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Abstract

The effects of the high-dose ionizing radiation used in radiotherapy have been thoroughly

demonstrated in vitro and in vivo. However, the effects of low-dose ionizing radiation (LDIR)

such as computed tomography-guided biopsies and X-ray fluoroscopy on skin cells remain

controversial. This study investigated the molecular effects of LDIR on the human primary

keratinocytes (HPKs) and U937 cells, monocytes-like cell lines. These cells were exposed

to 0.1 Gray (Gy) X-ray as LDIR. The modulation of transcription was assessed using a

cDNA array, and the protein expression after LDIR exposure was investigated using isobaric

tags for relative and absolute quantification (iTRAQ) proteomic analysis at 24 hours. These

effects were confirmed by immunoblotting analysis. The direct effects of LDIR on the U937

cells and HPKs and the bystander effects of irradiated HPKs on U937 cells were also inves-

tigated. LDIR downregulated c-Myc in both U937 cells and HPKs, and upregulated the

p21WAF1/CIP1 protein expression in U937 cells along with the activation of TGFβ and protein

phosphatase 2A (PP2A). In HPKs, LDIR downregulated the mTOR signaling with repres-

sion of S6 and 4EBP1 activation. Similar changes were observed as bystander effects of

LDIR. Our findings suggest that LDIR inhibits protein synthesis and induces the cytokines

activation associated with inflammation via direct and bystander effects, which might reca-

pitulate the effects of LDIR in inflammated skin structures.
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Introduction

Epidemiological and toxicological studies have examined the deleterious effects of radiation

exposure in human health. High-dose ionizing radiation clearly causes harmful consequences

for humans. By contrast, the risk of low-dose ionizing radiation (LDIR) is still unclear. The sto-

chastic risk of LDIR (i.e.,<0.1 Sv) is derived by extrapolation from data obtained for high-

dose radiation exposure using a linear-no-threshold (LNT) model [1]. A recent epidemiologi-

cal study demonstrated that the data from atomic bomb survivors supported the LNT model

[2]. However, the health effects of LDIR exposure remain to be explored due to the confound-

ing factors related to individual variability, life style, and genetic background [3, 4]. There is

increasing concern regarding the health risks arising from LDIR exposure in medical diagnos-

tics and radiation therapy. For example, computed tomography (CT) is a valuable diagnostic

imaging technique, but its overuse raises concerns about the potential risks of iatrogenic can-

cers [5–7]. CT-guided interventional procedures result in greater dose exposure than a routine

CT and have a higher risk [8][9].

In regard of the underlying mechanisms of LDIR’s effects on skin structures, it was reported

that LDIR promoted IL-12 production, dendritic cells migration [10], and skin-infiltrating

monocytes/macrophages migration to draining lymph nodes [11]. Interestingly, ionizing radi-

ation affects not only the directly irradiated cells but also non-irradiated neighboring cells. The

phenomenon involving non-irradiated cells is known as the radiation-induced bystander effect

(RIBE). Since Nagasawa and Little first reported the RIBE [12], several studies have detected

this phenomenon [13–15]. However, little is still known about the effects of LDIR and RIBE

on individual cells composing skin structures. In this study, we investigated the molecular

effects of LDIR on in vitro human primary keratinocytes and U937 cell lines, monocyte-like

histiocytic lymphoma cells. Coexistence of these cells may mimic a skin-infiltrating model to

assess the contribution of monocytic cells to the release of inflammatory cytokines and the

interactions between monocytic cells and irradiated neighboring skin cells.

Materials and methods

Cell cultures and reagents

U937 cells were purchased from the American Type Culture Collection (Rockville, MD,

USA) and cultured in RPMI 1640 medium containing 1% penicillin-streptomycin with

10% fetal bovine serum. Human primary keratinocytes (HPKs) taken from new born (KK-

4009, Kurabo Industries, Osaka, Japan) were cultured in HuMedia-KG2 medium (Kurabo)

supplemented with recombinant human epidermal growth factor (0.1 ng/mL), recombinant

human insulin (10 μg/mL), hydrocortisone (0.67 μg/mL), gentamicin (50 μg/mL), amphoter-

icin B (50 ng/mL) (Kurabo), and bovine pituitary extract (0.004 mg/mL) which has similar

mitogenic activity with fetal bovine serum[16, 17]. HPKs at passage 3 were used for the

experiments.

