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Comparative sequence analyses, including such fundamental bioinformatics techniques as similarity searching, sequence
alignment and phylogenetic inference, have become a mainstay for researchers studying type 1 Human Immunodeficiency
Virus (HIV-1) genome structure and evolution. Implicit in comparative analyses is an underlying model of evolution, and the
chosen model can significantly affect the results. In general, evolutionary models describe the probabilities of replacing one
amino acid character with another over a period of time. Most widely used evolutionary models for protein sequences have
been derived from curated alignments of hundreds of proteins, usually based on mammalian genomes. It is unclear to what
extent these empirical models are generalizable to a very different organism, such as HIV-1–the most extensively sequenced
organism in existence. We developed a maximum likelihood model fitting procedure to a collection of HIV-1 alignments
sampled from different viral genes, and inferred two empirical substitution models, suitable for describing between-and
within-host evolution. Our procedure pools the information from multiple sequence alignments, and provided software
implementation can be run efficiently in parallel on a computer cluster. We describe how the inferred substitution models can
be used to generate scoring matrices suitable for alignment and similarity searches. Our models had a consistently superior fit
relative to the best existing models and to parameter-rich data-driven models when benchmarked on independent HIV-1
alignments, demonstrating evolutionary biases in amino-acid substitution that are unique to HIV, and that are not captured by
the existing models. The scoring matrices derived from the models showed a marked difference from common amino-acid
scoring matrices. The use of an appropriate evolutionary model recovered a known viral transmission history, whereas a poorly
chosen model introduced phylogenetic error. We argue that our model derivation procedure is immediately applicable to
other organisms with extensive sequence data available, such as Hepatitis C and Influenza A viruses.
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INTRODUCTION
Nearly every computational and statistical method used for

comparative gene sequence analysis employ a stochastic model

for estimating rates of evolutionary change, either explicitly or

implicitly. A priori knowledge about physical or chemical properties

of nucleotide or amino acid residues can be used to define

mechanistic models of substitutions. For example, the popular

HKY85 [1] nucleotide substitution model estimates two separate

substitution rates: one for transitions-substitutions between chemi-

cally similar purines (adenine and cytosine) or pyrimidines

(guanine and thymine)-and one for transversions (all other

substitutions). Universal evolutionary constraints form another

basis for mechanistic model derivation. Codon models of Muse-

Gaut [2] and Goldman-Yang [3] distinguished amino-acid

altering (non-synonymous) and silent (synonymous) substitutions

and have formed the basis of a popular and successful suite of

methods for the analysis of selective pressures on coding

sequences.

Existing literature on probabilistic models for protein sequences

is extensive and spans several decades. One of the first of such

models was the PAM (point accepted mutation) matrix [4]. A

PAM matrix is derived from the inferred substitutions along

a phylogenetic tree relating homologous sequences, by estimating

the probability that any given amino acid residue in a protein will

be replaced by any other residue after a pre-specified evolutionary

interval. Other models based on observed sequence variability in

large alignments of homologous protein sequences, such as the

BLOSUM family [5], have proven popular and successful. Karlin

and Ghandour [6] and George, Barker, and Hunt [7] proposed

methods of weighting differences based on chemical, functional,

charge and structural properties of amino acids and computing

replacement probabilities based on the similarity of the involved

residues. Doolittle’s group proposed substitution matrices based on

amino acid structural similarities combined with the ease of

genetic interchange [8], while Stanfel added information pertain-

ing to biochemical properties to inform the probability of amino

acid interchangeability [9]. More recently, a generalized index of

exchangeability based on a meta-analysis of empirical data has

been suggested as a means of estimating the tolerability of

particular amino acid exchanges [10]. A similar method based on

pairwise amino-acid differences between homologous genes led to
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the derivation of the ambitiously named Universal Evolutionary

Index [11]. A more statistically robust method for model inference

incorporates phylogenetic likelihood [12], and infers substitution

rates from a seed alignment, e.g., from mitochondrial sequences

[13] or a sample from several protein families [14].

‘Generalist’ models that describe substitution patterns amal-

gamated from multiple genes and organisms may describe

a particular organism or gene poorly. To date, there have been

only a few ‘specialist’ models targeted to a particular gene [15], or

genomic region [13]. In this manuscript we lay out a maximum

likelihood framework and an accessible software implementation

for estimating an organism/gene specific evolutionary model and

alignment scoring matrix, describe common techniques for

validating the model and infer a model from a large collection

of HIV-1 sequences.

