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Abstract

Prioritizing genes for their role in drug sensitivity, is an important step in understanding

drugs mechanisms of action and discovering new molecular targets for co-treatment. To for-

malize this problem, we consider two sets of genes X and P respectively composing the

gene signature of cell sensitivity at the drug IC50 and the genes involved in its mechanism of

action, as well as a protein interaction network (PPIN) containing the products of X and P as

nodes. We introduce Genetrank, a method to prioritize the genes in X for their likelihood to

regulate the genes in P. Genetrank uses asymmetric random walks with restarts, absorb-

ing states, and a suitable renormalization scheme. Using novel so-called saturation indices,

we show that the conjunction of absorbing states and renormalization yields an exploration

of the PPIN which is much more progressive than that afforded by random walks with

restarts only. Using MINT as underlying network, we apply Genetrank to a predictive gene

signature of cancer cells sensitivity to tumor-necrosis-factor-related apoptosis-inducing

ligand (TRAIL), performed in single-cells. Our ranking provides biological insights on drug

sensitivity and a gene set considerably enriched in genes regulating TRAIL pharmacody-

namics when compared to the most significant differentially expressed genes obtained from

a statistical analysis framework alone. We also introduce gene expression radars, a visuali-

zation tool embedded in MA plots to assess all pairwise interactions at a glance on graphical

representations of transcriptomics data. Genetrank is made available in the Structural Bio-

informatics Library (https://sbl.inria.fr/doc/Genetrank-user-manual.html). It should prove

useful for mining gene sets in conjunction with a signaling pathway, whenever other

approaches yield relatively large sets of genes.
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1 Introduction

1.1 Single-cell differential expression analyses

Gene differential expression analyses quantify the changes in gene expression levels between

tested experimental conditions. Although gene functions can often be derived from this type

of analyses, the associations can be confounded with incidental gene induction. Therefore

interpreting differential expression data with gene set enrichment analysis (GSEA) and path-

way analysis can be misleading without attentive curation, producing an unfounded link

between a gene differential expression and its functional role in the treatment response. Sin-

gle-cell differential expression analyses have elevated the issue, where gene differential expres-

sion between experimental groups is hindered by gene expression variability between cells.

Although cell-to-cell variability in gene expression is typically overlooked in most analyses,

we and others have observed that these differences between clonal cells, can impact the overall

cell population response to a stimulation [1–3]. Originating from stochastic processes such as

transcription initiation, cell-to-cell variability gives rise to an equilibrium of co-existing cellu-

lar states within an isogenic cell population [4, 5]. The different phases of the cell cycles are

one illustration of cell states that robustly proportioned resting cell populations [6], but other

functional cell states can be phenomenologically evidenced by the fractional response to cyto-

toxic cancer drugs for example (IC50, Emax>0, [7, 8]). However, most single-cell technologies

are still unable to access meaningful cell information within clonal populations once cell cycle

states signatures are regressed out, and important functional cell states remain confounded in

gene expression noise [1]. Apart from cell cycle genes, one hypothesis for the undetected (or

unmeasurable) differences in seemingly homogeneous cell populations is that they contain

cells in a wide variety of possible cell states that predisposed them to a number of responses or

functions such as cell death, impairing pathway enrichment analyses. To recover the molecular

determinants of clonal cells response to cancer drugs from the measured gene expression vari-

ability, we recently designed a same-cell functional pharmacogenomics approach, named

fate-seq, that couples prior knowledge on the cell state (predicted drug response) to the

transcriptomic profile of the same cell [1]. With our same-cell approach, we could reveal the

molecular factors regulating the efficacy of a drug treatment, from differential expression anal-

yses of one sample of isogenic cells with no gene induction. Although genes differential expres-

sions can now be linked to their functional role in drug response using fate-seq,

prioritizing genes as best potential targets for co-treatment remains a difficult task.

1.2 Diffusion distances

Indeed, gene prioritization and protein function prediction are challenging due to the small-

world nature of interaction networks [9, 10], in particular. To go beyond analysis using the

direct neighbors of a node or shortest paths, the value of diffusion distances has been recog-

nized long ago.

Based on the correlation between the expression profile and the phenotype, as well as (diffu-

sion) distances, various similarity measures between genes have been studied [11]. The Diffu-
sion State Distance (DSD) was defined as the L1 norm of m walks (RW) of k steps [12]. The

DSD was shown to be more effective than shortest-path distance to transfer functional annota-

tions across nodes in protein-protein interaction networks (PPIN). The DSD was further

extended to exploit annotations (weights) on edges, and to exploit an augmented graph incor-

porating specific interactions [13]. To bias the random walk towards certain nodes, a random

walk restarting (RWR) at those nodes can be applied, as initially used in the context of internet

surfing [14]. The stationary distribution of the strategy, called the page rank, depends on the
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restart probability vector [15]. In [16], the minimum of the page rank probability between two

nodes is used to qualify the mutual affinity of two proteins in a network. RWR were also used

to predict drug-target interactions on heterogeneous networks [17], and also for layered/multi-

plex graphs, so as to combine complementary pieces of information [18]. Diffusion distances

have also been used recently [19] to understand how drugs treat diseases, using both a network

of physical interactions and a hierarchy of biological functions. However, in the resulting mul-
tiscale interactome, the diffusion profiles are computed using a standard random walk with

restart.

A related topic is the problem of ranking differentially expressed genes across two condi-

tions [20]. Following the seminal work on gene set enrichment methods [21], the template of

gene set enrichment analysis (GSEA) consist of three steps, namely computing an enrichment

score for each gene, estimating its statistical significance, and performing a correction for mul-

tiple hypothesis testing. Setting aside the issue of correlations between genes, such methods

combine feature selection and clustering (one cluster per cell state/condition) [22], but do not

address the question of connecting two sets of genes using an interaction network.