For LDIR exposure, the U937 cells and HPKs were irradiated with 0.1 Gy. All irradiation

was performed with 4 MeV X-rays generated by a linear accelerator (Clinac21EX, Varian, Palo

Alto, CA, USA) following full build-up (1 cm) at a dose rate of 2.0 Gy/min, as previously

reported [18]. Cells were cultured for 24 hours after irradiation. For the bystander experi-

ments, the culture medium of irradiated and sham-irradiated U937 cells and HPKs was

extracted 24 hours after irradiation and incubated bystander cells with the extracted medium

for another 24 hours and harvested them for gene expression or protein analyses. U937-(IR)-

BS means U937 cells after 24 hour incubation with medium from irradiated HPKs, and HPK-

(IR)-BS means HPKs after incubation with medium from irradiated U937 cells.
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cDNA microarray

Gene expression in the cells was determined by microarray analysis using the Affymetrix

Human Gene 2.0 ST Array, according to the Affymetrix protocols (Santa Clara, CA, USA). Sig-

nal intensities were measured using a GeneChip Scanner3000 7G (Affymetrix) and converted

to numerical data using the Affymetrix Expression Console software 1.3.1 (Affymetrix). To

identify candidate genes of potential significance in U937, we applied a 1.2-fold change cutoff,

since the combined responses of a group of genes acting in concert might affect the physiology

of the cell, as previously described [19]. The digitized data were analyzed using GeneSpring

GX 13.1.0 software (Agilent Technologies, Santa Clara, CA, USA). Genes whose expression

changed significantly with treatment were subjected to functional analysis using Ingenuity

Pathway Analysis software (IPA, Ingenuity Systems, QIAGEN, www.qiagen.com/ingenuity)

[20]. For IPA analyses, we used two scores: an ‘enrichment’ score (Fisher’s exact test P-value)

that measures the overlap of observed and predicted regulated gene sets, and a Z-score that

assesses the match of observed and predicted upregulation/downregulation patterns [21]. The

inclusion criteria for genes selected for the analysis was a fold change > ± .8 [22].

isobaric tags for relative and absolute quantification (iTRAQ) sample

labeling, mass spectrometry analysis, and peptide identification

Proteins in treated cells were identified using iTRAQ, a chemical labeling mass spectrometry

(MS) method that was performed according to the manufacturer’s protocol (AB SCIEX, Fra-

mingham, MA, USA) [23, 24]. Briefly, labeled peptides were analyzed using nano liquid chro-

matography in combination with tandem mass spectrometry (LC-MS/MS). Nano LC-MS was

performed on a nano LC system (AB SCIEX) using a ChromXP C18-CL column (Eksigent,

AB SCIEX, Dublin, CA, USA) and a TripleTOF 5600 mass spectrometer for MS/MS (AB

SCIEX) with Analyst TF 1.7 software. Proteins were identified and quantified relatively using

ProteinPilot ver. 5.0 software (AB SCIEX) [25]. The functions of the identified proteins were

determined by searching the UniProt database (released on 01/20/2016). Protein ratios were

normalized against the overall median ratio for all of the peptides in the sample for each sepa-

rate ratio in every individual experiment. A confidence cut-off for protein identification of

>95% was applied. The proteins whose expression levels were changed by more than 1.6-fold

after irradiation were defined as “profoundly modulated genes” as previously described [19],

and the data were submitted to IPA [20].

Immunoblot analysis

Cells were solubilized in lysis buffer comprising phosphate-buffered saline solution containing

1× cell lysis buffer (Cell Signaling Technology, Danvers, MA, USA), 1× protease inhibitor

cocktail (Roche, Indianapolis, IN, USA), and 1× phosphatase inhibitor cocktail (Roche). The

mixtures were incubated for 30 min on ice. The lysates were, then, centrifuged for 10 min at a

speed of 13,000 rpm at 4˚C. Total protein concentrations were determined using the Bio-Rad

Protein Assay Kit (Bio-Rad, Hercules, CA, USA) according to the manufacturer’s instructions.