Reliable estimation of substitution rates from short sequences

(e.g. 10Kb viral genomes) requires a substantial degree of sequence

diversity, which may require millions of years to accumulate in

vertebrates or plants. However, rapidly evolving retroviruses, with

mutation rates of up to ,106 greater than that of vertebrates

[16,17], accumulate similar levels of divergence in a matter of

years and are abundantly represented in public databases. Dimmic

et al. [15] used a maximum likelihood procedure to estimate an

amino acid substitution rate matrix for specific application to

reverse transcriptase, a key retroviral polymerase protein that

transcribes viral RNA into DNA suitable for integration into the

host genome. However, we found that this model fitted HIV-1

data poorly, probably because HIV adopts organism-specific

substitution biases, different from other retroviruses.

To improve the predictive accuracy of substitution matrices for

HIV protein evolution, we estimated two stochastic models from

multiple representative HIV-1 sequence alignments using maxi-

mum likelihood. The first model was derived from HIV data

sampled from within individual patients (within individual, HIV

within, HIV-Wm). The second model was estimated from

alignments where every sequence represented a population

consensus from a patient (between individual, HIV between,

HIV-Bm). At first glance, one might question the need for two

separate models, since within-patient evolution could simply be

a shorter timescale version of the between-patient evolution. One

argument against this intuitive deduction is that most of the

substitutions generated in a given individual are selected against

during or following transmission and therefore do not persist at the

level of host populations [18–20], resulting in potentially

discordant substitution patterns. For example, substitutions which

enable the virus to escape the cellular immune response in a given

host can be rapidly generated and fixed [21]. However, many of

these substitutions carry a fitness cost in terms of lower replicative

capacity and are not likely to persist upon transmission to an

individual whose immune system does not target the same genetic

region of the virus, obviating the need for a fitness-lowering

substitution there [22]. Indeed, if there were no added benefit in

considering two models, one would see similar fits to both within

and between-host viral samples with both models. Our findings

strongly argue against this scenario (see ‘Results’), showing that

substitution patterns shaped by within-and between-host selective

regimes are detectably different.

METHODS

Preparation of reference sequence alignments
The HIV-Wm model was generated using aligned sequences

derived from 48 patients (encompassing portions of the env gene

from 32 patients, from the pro gene from 8, and from the pol gene

from 7 patients), which contained a total of 6,328 pairwise amino

acid differences. For the HIV-Bm model we used 8 data sets,

described in Table 1, with a total of 7,189 amino acid differences.

This number is far greater than the approximately 1,700

differences that were incorporated into the commonly used

Dayhoff PAM matrix and nearly twice the number in the

reference alignment used for the estimation of rtREV [15]

Estimation of the substitution model
We adopted a maximum likelihood phylogenetic approach based

on the procedure of Whelan and Goldman [14] to estimate the

190 evolutionary rates that define the general time reversible

(REV/GTR) model of amino-acid substitution jointly from a set of

sequence alignments. The substitution process is described by the

rate matrix Q, whose entry qij = rijpj (for i,j = 1…20) defines the

instantaneous rate of replacing residue i with residue j, i.e. the

probability of substituting i with j over an infinitesimally small time

interval Dt is approximately qijDt. Residues are numbered based on

the alphabetical ordering of the standard IUPAC nomenclature.

pj(j = 1…20) denotes the stationary frequency of residue j,

estimated by the proportion of j, and rij is the rate parameter.

Making the standard assumption of time reversibility, we set rij = rji.

In order to ensure that Q defines a proper Markov rate matrix, the

standard constraint is applied to the diagonal elements:

qii~{
X

j=i

qij .

The (i,j) entry of the matrix exponential T(t) = exp(Qt) defines

the probability of replacing residue i with residue j in time t$0.

Because the likelihood function depends only on the products qijt,

one of the 190 rate parameters rij is not identifiable. Following

convention, we achieve identifiably by scaling the rate matrix so

that the expected number of substitutions per amino-acid site per

unit time, defined as b~{
X

i

piqii, is one.