Finally, yet another related challenge is pathway enrichment analysis [23]. Given a set of

experimentally determined genes and a database of pathways, the goal here is to find pathways

whose genes are over-represented in the gene set of interest. When pathways are known

exhaustively, such analysis are sufficient to screen gene sets. If this assumption does not hold,

finding intermediates between the gene set and the molecules in a pathway becomes

mandatory.

Adding to other prioritization methods [24], Genetrank utilizes prior knowledge from

functional cell states (transcriptomic profile of a predicted drug response), protein-protein

interactions, and the expected target signaling pathway of a drug of interest.

1.3 Contributions

We focus on gene prioritization related to a complex phenotype, based on expression profiles

from single-cell RNA-seq. Formally, let X be a set of proteins associated with differentially

expressed (DE) genes, and P be a set of proteins involved in a signaling pathway. Rather than

to identify DE genes in X that are involved in the pathway of interest, our goal is to prioritize

genes in X because they have been previously identified to be involved in a pathway of interest.

In our case study, the DE genes have been identified for their effect on cell sensitivity to

TRAIL [1]. This dataset comprised DE genes that are the results of a drug efficacy screen: it is a

gene signature of cell sensitivity at the drug IC50. Therefore the significantly DE genes in this

screen are potential drug co-targets; they are not known to be drug targets and Genetrank
seeks to prioritize them, to suggest the corresponding gene products as co-targets in combina-

tion treatments with the drug used in the screen. Hence, we prioritize genes in X given the

knowledge of genes in P (which gene products are involved in the drug mechanisms of action),

using an underlying PPIN, to pick out the genes having a higher likelihood to regulate the

pathway. Previous work on diffusion distances (RW or RWR) has three limitations in this con-

text. First, in using hit vectors or stationary distributions, all nodes of the network contribute

to the comparison of two sources. Instead, we wish to focus on nodes in P. Second, RWR use a

bias on sources, but in our case, the sets X and P may be considered on an equal footing, which

commands analysis in both directions, i.e. from X to P and from P to X. Third, instead of using

a single restart rate [18], we study a filtration (sequence of nested sets) of genes retrieved, in

tandem with so-called saturation indices revealing accessibility scales in the PPIN.

To accommodate this rationale, we present a novel analysis technique based on random

walks with restarts and absorbing states. Recall that in a Markov chain, an absorbing state is a
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state which is never exited. Since stationary distributions are irrelevant in this context [25], we

resort to hitting probabilities for the nodes on the target set P. As we show, doing so yields

scores for pairs of genes in S × T and T × TS, from which a ranking of genes in X is defined. As

a case study, we use a dataset of differentially expressed genes involved in the regulation of a

cancer drugs pharmacodynamics [1].

2 Material

2.1 Goal: Formal statement

Consider two sets of genes X and P respectively composing the predictive gene signature of

sensitivity to a drug and the genes involved in its mechanism of action, as well as a protein

interaction network (PPIN) containing the products of X and P as nodes. We introduce Gen-
etrank, a method to prioritize the genes in X for their likelihood to regulate the genes in P.

2.2 Biological problem

The main goal of our approach is to ameliorate the ranking of gene signatures from differential

expression analyses in order to better select the genes whose products are likely to impact the

phenotypic response of the cells. Using fate-seq, we focus on cancer cells briefly treated

with the TNF-related Apoptosis Inducing Ligand (TRAIL), so for the drug response to be pre-

dicted for each cell that is then profiled by single-cell RNA sequencing [1]. In such single-cell

analyses performed with isogenic cells treated together, the stable differences in gene expres-

sion between cells from the two groups, namely predicted sensitive and predicted resistant, are

small and otherwise confounded in gene expression noise. In addition, the short treatment

necessary for the cell response prediction does not induce a detectable genomic response

(Mendeley data Dataset https://doi.org/10.17632/m289yp5skd.1 [1, 26]) that would confound

the functional role of the differentially expressed genes between the two groups with gene

induction, as it is often the case in other studies.

2.3 Sets X and P
The list of differentially expressed genes obtained in this study constitutes our set X [1], S2

Table in S1 File. The criteria used to define the two groups of single-cells compared in the dif-

ferential expression analyses giving X, is the activation rate of caspase-8. Caspase-8 is a protein

of the receptor-mediated apoptosis pathway, which is part of the TRAIL mechanism of action

[8]. Therefore, in our case study the set P is a set of target genes, whose products are proteins

of the receptor-mediated apoptosis signaling pathway.

The sets X and P are of size 320 and 49, respectively. Altogether, these sets X and P represent

a unique dataset to assess the benefit of our approach in ranking genes based on their likeli-

hood to impact drug response.

2.4 PPIN

A number of interaction databases coexists, each with specific features, in particular a trade-off

between exhaustivity and confidence. We use MINT due in particular to the compliance with

the protein naming standards [27].

The PPIN was constructed from interactions downloaded from the MINT website https://

mint.bio.uniroma2.it/. Only proteins with the species label Homo Sapiens were downloaded.

The interacting proteins are identified in UniProtKB format. The resulting network is called

the MINT network in the sequel. This initial graph, containing 11,672 vertices representing

proteins, and 52,839 edges representing protein—protein interactions, is edited as follows.
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First, the PPIN being disconnected, we focus on its largest connected component, encompass-

ing 11,427 vertices. Second, we remove all self-interactions. Third, multiple interactions

between the same two proteins are collapsed into a single edge. Summarizing, we obtain a

graph with 11,427 vertices and 36,526 edges.