Total proteins (20 μg) were separated by sodium dodecyl sulfate-polyacrylamide gel electro-

phoresis (Bio-Rad) and transferred to polyvinylidene-fluoride membranes (0.45 μm, Millipore,

Bedford, MA, USA), and subsequently probed with first and second antibodies. The following

antibodies were used: α-tubulin (Sigma-Aldrich, St Louis, MO, USA), p21WAF1/CIP1, HIF1α
(BD Biosciences, San Jose, CA, USA), c-Myc, PP2Aα, p-4EBP1, 4EBP-1, p-S6 ribosomal pro-

teinSer235/Ser236, S6 ribosomal protein, p-p38 MAPK, p38 MAPK, and horseradish peroxidase-

linked anti-mouse and anti-rabbit IgG (all from Cell Signaling Technology).
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Statistical analyses

Groups were compared using a two-tailed Student’s t-test. A P-value�0.05 was considered

statistically significant. Where indicated, the results are expressed as the mean ± standard devi-

ation (SD) of triplicate samples.

Results

LDIR induced gene expression changes in U937 cells

To investigate changes in gene expression caused by LDIR, we performed a cDNA microarray

analysis of U937 cells that had been exposed to 0.1 Gy of X-rays in direct or bystander condi-

tions, and then cultured for 24 hours. The cDNA microarray analysis showed that direct LDIR

exposure increased expression of the CARD9, HIST1H2BH, and mir4497 genes in U937cells

(U937-IR) (>1.8-fold change) while no genes showed decreased expression (S1 Table). CARD9
is a member of the caspase recruitment domain (CARD) family, an upstream activator of

BCL10 and NF-κB signaling that plays a regulatory role in cell apoptosis [26]. HIST1H2BH has

no intron and encodes a member of the histone H2B family and plays roles in DNA repair and

replication [27–29]. In U937-bystander [U937-(IR)-BS] cells, 24 genes were downregulated

compared with the control cells, including MT-TG, mir 4659, RAD51D, MT-TR, mir 4295,

MT-TL2, mir 644A, mir 4521, and HIST1H4D (S1 Table). MT-TG, MT-TR, and MT-TL2 are

transfer RNAs. RAD51D, a member of the RAD51 family, is involved in homologous recombi-

nation repair after DNA damage. No upregulated genes were detected in U937-(IR)-BS cells.

We, then, investigated the candidate upstream regulators that can be involved in the

responses to LDIR in U937 cells. IPA analysis highlighted the activation of eight upstream fac-

tors in U937-IR cells, including TNF, CSF2, and IFNG. In U937-(IR)-BS cells, 10 upstream

factors were activated including transforming growth factor beta 1 (TGFβ1) (>1.8-fold

change), and 21 were inhibited including hypoxia-inducible factor 1 alpha (HIF1α) (Table 1).

The upregulation of TGFβ was concordant with the previous reports by us [30] and the others

[31, 32].

To exclude the changes caused by the mix and match protocols in the medium transfer

experiments, we confirmed that fully supplemented RPMI 1640 medium and HuMedia-KG2

medium caused no significant difference of cell viability after the LDIR directly or in the

bystander condition by the trypan blue exclusion cell count method (data not shown).

LDIR activated the cytokines associated with inflammatory pathways in

U937 cells

We next investigated the changes in protein expression and molecular networks with LDIR in

direct and bystander conditions of U937 cells using iTRAQ proteomic approach.

In U937-IR, 2276 unique proteins were identified including 61 proteins (28 upregulated

and 33 downregulated) whose expression levels were significantly altered by the LDIR treat-

ment. In U937-(IR)-BS cells, 1385 proteins were identified with 32 significantly altered pro-

teins (13 upregulated, 19 downregulated) (S2 Table). We, then, examined the candidate

upstream regulators and network interactions involved in the responses to LDIR in U937 cells.

As shown in Table 2, IPA analyses highlighted the activation of the proliferation and differenti-

ation modulator oncostatin M (OSM) in U937-IR and the inhibition of HIF1α in U937-(IR)-

BS cells. OSM is a member of the IL-6 family of cytokines that is associated with skin inflam-

mation [33]. The network analyses further demonstrated the activation of protein phosphatase

2A (PP2A), a negative cell growth regulator, in U937-IR cells (S1A Fig). The immunoblot anal-

yses confirmed the observation that LDIR increased PP2Aα in both U937-IR and U937-(IR)-
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Table 1. Upstream factors involved in alterations of gene transcription caused by LDR in U937 cells (at 24 hours).