The fitting algorithm proceeds as follows:

1. Given N codon alignments, we first reconstructed a neighbor

joining tree [23] using the Tamura-Nei nucleotide distance

metric [24] separately for each alignment. We decided

against a more thorough method for topology reconstruction,

partly for computational expediency and partly because rate

estimation is thought to be fairly robust to small phylogenetic

Table 1. Data sets used for the estimation of the between-host
evolutionary process in HIV-1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gene Sites
Sequences (One per
patient) Length

Mean branch Tree

gag 500 39 0.02 1.69

env gp120 463 107 0.047 9.87

env gp41 364 134 0.053 14.17

nef 202 117 0.034 7.88

pol 1003 43 0.018 1.52

rev exon 1 25 81 0.041 6.50

rev exon 2 90 171 0.032 11.01

tat 71 76 0.029 4.37

vpr 96 133 0.034 9.11

vpu 78 124 0.047 11.52

doi:10.1371/journal.pone.0000503.t001..
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error. In addition, HIV-1 sequences often undergo re-

combination, and alignments with mosaic sequences cannot

be properly described with a single phylogeny. To address

this issue we carried out a screen for evidence of conflicting

phylogenetic signal [25] and did not find strong evidence for

phylogenetic discordance.

2. We estimated the equilibrium distribution of amino acid

residues jointly from the N alignments and held it constant

during the subsequent optimization procedure.

3. We used the HyPhy package [26] to perform a joint

numerical optimization of branch lengths for each of the N

alignments and the rates in the Q matrix. A flexible 5-bin

b2c distribution [27] of rates across sites was included to

account for the variation of substitution rates across sites.

The three parameters of the distribution were shared by all

N alignments. The numerical optimization algorithm in

HyPhy can distribute multiple-dataset optimization across

multiple nodes of a computer cluster, resulting in substantial

optimization time reductions.

4. Because some of the 190 possible substitutions are rare, it is

possible that the inference procedure estimates some of the rij

rates to be zero. However, fixing those estimates at zero for

subsequent analyses is not biologically realistic, since it

amounts to forcing some of the residue substitutions to

always go through an intermediate state. For each rate rij,

whose maximum likelihood estimate was zero, we imputed

the value of the rate using the following heuristic. If Si is the

total number of protein sites in alignment i and Ti is the

total length of its fitted phylogenetic tree, we set

rij~rji~
1

(pizzpj)
P
i~1

(1zSi)Ti

. This relation simply states

that we would expect one i«j substitution over all

alignments given one more site per alignment.

Performance on training data
We fitted newly estimated HIV models and three previously

published models-JTT [28], WAG [14] and rtREV [15],

estimating stationary frequencies from the data–to each of the

training alignments. A comparison of model fits via standard

techniques of likelihood ratio testing or AIC is complicated by the

fact that because HIV models are estimated from the same sample

that is being used to compare their fits to other models, it is

difficult to correctly enumerate the effective number of rate

parameters (and degrees of freedom) in HIV models when applied

to a single training set. For a given training set, this number lies

between 0 and 189 and depends on the contribution of the

individual set to the joint rate matrix. We tabulated log-likelihood

scores for each of the training data sets for reference purposes

(Tables S1 and S2) and computed the number of additional

degrees of freedom that an HIV model can support (at the 0.05

level) and still be preferred to each of the empirical models.

Model validation
To ensure that our substitution models reflect true evolutionary

patterns found in HIV-1 and are not fitting the noise in our

training sets, we collected a number of independent HIV-1

sequence samples that were not used in model development across

several genes, representing both within and between host

sequences. 47 within patient samples (35 envelope glycoprotein

(gp120) subtype B, 10 gp120 subtype C and 3 polymerase (pol)

subtype B) and 11 between patient samples (representing gag, pol,

nef, env, vif, vpr, tat and rev genes), covering both within- and

between-subtype levels of diversity were collected. We note that if

validation and training samples are not reciprocally monophyletic,

shared evolution along internal tree branches may bias validation

results. Within patient samples of HIV (assuming a single infection

event/patient) drawn from different hosts are reciprocally mono-

phyletic by definition, hence each alignment in the validation set

forms an independent sample. All of our between-patient

validation samples represent only non-B subtype non-recombinant

viruses, and hence are reciprocally monophyletic with the training

samples by definition of an HIV clade. We then fitted 19 models of

protein evolution, including HIV-specific models, to each sample

and ranked their performance using a small sample Akaike

Information Criterion (c-AIC) score [29]–a robust measure of

goodness of fit. We included six previously published empirical

matrices: Dayhoff [4], JTT [28], WAG [14], rtREV [15],

mtMAM [13] and mtREV 24 [30]. Each empirical model was

examined both with the original model character frequency

distribution (derived from the training set) and with frequencies

gathered from the test data (conventionally referred to as the+F

version of the model). We also fitted to each sample the 189

parameter reversible model (REV), and the restriction thereof

(REV-1 model), which estimates separate rates between those

amino-acids pairs that are one nucleotide substitution apart (75

pairs for the universal genetic code) and one shared rate for all

multiple-nucleotide substitutions.