2.5 Sets X and P within the PPIN

Selected genes in the sets X and P being absent from the largest connected component of the

PPIN were removed, finally obtaining sets X and P of size 227 and 41 (from sets of size 320

and 49 initially).

2.6 Variations on the set X
In order to evaluate the impact of the size difference of X and P on the scores, we analyse the

symmetry H(I) of Eq (7) for instances involving sets X0 of varying size. Practically, for each s 2
{|P|, 110, 220} we pick Nr(= 1000) random subsets of X. We then compare the distributions of

H(I) obtained.

3 Methods

3.1 Rationale and positioning with respect to previous work

We consider a set X of experimentally determined genes, and a set P of genes belonging to a

pathway. We introduce methods using random walks on graphs with two sets of vertices as

input, referred to as sources (S) and targets (T). In order to analyze the (lack of) symmetry

between paths joining X and P and vice-versa, we use our methods twice:

• direction S = X⇝ T = P: starting from nodes in X to reach nodes in P;

• direction S = P⇝ T = X: starting from nodes in P to reach nodes in X.

To study the relationship between the node sets S and T, our modifications of diffusion

based distances rely on absorbing states and a renormalization scheme. These modifications

are actually motivated by two structural properties of interaction networks (Fig 1).

Fig 1. Example interaction graph and Markov chain: Two structural properties motivating absorbing states and

the renormalization of hit probabilities. Arcs indicate transitions in the Markov chains—transition probabilities are

omitted. The set of sources is S = {s1, s2, s3} and the set of targets is T = {t1, t2, t3, t4}. When defining absorbing states,

transitions corresponding to blue arcs are removed. This implies that t2 will not be highlighted because t1 or t4 must be

visited before any random walk starting from any source s 2 S. Furthermore, the normalization aims at reducing the

importance of t3 in the study (due to its high proximity to the three sources).

https://doi.org/10.1371/journal.pone.0268956.g001
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The first difficulty owes to a notion of subsidiarity amongst targets, meaning that if some

vertices of T are neighbors (or very close from one another) in the graph, targets upstream will

artificially modify the weights of targets downstream. Indeed, if a target is just after another

(important) target, then its weight will be large even in the absence of direct paths from S (Fig

1, target t4). In this context, absorbing states make it possible to stop the exploration process at

such upstream/ancestor nodes, and force direct connexions from sources to subsidiary targets.

The second difficulty owes to the close vicinity of selected targets to sources (Fig 1, target

t3), motivating the introduction of hit scores (Def. 3). For example, if a target is a neighbor of

some sources in the graph, these hit scores decrease the weights of such direct paths, stressing

the importance of the other non trivial paths. One can note that this normalization can be

done with other functions, e.g. a distance-based function that could be the average of the |T|

lengths of shortest paths between every source s 2 S and a given target t.
We now formally introduce our methods.

3.2 Graphs

To connect X and P, we consider a PPIN whose vertices are the individual molecules, and

whose edges represent pairwise interactions. Such a network is modeled by a vertex-weighted

edge-weighted directed graph G = (V, E). The weight of any vertex u 2 V is denoted wu and

the weight of any edge uv 2 E is denoted wuv. We assume that wu, wuv 2 (0, 1] for every u 2 V
and every uv 2 E. In the unweighted case, we set wu = 1 and wuv = 1 for every u 2 V and every

uv 2 E. In the undirected case, we have uv 2 E if and only if vu 2 E.

Let n = |V| be the number of vertices and let V = {v1, . . ., vn}. The set of out-neighbors (resp.

in-neighbors) of a vertex u 2 V is denoted NþG ðuÞ (resp. N �G ðuÞ).
To analyze paths between vertices of X and vertices of P, we formalize Markov chains and

random walks.

3.3 Random walks and Markov chains with absorbing states and restart

3.3.1 Model. In the sequel, we consider two sets of vertices S and T from the graph G, with

S \ T = ;.

We define a Markov chain for which the set of states is exactly the set of vertices V. The

transition matrix M is defined as follows for every pair (u, v) 2 V × TV:

Mðu; vÞ ¼

wuvwvP
v02NþG ðuÞwuv0wv0

if uv 2 E and u =2T;

1 if u ¼ v and u 2 T;

0 otherwise:

8
>>>>><

>>>>>:

ð1Þ

Particular cases of this construction are as follows:

• (Symmetric unweighted case) Mðu; vÞ ¼ wuvwuP
v02Nþ

G
ðuÞwuv0wv0

¼ 1

dGðuÞ
(first line of Eq (1)).

• (Symmetric edge-weighted case) Eq (1) also generalizes the formulae used in [13].

Recall that a state is absorbing if once reached by a walk, it is never exited. Observe that the

set of states T is absorbing in the Markov chain defined by transition matrix M. We now define

the Markov chain with restart from M and from a subset S0 � S. Intuitively, for each vertex u 2
V\T which is not a target, we add a transition to every vertex of S0 Formally, given a real
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number r 2 [0, 1), the transition matrix Mr
S0 is defined as follows for every pair (u, v) 2 V2.

Mr
S0 ðu; vÞ ¼

ð1 � rÞwuvwuP
v02NþG ðuÞwuv0wv0

if uv 2 E and u =2T;

r
jS0j

if u =2T and v 2 S0;

1 if u ¼ v and u 2 T;

0 otherwise:

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð2Þ

Note that restart transitions may have the same origin/destination as an existing transition

in M. (Equivalently, in graph theoretical terms, one has two arcs between the same two verti-

ces). In that case, the probabilities specified in (2) should be added. The transition matrix M is

a particular case of Mr
S0 when r = 0. Note also that when |S0| = 1, one restarts to a single vertex.