Upstream Regulator Activation z-score P-value

U937-IR

Activated

TNF 2.18 3.11E-01

CSF2 2.13 2.31E-01

IFNG 2.07 2.14E-01

E2F3 1.98 2.29E-02

Akt 1.97 8.86E-02

IL5 1.96 1.49E-01

IL1B 1.96 1.00E00

IL1A 1.95 7.62E-02

Inhibited

N.A.

U937-(IR)-BS

Activated

MGEA5 2.84 5.13E-01

FSH 2.08 1.00E00

SFTPA1 2.00 3.51E-01

Nr1h 1.98 1.00E00

SYVN1 1.98 3.32E-03

MMP3 1.90 1.01E-02

FLT1 1.89 2.62E-02

AKT1 1.83 3.59E-01

TGFB1 1.82 1.00E00

KLF4 1.81 1.00E00

Inhibited

REL -2.58 1.39E-01

SMARCA4 -2.56 4.78E-01

IRF7 -2.42 6.75E-02

HIF1A -2.41 5.34E-01

TNF -2.23 1.00E00

TICAM1 -2.22 1.00E00

TNFRSF1A -2.22 1.00E00

Ifn -2.19 5.22E-01

NR1H4 -2.18 1.00E00

S100A9 -2.16 3.22E-01

PKD1 -2.00 1.00E00

HNF4A -1.99 1.01E-03

IKBKG -1.98 5.52E-01

CXCL12 -1.94 1.31E-01

CSF2 -1.93 1.00E-01

S100A8 -1.92 3.89E-01

IRF5 -1.89 2.13E-02

CST5 -1.89 3.34E-02

CXCR4 -1.88 7.55E-02

FOXO1 -1.82 2.11E-01

IFNG -1.82 1.00E00

Data were analyzed using Ingenuity Pathway Analysis (IPA) based on genes for which transcription was consistently

altered after treatment in U937 cells.

https://doi.org/10.1371/journal.pone.0199117.t001
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BS cells, which is consistent with the iTRAQ results (Fig 1A). PP2A is a family of serine/threo-

nine phosphatases that negatively regulates mTOR signaling [34–36]. Because c-Myc is con-

trolled by PP2A [37] and our cDNA microarray results indicated the LDR-induced activation

of TGFβ signaling, another negative regulator of c-Myc [38, 39], we investigated the changes

in the expression of c-Myc. As shown in Fig 1A, immunoblot analyses demonstrated that

LDIR suppressed c-Myc protein levels in both U937-IR and U937-(IR)-BS cells. We also

detected the downregulation of p21WAF1/CIP1, a negative downstream target of c-Myc[40, 41]

that arrests cell cycle/growth in U937-IR cells. In addition, p38 MAPK, a downstream factor of

TGF-β [42–44], was activated in both U937 and U937-BS cells after irradiation. Immunoblot-

ting analyses confirmed the cDNA array findings (i.e., the downregulation of HIF1α in both

U937-IR and U937-(IR)-BS cells (Fig 1A)). These results suggest that LDR plays a role in

changing the various cytokine pathways via the activation of TGFβ and inactivation of OSM.

Proteome analysis detected ribosomal biogenesis inhibition by LDIR in

HPKs

In HPK-IR cells, 1551 unique proteins were identified including 58 proteins (22 upregulated

and36 downregulated) whose expression levels were significantly altered by LDIR treatment

Table 2. Upstream factors involved in the protein expression responses to LDIR in U937 cells and HPKs (at 24 hours).