Additionally, we applied the Shimodaira-Hasegawa test to

several example alignments to determine whether or not the

improvement in goodness-of-fit was influenced by sampling

variability. For example, it could be that most of the improvement

in c-AIC scores is derived from a few ‘outlier’ sites (scenario

sensitive to stochastic sampling) or that a majority of sites

contribute to the improvement in c-AIC (scenario robust to

stochastic sampling).

Generation of a similarity matrix
Similarity or scoring matrices, such as the BLOSUM [5] family,

assign to a pair of amino acids (a, b) a score that reflects how much

more (or less) likely a homologous pair (a, b) is to occur when

compared to a chance occurrence. The score can be estimated by

s(a,b)~ log
f (ab)zf (ba)

2f (a)f (b)
, where f(a) is the frequency of residue

a in the reference set of aligned sequences, and f(ab) is the

frequency of the pair computed from pairwise comparisons of

homologous sequences in the reference set. The sum of all scores

over alignment columns for a query pair of sequences serves as an

approximation of the likelihood ratio statistic comparing the model

of independence (null) with the model of homology (alternative).

Given a frequency distribution of amino-acid characters p and

a transition matrix computed at time T(t0) = exp(Qt0), the score

s(a,b)~ log
p(a)Tabzp(b)Tba

2p(a)p(b)
can be derived. The numerator

lists the probability of evolving ‘b’ from ‘a’ or ‘a’ from ‘b’ in time t0,

i.e., the probability of observing the (a,b) or (b,a) pair in two

homologous sequences evolving under Q, while the denominator

shows the probability of observing (a,b) or (b,a) in a pair of random

sequences with residues drawn from the distribution p. The choice

of t0 gives one control over how similar, on average, two sequences

will be, much like the selection of more or less similar reference

alignments gives rise to different BLOSUM and PAM matrices.

Setting t0~
c

{
P

i

piqii

will yield the expected sequence similarity

of (12c6100)%. Scores for aligning a character with a gap (‘-‘) can

be adjusted case by case, or adopted from an existing model, such

as BLOSUM62.

HIV Protein Model
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Implementation
All the analyses reported here were implemented in the HyPhy

software package. HyPhy scripts needed to fit a REV model to

a collection of training alignments and generate similarity scoring

matrices can be downloaded from http://www.hyphy.org/pubs/

HIV-model/. HIV-1 models presented here are available as a part

of the standard distribution of HyPhy (HIVWithin and HIVBetw-

een models). Protein model comparisons can be carried out using

the AAModelComparison.bf standard analysis in HyPhy. This

implementation can also take advantage of a distributed cluster

environment to accelerate rate estimation.

RESULTS

Characterization of inferred rate matrices
We first tabulated substitution rates inferred from the between-

patient training set (HIV-Bm model) and from the within-patient

training set (HIV-Wm model) and generated a graphical repre-

sentation of six popular empirical matrices along with our two

HIV specific matrices (Figure 1). Not surprisingly, most in-

stantaneous substitution rates are low when compared to the

highest rates in the matrix. Much like other empirical matrices, the

HIV models assigned higher rates to those pairs that are separated

by a single nucleotide substitution (see also Figure 2). However,

there was little apparent correlation between higher substitution

rates and preservation of a simple or complex physico-chemical

property. Preservation or alteration of polarity, charge or similarity

class, based on the classification scheme of Stanfel [9], had little

effect on the median substitution rate (Figure 2), although among

those few substitutions which had unusually high rates, more were

conservative.

Model-specific variability along with broad patterns of similarity

are evident among all of the empirical models in Figure 1. To

formally characterize the similarities in the substitution process

across the eight matrices, we computed a neighbor-joining tree on

the Markov processes defined by each matrix using the total

variation metric (TVM) [31]. Briefly, given a specific evolutionary

time scale, TVM computes the distance between the expected

distributions of characters generated under the two evolutionary

models. TVM distances take values in [0,1]. As expected, HIV-
Bm and HIV-Wm models are most similar to each other over

short (0.05 expected substitutions per site), medium (0.25) and long

(1.0) evolutionary scales (Figure 3). In particular, HIV matrices

define substitution patterns that are distinct from all other

empirical models at several evolutionary time-scales. Somewhat

surprisingly, the next closest set of matrices is that derived from

mitochondrial sequences, except for the long evolutionary scale,

when the rtREV model (derived from a viral reverse transcriptase

protein alignment) becomes most similar to the HIV models.