Definition. 1 (State distribution) Consider an initial distribution uniform in the set S0.
Given any r 2 [0, 1) and any S0 � S, the state distribution at each step i� 0 is denoted

pi
Mr

S0
¼ pi

Mr
S0

v1ð Þ; . . . ; pi
Mr

S0
vnð Þ

� �
;

with p0
Mr

S0
ðuÞ ¼ 0 for every u =2 S0 and p0

Mr
S0
ðuÞ ¼¼ 1

jS0 j for every u 2 S0.

Under the assumption that, from every u 2 S0 there exists a path in G to some v 2 T, the

limit of this vector exists when i!1, for every value of r 2 [0, 1). We denote it with pMr
S0

. The

probabilities in this vector are commonly known as hitting probabilities of the target set T.

Using the target set, we define:

Definition. 2 (Hit probability vector) Let T = {t1, . . ., tk} be the target set. Given any r 2 [0,

1) and any S0 � S, the hit vector pMr
S0
¼ pMr

S0
t1ð Þ; . . . ; pMr

S0
tkð Þ

� �
is composed of the hitting prob-

abilities for states of T.

In the following, we abuse the notation writing Mr
s instead of Mr

fsg. Furthermore, we will

write Mr instead of Mr
S. Finally, we renormalize the vectors with the hit vector of the chain

without restart (i.e. r = 0):

Definition. 3 (Hit score) Given r 2 [0, 1], define the score from s to t as

Q rð Þ s; tð Þ ¼ pMr
S0
ðtÞ=pM0ðtÞ: ð3Þ

The hit score vector associated with each source s 2 S is (Q(r)(s, t1), . . ., Q(r)(s, tk)).
The log score log Q(r)(s, t) is the natural logarithm of Q(r)(s, t).
Finally the rank of the score of a pair (s, t)2S × T is defined as follows:

rankðrÞSTðs; tÞ ¼ 1þ jfQðrÞðs0; t0Þ > QðrÞðs; tÞ; s0 2 S; t0 2 T; ðs0; t0Þ 6¼ ðs; tÞgj: ð4Þ

Remark 1 The hit score from Eq 3 incorporates three ingredients, namely (i) a random walk
with restart, (ii) absorbing states, and (iii) renormalization by the value obtained without restart.
We may define other scores by removing any of these ingredients, e.g. the mechanism of absorbing
states.
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3.4 Scores and their symmetry

3.4.1 Scores: X⇝P versus P⇝X. In order to analyze the (lack of) symmetry between

paths joining X and P and vice-versa, We apply the previous construction to two settings:

X⇝P : ðS ¼ X; T ¼ PÞ

P⇝X : ðS ¼ P; T ¼ XÞ

(

ð5Þ

3.4.2 Instances (PPIN, X, P). Using a different PPIN, a different experimental gene set X
or a different pathway gene set P will affect the score Q(r)(x, p) for a given pair (x, p). In order

to make it clearer we define an instance of execution as the triplet I = (PPIN, X, P), and we

refer to the score obtained under this instance as QðrÞI ðx; pÞ. However, for conciseness, we sim-

ply denote this score Q(r)(x, p).

3.4.3 Symmetry at the gene level. Consider an experimental gene x 2 X and a pathway

gene p 2 P. Using Eq (3), we assess the asymmetry using the ratio of log scores

RðrÞlogðs; tÞ ¼ minðlogQðrÞðs; tÞ; logQðrÞðt; sÞÞ=maxðlogQðrÞðs; tÞ; logQðrÞðt; sÞÞ: ð6Þ

3.4.4 Symmetry at the instance level. Consider an instance I = (PPIN, X, P). (Because

throughout this paper we make use of a single PPIN (MINT) and the same set P, we will use

the shorthand (X) for the instance). To study the symmetry at the instance level, we consider

the proportion of pairs (x, p) 2 X × P such that QðrÞI ðx; pÞ > QðrÞI ðp; xÞ. Formally, denoting 1b

the indicator function of the boolean b, the symmetry of the results for I is given by

HðIÞ ¼
1

jXj � jPj

X

ðx;pÞ2X�P

1QðrÞI ðx;pÞ>QðrÞI ðp;xÞ
: ð7Þ

3.5 Genetrank, saturation indices, hits

Using the scores in the two directions X⇝P versus P⇝X (Eq 5), we now define a ranking on

the genes of X:

Definition. 4 (Average score) Let 1� τ� |P| be an integer. Consider a fixed value of the
restart rate r. For a source x, let the average score be the arithmetic mean over the top τ values
max(log Q(r)(x, p), log Q(r)(p, x)) observed for p 2 P. The gene network ranking (Genetrank)

of genes in X is the ranking associated with the aforementioned average values. The set of top k
genes of the ranking is denoted TðrlÞt;k .

Note that when τ = 1, the ranking of a gene in X is determined by its largest max score.

Averaging scores over τ targets makes intuitive sense here when identifying whole connected-

ness to a pathway.

To assess the stability of this ranking, we proceed as follows. Consider a set of values R =

{r1, . . ., rN}, sorted by increasing or decreasing value. We define the set of genes found in TðrlÞt;k

up to a given value rl, with 1� l� N, by

Tð!rlÞ
t;k ¼ [j¼1;...;lT

ðrlÞ
t;k : ð8Þ

We now use this set to qualify the speed at which we discover the sources in X when increas-

ing the upper bound on the restart rate:
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Definition. 5 (Saturation indices for an increasing sequence of values of r.) The satura-

tion index at threshold rl is the fraction of sources present in jTð!rlÞ
t;k j, that is:

Satð!rlÞ
t;k ¼

jTð!rlÞ
t;k j

jXj
� 1ð Þ: ð9Þ

The relative saturation index is the latter normalized by the value of k used:

Sat ð!rlÞ
t;k ¼

Satð!rlÞ
t;k

k
ð10Þ

In the absence of overlap between consecutive TðrlÞt;k , one would have jTð!rlÞ
t;k j ¼ k� l. Thus,

normalizing by k provides a measure of the overlap between consecutive sets.

