic

stress, sorbitol was added to these cultures to a final concentration

of 1M. For experiments requiring ectopic expression of CLN3, SC

medium was pre-depleted by growth of sch9D cells for 7 days

followed by pelleting of cells and filter sterilization of medium.

Exponential cultures of DBY746 cells transformed with pCLN3 or

a vector control plasmid were seeded into standard SC medium.

Beginning 24 hours later, cells were pelleted from medium and

resuspended in pre-depleted medium every other day throughout

the course of experiments.

To assess the effects of caloric restriction on chronological

lifespan, an equal number of cells from exponentially proliferating

cultures were pelleted by centrifugation, washed twice with fresh

medium containing 0.5% glucose and then seeded into this latter

medium or into fresh medium containing 2% glucose. Caloric

restriction experiments employed a slightly different formulation of

SC medium [88] compared to the formulation employed in other

experiments [87]. However, repetition of these experiments in the

SC formulation employed in other experiments confirmed that the

effects of caloric restriction were the same in both formulations

(not shown).

In all chronological lifespan measurements, aliquots removed

from cultures at the indicated times were plated in triplicate on

YPD agar to determine survival (as colony forming units). To

determine budding indices and DNA content, cells in aliquots

taken at each time point were pelleted by centrifugation and

resuspended in water (for determining budding index) or 70%

ethanol (for flow cytometry). The budding status of at least 500

cells from each aliquot was visually determined using a Nikon

Eclipse E600 microscope with a 406phase contrast objective. Just

before examining cells, cell clumps were dissociated by sonication

using a Model 60 Sonic Dismembrator sonicator (Fisher Scientific,

Hampton, NH) for 10 seconds at power setting 5. To measure DNA

content by flow cytometry, cells suspended in 70% ethanol were

pelleted by centrifugation, washed with 50 mM sodium citrate

(pH 7.5) and resuspended in 0.5 ml of this same buffer containing

0.5 mg/ml RNAse. After overnight incubation at 37uC, an

additional 0.5 ml. of sodium citrate buffer containing 2 mM

SYTOX Green (Invitrogen, Carlsbad, CA) was added to each

sample. Stained cells were briefly sonicated as described above and

DNA content was measured using a FacsCaliber flow cytometer (BD

Biosciences, Woburn, MA) at a maximum flow rate of 500 cells/s.

Flow cytometry data were processed using CellQuest (BD

Biosciences) and Flojo (Tree Star Inc., Ashland, OR) software. Y

axis scales indicating number of cells were maintained constant in all

flow cytometry profiles for individual experiments.

Measurements of mutation frequency
Mutation frequency was assessed by determining frequency of

resistance to the toxic amino-acid analogue canavanine conferred

by mutations in the CAN1 gene. An appropriate number of cells

were plated on selective medium containing 60 mg/l L-canava-

nine instead of arginine and canavanine-resistant colonies were

counted 3–5 days later.

Replication Stress and Aging

PLoS ONE | www.plosone.org 13 August 2007 | Issue 8 | e748



Cell Volume Measurements
Analysis of cell volume was performed using the Z2 Coulter

Particle Count and Size Analyzer. DBY746 and BY4741 strains

were grown for 2 days at 30uC in 5 ml of either SC+2% glucose or

SC+0.5% glucose to saturation (performed in triplicate for each

condition). Cells from these cultures were inoculated into fresh media

to an OD600 of 0.1 in 10 ml of the same media. 1.0 OD of cells was

collected at 6 hours, 24 hours, 72 hours, and 168 hours. The cells

were spun down and resuspended in 100 ml sterile ddH2O and

immediately analyzed. The 100 ml volume was added to 10 ml of

azide-free H2O (Fisher Scientific) and analyzed on the Coulter

counter (dilution factor = 100; range: 10 to 250 fL (femto-liters)).

Prior to measurements, the cells were sonicated for ,10s to break up

any aggregates (duty cycle = 30%; continuous pulse). The mean cell

volume in fL was manually calculated from the peak distribution.

Measurements of mitochondrial DNA
Cells were isolated at indicated times and after fixation in 70%

ethanol, DNA was stained with DAPI as described previously [89]

to detect nuclear and cytoplasmic DNA. Photomicrographs of

stained cells were obtained at 4006 magnification with a Zeiss

Axioskop microscope equipped with an Optronics Magnafire

CCD camera. To determine relative amounts of mitochondrial

compared to nuclear DNA, total yeast DNA was digested with the

restriction enzyme XmnI, which produces a 6.3 kb fragment of

nuclear DNA containing the ACT1 gene and a 10.2 kb fragment

of mitochondrial DNA containing sequences encoding 15S

ribosomal RNA. XmnI-digested DNA was separated on 1%

agarose gels and transferred to Duralon hybridization membranes.

Membranes were probed with 32Phosphate-labeled DNA pro-

duced by PCR amplification of sequences within each of these

DNA fragments. Radioactive signals from membranes were

captured using a Storm PhosphoImager (GE Healthcare).

SUPPORTING INFORMATION

Figure S1 Chronological lifespan of sch9D compared to wild-

type cells. Weinberger et al.

Found at: doi:10.1371/journal.pone.0000748.s001 (0.05 MB

PDF)

Figure S2 Effect of osmotic stress.

Found at: doi:10.1371/journal.pone.0000748.s002 (0.13 MB

PDF)

Figure S3 In the absence of the ribonucleotide reductase

inhibitor Sml1, deletion of MEC1 does not alter the efficiency of

G1 arrest during nutrient depletion. A. FACS measurements of

DNA content in wild type and mec1D smlD cells at various times

of nutrient depletion (indicated at left of FACS profiles). B.

Budding index of these cells.

Found at: doi:10.1371/journal.pone.0000748.s003 (0.18 MB

PDF)

Figure S4 Ectopic expression of CLN3 paradoxically increases

viability compared to vector-transformed control cells at the same

time that it increases apoptotic degradation of DNA. A. Viability

of vector-transformed cells (‘‘VECTOR’’) and cells ectopically

expressing CLN3 (‘‘pCLN’’) during nutrient depletion. B. DNA

content of these cells. Note that after 5 days of nutrient depletion,

more cells ectopically expressing CLN3 are viable compared to

vector-transformed cells (panel A), but a larger fraction of these

cells exhibit less than a G1 content of DNA.

Found at: doi:10.1371/journal.pone.0000748.s004 (0.17 MB

PDF)

Figure S5 sch9D induces a tighter G1 arrest and suppresses

apoptosis in cells cultured in pre-depleted medium, similar to the

effects of culturing these cells in medium that was not pre-depleted

(compare to Fig. 1A). Weinberger et al.

Found at: doi:10.1371/journal.pone.0000748.s005 (0.29 MB

PDF)
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