While counterintuitive, this finding seems less unexpected when

one considers how the training sets were chosen for each of the

models. Indeed, the Dayhoff, JTT, WAG and rtREV models were

all trained on sequences that are much more heterogeneous,

gearing them towards long-range evolutionary homologies.

Model validation using independent data sets
To determine whether HIV Within and HIV Between models

reflect evolutionary patterns found in circulating HIV-1 strains,

rather than simply fitting the noise in the training sample, we

tested model fits on samples of HIV-1 sequences not included in

the training set. The results on samples collected from 47 different

patients (the sequences from each patient formed a distinct test

Figure 1. Rate matrices for different substitution models. All matrices are scaled to one expected substitution per unit time per site. Shading of the
cells reflects the respective magnitude of the rate, with darker shades corresponding to increasingly higher rates. Substitutions which involve a single
nucleotide are marked with a circle. The four diagonal blocks represent similarity classes (conservative substitutions) according to the Stanfel scale.
doi:10.1371/journal.pone.0000503.g001
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case) with a median of 32 sequences (range 10–57) and 357 sites

(range 330–473), representing env and pol sequences from subtype

B and subtype C viruses are shown in Tables 2 and 3. In 44/47

cases, the HIV-Wm model with base frequencies estimated from

the sample had the best small sample Akaike Information

Criterion score (c-AIC) score of all 19 models compared. The c-

AIC score of a model is defined as c-AIC = 2(2L+ps/(s2p21)),

where L is the log-likelihood score of the model, p is the number of

estimated model parameters, and s is the number of independent

samples. There are a number of possible ways to estimate the

number of independent samples in the alignment [32] and we

chose to use the number of alignment columns as an estimate of s.

c-AIC performed well in selecting appropriate evolutionary

models on biological and simulated alignments of paired RNA

sequences [33]. In 2/47 cases, the HIV-Wm model with the

frequencies from the training set was the best and in 1/47 cases,

the HIV-Bm model was the best. In fact, the four HIV models

predominantly occupied the four top ranks, suggesting that no

other empirical model adequately represents the evolutionary rates

shaping HIV-1 genomic variation. The REV-1 and JTT (+F)

models were 5th and 6th, respectively. Surprisingly, three models

based on large heterogeneous database samples (JTT, WAG and

mtMAM) outperformed the rtREV model, which was derived

from a viral training dataset. Perhaps more importantly, our

general HIV model estimated across many of the HIV genes

consistently outperformed the rtREV model on sequence samples,

including the HIV-1 reverse transcriptase protein.

The difference in c-AIC scores between two models can be

interpreted as strength of evidence in favor of the model with the

lower score. For instance, the evidence ratio for models A and B,

R(A,B) is defined as R(A,B) = exp[(AICC(B)2AICC(A))/2], and can

be interpreted as the relative probabilities of the two models

Figure 2. Inferred substitution rates. Rates are classified by whether or not a substitution involves single or multiple nucleotide changes, and by how
they affect various properties of the residue being substituted. HIV-Bm model is plotted in the top row and HIV-Wm model-in the bottom row.
doi:10.1371/journal.pone.0000503.g002

Figure 3. Model clustering using the Total Variation Metric at the evolutionary times equivalent to 5%, 25% and 100% sequence divergences.
doi:10.1371/journal.pone.0000503.g003
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generating the data in certain cases [34]. In all 47 cases the

difference in c-AIC between HIV-Wm and the best-fitting

previously described empirical model was sufficiently large

(median 125 points, range 13.3–259.5) to render the latter model

not credible, with R(HIV-Wm,best existing empirical model) .50

for every tested dataset. Furthermore, in 46/47 cases when HIV-
Wm(+F) outperformed HIV-Bm(+F), R(HIV-Wm, HIV-Bm) was

at most 0.011 (c-AIC difference range 9.0–215.3, median 94.4),

confirming that a within-patient model for HIV is sufficiently

different from the between-host model, supporting our argument

for the need to derive these two distinct models. Table 3 provides

a pairwise comparison of model performance by listing the

number of times model A had evidence ratio in excess of 100 when

compared to model B. For instance, HIV-Wm had very strong

evidence ratio support against all competing models in the vast

majority of cases.