We note in passing that the previous sets can be used to define how many hits in a given ref-

erence list of genes L are obtained:

Definition. 6 (Hits) Consider a reference list of genes L. The number of hits for particular
values (r, k) is the size of the set TðrÞt;k \ L. For a fixed k, we similarly consider the size of the set
Tð!rÞ
t;k \ L.

Remark 2 Saturation indices for a decreasing sequence of values of r readily generalize from
Eqs 8, 9 and 10. In fact, a larger (resp. smaller) value of r amounts to zooming in (resp. out)
towards the sources.

3.6 Graphical representations with radar scatter plots

We wish to rank genes from X using genes from P, exploiting the directions X⇝P and P⇝X.

3.6.1 Score radar plots. The difficulty in working with values LogCount(x), LogFold-

Change(x) for x 2 X represented in an MA plot, is that all pairs (x, p) get mapped onto the

same point. To get around this difficulty, we associate a radar plot with each point x 2 X, yield-

ing an overall score radar scatter plot. Each gene score radar plot is defined as follows:

• the background of the gene radar plot is colored using a heat map indexed on the largest (X
⇝P or P⇝X) log score observed for that gene. This background color makes it easy to spot

the individual radar plots with high scores.

• the gene radar plot has a number of spokes equal to the top k (user defined) scores.

• on each spoke, two values are found, namely the scores log Q(r)(x, p) and log Q(r)(p, x).

• finally, the radar plot title is set set to the gene name accompanied by the interval of scores

(log scale).

3.6.2 Score radar MA plot. Displaying all individual score radar plots in the

LogCount(x), LogFoldChange(x) plane yields the so-called Score radar MA plot.

3.7 Complexity and implementation

3.7.1 Complexity. The running time of one instance i.e. computing the hit scores at a

fixed r, depends on the sizes of the PPIN, and of sets X and P.

In contrast with the classical stationary probabilities of ergodic Markov chains, hit probabil-

ities are dependent on the initial state. Therefore, where a stationary distribution needs to be

computed once and occupies the space of a vector of dimension n = |V|—the number of
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nodes, hit probabilities need to be computed for each initial state envisioned and they occupy

a total space of size |X| × |P|. Exact formulas for stationary probabilities and for hit probabili-

ties both involve matrix inversions [28], at a practical cost of order n3. They are therefore not

practical for large sparse graphs, and iterative methods are usually preferred [29], leading to an

approximate result with any desired accuracy. The simplest iterative method actually computes

state probability vectors pi
Mr

S0
(Def. 1) at successive steps until some convergence criterion is

met. It applies both to stationary probabilities and to hit probabilities. It produces an �-approx-

imation with a computation time of order C|E|log(1/�), C being a constant related with the

spectrum of the graph. For Markov chains with restart probability r, this constant increases

with r and we observe this phenomenon in our experiments.

Practically, we compute the hit scores of Def. 3 using the C++ Marmote library ([30] and

https://wiki.inria.fr/MARMOTE/Welcome). Specifically, we use from Marmote the iterative

method which approximates the result with iterations of order m, with m = |E| the number of

edges. It is faster and also more stable in practice, since it involves only positive numbers. The

stopping criterion chosen for iterations is that the L1 distance between successive iterates is

less than 10−6.

3.7.2 Implementation. The whole pipeline is implemented in the Genetrank package

of the Structural Bioinformatics Library ([31] and http://sbl.inria.fr), see https://sbl.inria.fr/

doc/Genetrank-user-manual.html.

Practically, processing one instance took a few minutes (<5) worst-case, on a standard

desktop computer (Precision 7920 Tower, 64 Go of RAM, Intel(R) Xeon(R) Silver 4214 CPU

at 2.20GHz; OS: Fedora Core 32).

3.8 Tests: Setup

3.8.1 Contenders. As already noticed (Rmk. 1), the hit score from Eq 3 incorporates three

ingredients, namely (i) a random walk with restart, (ii) absorbing states, and (iii) renormaliza-

tion by the value obtained without restart. To assess the importance of the latter two ingredi-

ents, three contenders of nested complexity are considered in the sequel:

• pr-affinity: the minimum page rank affinity introduced in [16], using a plain random

walk with restart model.

• Genetrank-renorm: score obtained from a random walk with restart and renormaliza-

tion using Eq 3—but no absorbing state.

• Genetrank-AS: score obtained from a random walk with restart and absorbing states—

but without the renormalization of Eq 3.

• Genetrank: score obtained using all ingredients: random walk with restart, absorbing

states, and the renormalization of Eq 3.

3.8.2 Parameters used. The following values are used in our experiments:

• 81 values of r, from r = 0 to r = 0.8 by steps of 0.01,

• three values of τ (Def. 4): τ 2 {1, 20, 41}, (recall that |P| = 41),

• ten values of k: k 2 {5, 10, 15, 20, 25, 30, 35, 40, 45, 50},

• saturation indices for r sorted by increasing/decreasing values (Rmk. 2).
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4 Results

4.1 Genetrank and saturation indices

The saturation index makes it possible to study the variation of the size of the set of genes

selected by the three contenders when r increases or decreases. To promote the vicinity of

sources in the PPIN, we process values r by decreasing value (Rmk. 2). We inspect in turn the

saturation, relative saturation and number of hits (Figs 2 and 3, S4, S5 Figs in S1 File). We use

the median value τ = 20 to compute average scores—see the Supplemental for the values τ = 1

and τ = 40.