Upstream Regulator Activation z-score p-value of overlap Target molecules in dataset

U937-IR

Activated

OSM 1.63 4.15E-03 ARHGEF2,GART,LRRFIP1,OGDH,PCNA,PGK1

Inhibited

PRL -2.39 1.32E-04 CTSD,MSN,P4HB,PCNA,RPSA,YWHAG

EGFR -1.67 1.42E-05 CCT5,HNRNPA2B1,HSPE1,IGBP1,PCNA,PPIA,PSMB1,TUBA4A

U937-(IR)-BS

Activated

TP53 1.84 6.61E-03 ACTN1,ARPC1B,EZR,HSPB1,PCNA,SFPQ,SOD1

Inhibited

HIF1A -2.21 2.42E-05 ALDOA,EIF5A,HSPA5,HSPB1,PGK1,PPIA

HPK-IR

Activated

FGF2 2.37 5.67E-05 ALB, FLNA, ITGB1, PRKDC, THBS1, XRCC5, XRCC6

IL4 2.24 5.94E-03 ANXA2, IDE, ITGB1, NCL, PRKDC, XRCC5, XRCC6

INSR 2.21 8.61E-05 ACTN4, ATP5B, FH, HADHA, HSPD1, MDH2, RAB7A

IFNG 2.01 6.05E-02 HSPD1, IDE, ITGB1, KRT14, LAMC2, PSME3, THBS1

ESRRA 1.95 1.34E-03 ATP5B, HADHA, HK1, LDHA

TNF 1.90 1.90E-02 ALB,HSPD1,IDE,ITGB1,LAD1,LAMC2,LDHA,RPS3,THBS1,TPP2

TP63 1.68 3.83E-03 CAD,ITGB1,KRT14,KRT6A,THBS1

PRL 1.62 9.94E-05 ACTR3,ANXA2,HSPD1,IDE,KRT14,KRT5

Inhibited

CST5 -2.00 6.95E-03 AHNAK,ANXA2,HNRNPU,NCL

CD3 -1.67 1.21E-07 ACTN4,ACTR3,HNRNPA1,KRT14,MDH2,NCL,NPM1,SF1,SSB,THBS1,XRCC6,YARS

CD28 -1.63 3.52E-04 ACTR3,HNRNPA1,NCL,SSB,THBS1,XRCC6

Data were analyzed by Ingenuity Pathway Analysis (IPA) based on the proteins whose expression was consistently altered after the indicated treatment in U937 cells and

HPKs (S2 Table).

https://doi.org/10.1371/journal.pone.0199117.t002
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(S1 Table). In HPK-(IR)-BS cells, 1658 proteins were identified with 21 significantly altered

proteins (3 upregulated and, 18 downregulated) proteins whose expression levels were signifi-

cantly altered by LDIR treatment (S1 Table). The candidate upstream regulators and network

interactions involved in the responses to LDIR in HPKs were examined by IPA, which

highlighted the activation of the anti-inflammatory cytokine interleukin-4 (IL-4), tumor

necrosis factor (TNF), and the tumor suppressor protein TP63 in LDIR -irradiated HPKs

(HPK-IR) (Table 2). IL-4 promotes the activation of macrophages as M2 cells, which reduces

inflammation [45]. TNF is a cytokine that can induce apoptosis and inflammation. TP63 is a

member of the TP53 family. The network analyses further demonstrated the activation of heat

shock protein 70 (HSP70) in HPK-IR cells (S1C Fig) and the downregulation of heat shock

protein 90 (HSP90) and the proinflammatory cytokine high mobility group box 1 (HMGB1)

[46–48] in HPK-(IR)-BS cells (S1D Fig). HSP70 and HSP90 are molecular chaperones that

protect cells against damage to the proteome and assist in the refolding of denatured proteins

and regulating degradation after severe protein damage [49] via mutual interaction [50].

Because IPA analyses indicated that LDIR irradiation upregulated TNF, we examined the acti-

vation of its downstream factor p38 MAPK [51], and found that LDIR irradiation increased

Fig 1. Molecular pathways affected by LDIR in U937 cells and HPKs. After direct LDIR for 24 hours or in the bystander condition, the cells were subjected to lysis

and immunoblot analyses. The results are representative of three independent experiments, and the intensity of each immunoblot signal compared with that of α-

tubulin was quantified using ImageJ software; the quantity is shown directly under each blot.

https://doi.org/10.1371/journal.pone.0199117.g001
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the expression of phospho-p38 MAPK in HPK-IR cells (Fig 1B). Since IPA analyses also indi-

cated that LDIR irradiation repressed HSP90, the synthesis of which is regulated by mTOR