The results for 11 between-patient samples (where each sample

contained a single sequence from each host), with a median of 37

sequences (range 22–119) and 442 sites (range 79–953) are shown

in Tables 4 and 5. In 7/11 cases HIV-Bm was the best fitting

model (in all 11 cases it scored in the top 3), REV-1 was best in 4/

11 cases. JTT consistently scored best among the existing

empirical models, but always fit worse than HIV-Bm (e.g., when

it came in second, HIV-Bm was first, see Table 5). In all 11 cases

the difference in c-AIC between HIV-Bm and the best-fitting

previously described empirical model was sufficiently large

(median 38.42 points, range 6.5–345.5) to suggest that previous

empirical models fitted the data poorly, with R(HIV-Bm,best

existing empirical model) .25 for every tested dataset. In addition,

HIV-Bm, consistently outperformed HIV-Wm, corroborating our

original supposition for the need for two distinct models. The

finding that the estimation of 76 rate parameters from the data was

worthwhile in 4/11 cases is not surprising in retrospect. Some of

the datasets we evaluated comprised multiple HIV subtypes with

more variation and divergence than had been included in our

subtype B-only training data. In fact, all 4 cases where REV-1 was

found to be best, the sequences came from the Los Alamos

National Laboratory HIV database subtype reference alignment

spanning all common HIV-1 (clade M) subtypes. Furthermore,

HIV-Bm consistently outperformed all other empirical models.

Sensitivity to stochastic sampling
We focus on a sample data set to investigate whether or not the

improvement in model fit attained by HIV-specific models is

driven by a few strong improvements at ‘outlier’ sites, or by

consistent but smaller improvements at many sites in an

alignment. A formal way to quantify the effect of stochastic

sampling is to perform a Shimodaira-Hasegawa permutation test

on columns of an alignment, compute the difference in log-

likelihood scores of two competing models on each replicate (if

they have the same number of parameters), and test the hypothesis

that the difference is different from zero. We illustrate this on

a sample of 119 pol sequences each sampled from a different host

infected with subtype C HIV-1, with 951 sites each. The likelihood

scores for three models on this alignment are as follows: HIV-Bm

log L = 221653.1, JTT log L = 221825.9, rtREV

logL = 222383.4. Because the models have the same number of

parameters, a better log likelihood leads to a better c-AIC score.

When comparing HIV-Bm to rtREV, we found that HIV-Bm had

higher likelihoods at 580/951 (61%) sites, with the median

improvement of 0.99 (range of 0.002 to 37.9) log-likelihood points

per site, whereas at the sites where rtREV performed better, the

median difference was 0.7 (range 0–31.6). Based on 10,000

permutations, the SH test returned a p-value of ,0.0001 in favor

of HIV-Bm having a better fit. In a comparison HIV-Bm to JTT,

the p-value in favor of HIV-Bm was ,0.018, HIV-Bm fitted

better on 557/951 (58.6%) sites, with the median improvement of

0.54 (0.0009–23.67) on those sites, and of 0.53 (0.00001–22.75) on

those where JTT performed better. The largest improvement in

favor of HIV-Bm occurred at sites where there was significant

polymorphism with 2 or 3 amino-acids estimated to have high

substitution rates in HIV-1. For example, site 311 with base

composition K75R41Q2G1 yielded improvements of over 20 log-

likelihood points with HIV Between, when compared to JTT or

rtREV. Note that HIV-Bm assigned higher rates to K«R than

either JTT or rtREV, accommodating such variability (Figure 1).

Effect of model misspecification on phylogenetic

reconstruction
We consider seven HIV-1 env V3 loop sequences sampled from an

epidemiological cluster with known transmission history and hence

a known phylogenetic tree, used as a study case by [35]. With

seven sequences it is easy to perform an exhaustive search of all

945 unrooted trees and eliminate the influence of search heuristics.

Thus any differences observed would be driven by model

specification. The correct topology for the seven sequences is

inferred by the HIV-Bm model, but not by the Dayhoff model

(Figure 4) for example. We note that better-fitting empirical

models (e.g. JTT or WAG) recover the correct topology, and we

use this example merely to illustrate that a poor or unjustified

model choice may lead to erroneous results.

Effect of model on evolutionary distance estimation
Model-based estimation of sequence divergence and diversity from

sequence samples is a ubiquitous technique in HIV literature [36].