The methods pr-affinity, Genetrank-renorm, and Genetrank-AS yield a very

similar behavior in two respects. First, the saturation gets maximum (one) for large values of k,

and is relatively insensitive to the value of r (Fig 2(B), S4(B), S5(B) Figs in S1 File). Also, the rel-

ative saturation drops down to very small values rapidly (Fig 2(E), S4(E), S5(E) Figs in S1 File).

In sharp contrast, the maximum saturation yielded by Genetrank is equal to�0.4, and

Fig 2. (pr-affinity) saturation plots (Def. 5) for τ = 20. Values of r processed in decreasing order. (Left column)

Saturation index and slices at r = cst and k = cst (See Eq 9) (Right column) Relative saturation index and slices at r = cst
and k = cst (See Eq 10).

https://doi.org/10.1371/journal.pone.0268956.g002
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shows a marked dependence on the restart rate (Fig 3(B)). The relative saturation is also much

more sensitive to the value of k used, with a coherent behavior as a function of k at fixed values

of r (Fig 3(E) and 3(F)).

These observations stress the specificity yielded by the combination of renormalization and

absorbing states in Genetrank. To further these insights, we proceed with a more detailed

analysis of the incidence of the parameters r and τ:

• (r) The restarting rate r defines the bias towards sources. Whatever the value of k, in process-

ing values of r in decreasing values, we observe that the saturation increases when r
approaches zero (Fig 3(C)). The slope of the curves increases for values of r� 0.1, showing

that for such values of the restart rate, the random walks get to explore a larger region of the

PPIN. In Genetrank, larger values of the restart rate are therefore instrumental in promot-

ing a more specific exploration.

Fig 3. (Genetrank) saturation plots (Def. 5) for τ = 20. Values of r processed in decreasing order. (Left column)

Saturation index and slices at r = cst and k = cst (See Eq 9) (Right column) Relative saturation index and slices at r = cst
and k = cst (See Eq 10).

https://doi.org/10.1371/journal.pone.0268956.g003
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• (τ) Increasing τ consists of averaging on more targets. This averaging yields a marked

increase of the saturation (whatever the value of k), especially for small values of r (Fig 3, S6,

S7 Figs in S1 File).

Let us now consider the relative saturation (Fig 3(D)–3(F); S6(D)-S6(F), S7(D)-S7(F) Figs

in S1 File). Sections of the surface at r = cst yield a monotonic behavior, that is the smaller the

restart rate the larger the relative saturation. (We also note that for the first value of r pro-

cessed, that is r = 0, 8, the relative saturation is always equal to 1/|X|�0.0044.) Interestingly,

slices at r = cst are not monotonic. The valleys crossed on such slices show that increasing k
increases the saturation but not necessarily the relative saturation. This may be interpreted as

accessibility scales in the PPIN.

4.2 Evaluating the effect of varying restart rates on scores, using

experimentally validated gene hits

Consider the list of reference genes (and their products) that had been experimentally vali-

dated following the single-cell functional genomics approach using predictive cell dynamics

[1] O15304 (SIVA1), P78537 (BLOC1S1), P0CW18 (PRSS56), P53007 (SLC25A1), Q9Y2X8

(UBE2D4), DNM1L(O00429). Note that Q6UW78(UQCC3) cannot be considered here, as it

is not present in our PPIN of interest. We compute the number of genes from this list found in

the sets TðrÞt;k and Tð!rlÞ
t;k .

We compare the results of the four methods (Figs 4 and 5, S8, S9 Figs in S1 File). Consistent

with the analysis in the previous section, the methods pr-affinity and Genetrank-

renorm are rather non specific, with a number of hits yielded by TðrÞt;k essentially constant

whatever the value of r at a fixed value of k, whatever the value of τ (S4, S8 Figs in S1 File). The

method Genetrank-AS shows a more contrived behavior, with the same number of genes

uncovered (i.e. 5) for small values of r, yet more variations when varying r at fixed values of k
(S9 Fig in S1 File).

The method Genetrank goes one step beyond, namely discovers genes more selectively

when increasing k and changing the restart rate (Fig 5). Small values of τ allow retrieving three

genes using fewer values of r, clearly showing the specificity/robustness of nodes of X highly

ranked with a large restart rate. Conversely, using larger values of τ in conjunction with smaller

values of r (larger excursions in the PPIN) allows reporting four genes in total. Except for τ =

1, using large values of r requires larger values of k to retrieve the known genes: for τ = 20 and

τ = 41, a single gene is retrieved when r> 0.5.

These experiments show the progressiveness yielded by Genetrank is exploring the

PPIN, as opposed to avoid the fast mixing observed in pr-affinity and Genetrank-
renorm, and to a lesser extent Genetrank-AS. Methods without absorbing states see the

whole PPIN in a more homogeneous way, due to its small-world nature. This behaviour is

even more pronounced in our case, as the target genes form a pathway. Indeed, a random walk

reaching one such node is likely to discover its neighbors right after (See Comparison to previ-
ous work, Sec. 3.3.) When a absorbing states are used, the random walks halts, and the discov-

ery of neighbors does not take place. The introduction of absorbing states therefore appears

crucial to localize the exploration of connexions, in conjunction the choice of the restart rate r
—generally taken to r = 0.7 in previous work – see [18] and citations therein.