To examine the effect that an evolutionary model can have on the

Table 2. Relative performance of 19 protein models on
a sample of 47 within-patient HIV-1 alignments1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rank/Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

HIV-Wm 44 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HIV-Wm+F 2 43 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HIV-Bm 1 0 18 16 6 3 2 1 0 0 0 0 0 0 0 0 0 0 0

HIV-Bm+F 0 1 20 18 5 1 1 0 1 0 0 0 0 0 0 0 0 0 0

REV-1 step 0 1 3 0 2 2 3 3 5 4 1 7 1 1 3 6 1 4 0

JTT+F 0 0 4 7 22 12 2 0 0 0 0 0 0 0 0 0 0 0 0

JTT 0 0 0 5 9 21 10 1 1 0 0 0 0 0 0 0 0 0 0

WAG+F 0 0 0 0 1 7 22 14 2 1 0 0 0 0 0 0 0 0 0

mtMAM+F 0 0 0 0 1 0 1 2 1 1 2 6 1 4 14 13 1 0 0

rtREV 0 0 0 0 1 0 1 1 0 0 0 2 9 22 10 1 0 0 0

mtREV 24+F 0 0 0 0 0 1 0 6 6 4 8 7 11 4 0 0 0 0 0

WAG 0 0 0 0 0 0 5 13 18 5 3 1 2 0 0 0 0 0 0

Dayhoff+F 0 0 0 0 0 0 0 6 10 23 6 1 0 1 0 0 0 0 0

rtREV+F 0 0 0 0 0 0 0 0 2 4 14 14 12 1 0 0 0 0 0

Dayhoff 0 0 0 0 0 0 0 0 1 5 12 9 10 10 0 0 0 0 0

Equal Input 0 0 0 0 0 0 0 0 0 0 1 0 1 4 19 17 4 1 0

mtREV 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 37 2 0

mtMAM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 39 3

REV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 44

1Based on small sample Akaike Information Criterion
doi:10.1371/journal.pone.0000503.t002..
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estimates of evolutionary distances between protein sequences we

fitted four empirical models to 11 between-patient HIV alignments

(Table S3). While median pairwise estimates (i.e. the total tree

length) was not dramatically affected by the model choice (up to

5% relative error), for a particular pair of sequences, the estimates

could vary by as much as 630%.

HIV similarity matrices
We compared our scoring matrices with the typically used

BLOSUM62 scoring matrix with ours scaled to the same level of

divergence (62% expected sequence identity). HIV matrices penalize

(by assigning large magnitude negative scores) most kinds of

substitutions more heavily than the BLOSUM62, perhaps represent-

ing the fact that long stretches of HIV-1 genomes are quite conserved

(e.g. integrase). Figure 5 demonstrates the point. The BLOSUM62

matrix is relatively flat with many non-identities penalized relatively

lightly and diagonal elements (identities) rewarded moderately. HIV

matrices reward identities with higher scores than BLOSUM62 and

tend to heavily penalize most non-identities.

DISCUSSION
We constructed two empirical HIV-1 subtype B amino acid

substitution models to better describe patterns of HIV evolution,

one based on among-patient sequences (HIV-Bm), and the other

based on within-patient sequences (HIV-Wm). Our implementa-

tion is straightforward and relies on well-regarded methods of

maximum likelihood phylogenetic inference. Indeed, a researcher

can build an empirical amino acid model for any taxon or clade of

choice assuming there is sufficient sequence data to estimate most

of the rates reliably. In a direct comparison between the two HIV

models, we find them to be similar, yet in our cross validation

study we find that the HIV-Wm fits significantly better to within-

patient data than the HIV-Bm models and vice versa. But most

importantly, our HIV specific models fit dramatically better than

any commonly used amino acid models, and nearly always better

than parameter rich reversible models which estimate rates

directly from the data set being tested. This finding suggests that

empirical HIV models are generalizable to independent samples of

HIV and can be recommended as the default matrices for

comparative HIV analyses. Interestingly, the JTT model provided

the best fit to our samples of HIV data among existing empirical

models, which is in direct conflict with the observations made by

Dimmic et al. [15].

A possible component of poor fit shown by existing empirical

matrices on HIV sequences is the assumption that the sequences

being compared have the same average amino acid composition as

that used in producing the model. Because HIV sequences almost

certainly do not have the same amino acid frequencies as those

built into prior empirical matrices, the inclusion of HIV specific

residue frequencies can be expected to improve the models.

However, this is not the sole determinant of better model fits,

because allowing for HIV-specific residue composition in existing

empirical models (+F) failed to match the improvement in fit

garnered by the use of HIV-specific substitution rates.

The lack of strong correlation between substitution rate and

simple amino acid properties may be explained by the fact that

because these models average rates over sites in different genes,

which are subject to varying functional constraints, no single

property can be expected to explain tremendous local variation

well. This is true of other empirical models as well, as evidenced by

the large number of shaded (high rate) pairs outside diagonal

boxes, which reflect radical substitutions according to the Stanfel

scale (Figure 1).