4.3 Symmetry analysis on a per-source basis: Radar plots

The symmetry ratio H(I) is a global assessment based on all pairs in the Cartesian product X ×
TP. For an assessment of the asymmetry on a per gene basis, we resort to radar plots (Sec. 3.6).
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Example radar plots for genes experimentally validated are provided are provided on Fig 6).

The individual radar plots can be assembled in a global MA plot (Fig 7).

4.4 Biological analysis

4.4.1 Differentially expressed genes. The set of differentially expressed (DE) genes

obtained from the single-cell multimodal profiling approach fate-seq, allows comparing

transcriptomic profiles between single cells of an isogenic population, grouped by their pre-

dicted drug response [1]. Practically, the DE genes have been identified for their effect on cell

sensitivity at the drug IC50, and represent the signature of drug efficacy. (The DE genes here,

are potential combination targets to increase the treatment efficacy.) Although this response

prediction allowed the differential analysis using the edgeR likelihood ratio test framework

Fig 4. (pr-affinity) hits (Def. 6) for the list of reference genes O15304 (SIVA1), P78537 (BLOC1S1), P0CW18

(PRSS56), P53007 (SLC25A1), Q9Y2X8 (UBE2D4), DNM1L(O00429).

https://doi.org/10.1371/journal.pone.0268956.g004
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[32] by defining two groups (predicted sensitive vs. tolerant cells), the most significant DE

genes (false discovery rate FDR< 0.1 and |log 2(FC)|> 2) still constitute a list of more than 60

genes. Such a large list defies the expected practical set of potential targets that would serve to

design co-therapeutic strategies increasing overall treatment efficacy. In addition, ranking

only on differential expression might underestimate a gene for its potential function as regula-

tor of the pathway overall activity. As an example, among these gene hits, we have observed

that, at equal distance (the shortest path between the source and the target gene caspase-8), the

noisier the gene expression was, the larger the effect a gene perturbation had on cell death, and

at comparable expression variability: the longer the shortest path, the larger the effect [1]. We

reasoned that diffusion distances could also ameliorate ranking of cell-to-cell differential

expression analyses.

Fig 5. (Genetrank) hits (Def. 6) for the list of reference genes O15304 (SIVA1), P78537 (BLOC1S1), P0CW18

(PRSS56), P53007 (SLC25A1), Q9Y2X8 (UBE2D4), DNM1L(O00429).

https://doi.org/10.1371/journal.pone.0268956.g005
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We use Genetrank to sort genes for their connectedness to molecular factors regulating

the signaling pathway triggered by the drug of interest (TRAIL). We intersect the list of the 65

most significant DE genes obtained by edgeR, with the set of genes obtained with Gene-
trank (k = 50, range of values of r: 0.0.8, τ = 41; Eq (8) and S7 Fig in S1 File), resulting in 18

genes (S1 Table in S1 File).

This gene shortlist presents a number of valuable advantages over the list of significant DE

genes, as it becomes more manageable for experimental validation, and drug target discovery.

In addition we found that this shortlist contained genes that had been previously reported to

regulate cell death and importantly, it was enriched in genes that we had experimentally vali-

dated for having an effect on TRAIL response.

4.4.2 Previously validated genes. Out of the 18 genes (S1 Table in S1 File) we prioritized

for their likelihood of having an effect on the drug mechanism of action (MoA) using Gene-
trank, we found 4 genes that we had previously validated experimentally, namely BLOC1S1,

DNM1L, UBE2D4, SLC25A1. This result indicates that we successfully enriched the list with

gene hits that have functional relevance as co-drug targets. Indeed, among the target genes

Fig 6. Radar plots for four experimentally validated genes. The range of values covers the range of log scores

observed. The two bullets on a spoke read as follows: blue dot: direction PX⇝; green dot: direction XP⇝.

https://doi.org/10.1371/journal.pone.0268956.g006
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shortlisted solely based on statistical criteria (differential expression analyses between pre-

dicted resistant and predicted sensitive cells to TRAIL), only DNM1L, had previous reports on

TRAIL sensitivity. Indeed, DNM1L encoding the dynamin-1-like protein DRP1, involved in

mitochondrial division and apoptosis, has been reported to increase TRAIL sensitivity regard-

less of the co-treatment strategy (recruiting DRP1 at mitochondrial membrane, or inhibiting

DRP1), which lead the authors to suggest that DRP1 might not be the target of mdivi-1, its

originally reported inhibitor [33, 34]. In our experimental screen, cells that were predicted

resistant to TRAIL based on low caspase-8 early activation rates, showed increased DNM1L
expression levels [1]. Also in this recent study, we could show that DNM1L over expression

reduced caspase-8 activation and cell death in response to TRAIL, and consistently, that DRP1

or dynamins inhibition (using mdivi-1 or dynasore), both increase caspase-8 activation and

cell death. All together, these results suggest that in addition to the pro-apoptotic role of DRP1

at the mitochondrial membrane, DRP1 could play an anti-apoptotic role at the receptor level

on caspase-8, further validating the approach presented here and the relevance of

Genetrank.

4.4.3 Novel genes. Genetrank also puts forward some genes that were initially further

down the list and therefore in an unfavorable position to command gene validation or func-

tional studies. JADE1 for example, has been shown to promote apoptosis in renal cancer cells

[35], and MUL1 [36, 37], which should motivate further experimental investigations.