HIV specific models will improve the accuracy in measurements

of evolutionary distance and phylogenetic inference on HIV

sequences. For example, our models identify the correct phylogeny

in a known transmission chain [35], whereas a poorly chosen

model does not. The HIV-specific protein models of evolution

could be used to tailor drug therapies against strains of viruses that

maximize the protein distance that the virus would have to evolve

to develop drug resistance. The use of more accurate evolutionary

models can be used to improve the design of candidate vaccine

strains, particularly those based on computationally derived

sequences (e.g. Center-Of-Tree (COT) [37]). The models also

have applications for comparing amino acid frequencies and

patterns between sequence sets, and for generating HIV-like

sequence data sets in computer simulation studies. In this manuscript

we focused on organism-wide substitution patterns and our

validation process convincingly showed that HIV models out-

performed existing empirical models on a variety of individual gene

alignments. Further possible refinements could include gene specific

matrices for commonly sequenced viral genes such as pol or env.

The HIV-specific scoring matrices provided here should

improve HIV sequence similarity searching (e.g. BLAST) and

alignment (e.g. CLUSTALW). All sequence analyses that produce

an alignment use a scoring matrix (e.g. BLOSUM) to weight the

probability of an observed substitution. Sometimes these matrices

are uninformative and treat all substitutions equally likely, but

nearly all protein sequence based procedures use a matrix that

ranks certain types of substitutions as more tolerable than others.

We developed an efficient computational tool to facilitate the

estimation of substitution matrices from training alignments and

subsequent generation of scoring matrices at the desired level of

evolutionary distance. We believe that with readily accessible

modern computing power, it is now feasible to estimate and use

organism specific empirical matrices for protein sequence analysis

Table 4. Relative performance of 19 protein models on
a sample of 11 between-patient HIV-1 alignments1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rank/Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

HIV-Bm 7 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

REV-1 step 4 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 1 0 3

HIV-Wm 0 5 2 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0

JTT 0 2 3 3 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0

HIV-Bm+F 0 2 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 3 2

REV 0 0 3 1 1 0 3 1 1 0 0 1 0 0 0 0 0 0 0

JTT+F 0 0 1 1 4 1 1 1 1 1 0 0 0 0 0 0 0 0 0

WAG 0 0 1 0 2 0 0 0 1 0 0 3 2 1 1 0 0 0 0

Dayhoff 0 0 0 3 0 0 2 3 2 0 1 0 0 0 0 0 0 0 0

HIV-Wm+F 0 0 0 0 1 3 1 2 0 1 2 1 0 0 0 0 0 0 0

mtMAM 0 0 0 0 0 4 0 1 0 4 1 1 0 0 0 0 0 0 0

rtREV 0 0 0 0 0 1 1 0 3 2 2 0 1 1 0 0 0 0 0

WAG+F 0 0 0 0 0 0 2 0 0 0 0 0 0 1 1 3 4 0 0

mtREV 24 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 1 6 1

mtREV 24+F 0 0 0 0 0 0 0 0 1 0 4 4 2 0 0 0 0 0 0

Dayhoff+F 0 0 0 0 0 0 0 0 1 0 1 1 4 2 2 0 0 0 0

rtREV+F 0 0 0 0 0 0 0 0 0 1 0 0 2 5 3 0 0 0 0

mtMAM+F 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 6 1 0 0

Equal Input 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 2 5

1Based on small sample Akaike Information Criterion
doi:10.1371/journal.pone.0000503.t004..
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using powerful statistical techniques. Increased accuracy in compar-

ative analyses, in our minds, is well worth the additional effort.

SUPPORTING INFORMATION

Table S1 Relative performance of HIV-Bm and three empirical

models on between-host training data. Relative D.F. shows the

number of additional degrees of freedom that HIV-Bm can have

and still be preferred (by nested LRT at p = 0.05) to a given

empirical model (see text).

Found at: doi:10.1371/journal.pone.0000503.s001 (0.03 MB

DOC)

Table S2 Relative performance of HIV-Wm and three empirical

models on between-host training data. Relative D.F. shows the

number of additional degrees of freedom that HIV-Wm can have

and still be preferred (by nested LRT at p = 0.05) to a given

empirical model (see text).

Found at: doi:10.1371/journal.pone.0000503.s002 (0.10 MB

DOC)

Table S3 The effect of evolutionary model on pairwise distance

estimates using 11 between patient datasets. HIV-Bm is used as

a reference model to compute tree-based pairwise distances, and

relative differences for 3 existing empirical models are shown for

each dataset.

Found at: doi:10.1371/journal.pone.0000503.s003 (0.04 MB

DOC)
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