Fig 7. Score radar scatter plot. The individual radar plots (Fig 6) are assembled in a MA plot. Zooming on a radar

reveals the scores for that gene (80 data points per gene in a radar).

https://doi.org/10.1371/journal.pone.0268956.g007
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5 Discussion

5.1 Method

This work presents a gene prioritization method, Genetrank, which can be coupled with sin-

gle-cell functional genomics approaches to rank a set of genes X for their likelihood to regulate

the cell signaling pathway P, which is targeted by the drug of interest (i.e. rank genes for their

impact on drug sensitivity). While diffusion based distances have been used for several problems

in interaction network analysis, the Genetrank introduces several refinements. The first one is

to use random walks with restarts and absorbing states to focus on certain nodes of the PPIN.

The second one is to exploit the asymmetry of random walks from X to P and P to X across the

PPIN. The third one is to use a whole set of restart rates to define a filtration (sequence of nested

sets) of genes, using saturation indices. The analysis yielded by saturation indices shows the ability

of Genetrank to progressively unveil regions of the PPIN, thanks to absorbing states and our

renormalization scheme. Instead, classical methods based on random walks (with or without

restarts) see the whole network in a more homogeneous fashion due to its small-world nature. In

this context, absorbing states force the evaluation of direct connexions between sources and tar-

gets, and the renormalization scheme makes it possible to tone down large weights due to the

proximity between sources and selected targets. Altogether, these modifications allow Gene-
trank at various restart rates to progressively explore the network, and incrementally investi-

gate interactions within a pathway. For gene prioritization, our novel ingredients make it possible

to perform a delicate study of the interplay operating between the different parameters defining

the RW, providing a stratification of genes of X according to their proximity to genes in P.

5.2 Biology

As a case study, we used Genetrank with a TRAIL-sensitivity gene signature obtained from

the single-cell functional genomics approach using predictive cell dynamics called fate-seq
[1]. Here, we show that we could enrich the most significant differentially expressed genes

between predicted sensitive and resistant cells, with genes that were experimentally validated

for increasing drug treatment efficacy (or previously described as doing so).

The nature and design of large transcriptomic profiling experiments (single-cell and bulk)

and their analyses, impose a number of limits on the biological interpretation of gene expres-

sion analyses, especially in the context of understanding the determinants of drug sensitivity.

Firstly, the differential analyses between cell types of varying drug sensitivities can be con-

founded with bystander genes (regarding their role in the drug MoA). Secondly, within a cell

type, differential analyses between treated versus untreated samples lacks specificity over genes

at the origin of the cell response versus the genes induced by the drug in resistant cells (not to

mention that sensitive cells are rarely recovered in experiments). Moreover, the subsequent

analyses such as gene set enrichment analysis and pathway-based analyses [21, 38, 39], depen-

dent on prior knowledge of the gene functions and their interactions, often determined with

the aforementioned experimental designs. Gene annotations themselves (from Gene Ontology

(GO) database for example) might hinder gene-based drug sensitivity predictions, by intro-

ducing biases related to errors or incompleteness due to unknown function, protein moon-

lighting [40], or technical and biological inherent limits [41, 42]. Yet, gene expression remain a

central piece of data in drug sensitivity prediction [43, 44], providing successful use with can-

cer cell lines to discover gene involved in drug resistance [45] with computational methods

using prior knowledge [46–50]. Although some analyses performed these tasks on basal gene

expression [24], which aim at harnessing cell states at the origin of drug response (as opposed

to drug-perturbed gene expression studies), all pursue cell lines comparative profiling.
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However, profiling cell lines remains ineffective with respect to determining the molecular

factors involved in the incomplete –or fractional– response of one cell line, due to intrinsic

drug resistance of non-genetic origins (a phenomenon observed for all drugs at their IC50 in

all cell lines). Both single-cell genomics and single-cell drug response analyses [8] have

revealed a range of heterogeneity within isogenic cell populations (within one “cell type”) that

has not been fully comprehended up to now, for technical reasons [1]. Therefore, the natural

gene expression variability of isogenic cells may be referred to as gene expression noise only

because of the actual deficiency in specific gene sets that define cell states such as drug-sensi-

tive or drug-tolerant state (as opposed to a drug-induced state in the resistant cells), that could

inform on genes likely to perturb the MoA of the drug of interest. Therefore, single-cell experi-

mental methods to determine the MoA-perturbing genes remain critical to increase treatment

efficacy (or reduce treatment toxicity).

Our approach utilizes predicted drug response knowledge from fate-seq to rank genes

among MoA-perturbing gene signature and associate prior knowledge from protein-protein

interaction networks to favor protein that are connected to the targeted signaling pathway,

which may also reveal novel biological activities.

5.3 Future work

Our results suggest that combining same-cell functional pharmacogenomics screens such as

fate-seq, with gene prioritization technique described here, are promising novel methods

to improve gene definitions in GO with respect to their association to novel drug efficacy gene

signatures, and help revealing the most effective co-targets for combination therapy.

From the theoretical standpoint, our gene prioritization strategy underscore several future

challenges, two of which are of direct interest in biology and medicine. Given a pair of genes

highlighted (one source in X, one target in P), the first challenge resides in the identification of

sets of intermediate nodes accounting for the (high) hit score observed between these two

nodes. Indeed, such intermediates could be used to delineate the biochemistry of interactions

(enzymes, non covalent interactions, etc), paving the way to quantitative ODE based models

involving reaction rates and/or affinity constants for (sub-) pathways. Specifically, quantitative

approaches based on target controllable linear systems, which aim at driving an interaction net-

work to a desired state based using a linear—ODE based system [51, 52], could benefit from

the interactions and paths unveiled by our models. The second challenge relates to the precise

link between the progressive nature of interactions highlighted by our modified diffusion dis-

tances, and the hierarchical nature of interactions within complex networks. We indeed antici-

pate that our tools will prove useful to unveil certain aspects of multiscale interactome models.
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