[52], we further investigated the changes in mTOR signaling. We observed that LDIR irradia-

tion suppressed the mTOR signaling along with decreased phospho-S6 and phospho-4EBP1

protein expression in both HPK-IR and HPK-(IR)-BS cells (Fig 1B). In addition, the expres-

sion of PP2Aα, an upstream molecule of mTOR[34] and c-Myc controlled by PP2Aα [37]

were investigated. The immunoblotting demonstrated that LDIR increased the expression of

PP2A in HPK-(IR)-BS cells and decreased the expression of c-Myc in HPK-IR and HPK-(IR)-

BS cells (Fig 1B). PP2A inhibits c-Myc and mTOR signaling, including S6 and 4EBP1. Because

mTOR signaling controls protein synthesis by inducing ribosome biogenesis and translation

[53–55], these results indicate that LDIR irradiation suppresses ribosomal biogenesis via the

upregulation of PP2Aα and downregulation of c-Myc and mTOR signaling.

Discussion

This study demonstrated several findings: (1) the U937 cells, mimicking skin-infiltrating

monocytes, released inflammatory cytokines after LDIR; (2) the interactions between U937

cells and irradiated neighboring keratinocytes in LDIR exposure; and (3) LDIR also inhibited

the ribosomal biogenesis in keratinocytes and U937 cells in in vitro.

After LDIR exposure, communication with sham-irradiated bystander cells via bioactive

substances from irradiated cells modifies biological responses, and the RIBE can become satu-

rated at relatively low doses of irradiation [56]. Furthermore, the RIBE of LDIR is as effective

as direct irradiation [56–58]. It is known that TGFβ inhibits cell growth as a direct effect of

irradiation as well as RIBE mediators [59, 60]. In this study, we demonstrated that direct LDIR

irradiation and RIBE downregulated c-Myc, a negative downstream factor of TGFβ, both in

U937 cells and HPKs. TGFβ and p21WAF1/CIP1, an activator of TGFβ, were upregulated in

bystander U937 cells. Moreover, TNF-α is another important mediator of RIBE [61]. We

detected that LDIR activated TNFα and p38 MAPK, which plays an essential role in RIBE [43,

62] via TNFα [63]. As a result, LDIR released inflammatory cytokines including TNFα,

induced cell growth arrest via TGFβ/c-Myc/p21 WAF1/CIP pathways and caused RIBE through

the activation of TGFβ and TNFα.

In addition to the above observations, we first found that LDIR increased PP2A, which neg-

atively regulates the cell growth and inhibits c-Myc [64]. The downregulated c-Myc might

upregulate p21WAF1/CIP1 proteins. These facts suggest that LDIR might arrest cell growth via

the PP2A/c-Myc/p21WAF1/CIP pathways. We also detected that LDIR repressed S6 and 4EBP1

activation, as mTOR targets. It has been known that repression of mTOR signaling, in which

PP2A possibly plays a role in inhibiting ribosomal biogenesis [65–67]. Therefore, LDIR could

repress ribosomal biogenesis via PP2A/mTOR signaling pathway. We further observed that

LDIR upregulated the OSM which is known to be associated with cell growth inhibition [68].

As the study limitations, this study investigated gene and protein expression at single time

point using only two types of cell lines in in vitro culture. This study focused on the changes

after 24 hours based on the previous reports that demonstrated the bystander effects on molec-

ular pathways changed after 16–24 hours [69, 70]. Many studies have shown that gene and/or

protein expression patterns are dependent on time after irradiation [30, 69, 71]. On the other

hand, we previously demonstrated whereas proteomics data showed little overlapping

responses observed at two post-radiation time points (i.e. 1 hour and 24 hours), the pathway

analysis demonstrated the connections between the time points depending on LDIR condi-

tions [30]. The further experiments at earlier or later time points are required to elucidate how

much the molecular pathway changes dependent on time after irradiation. And in vivo studies
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are warranted to validate our current observation and evaluate the LDIR effects. In addition,

we used keratinocytes and monocytic cell lines (U937 cells) as the skin-infiltrating model in

inflammation induced by LDIR which is different from actual human skin structures. Taken

together, our findings indicate that LDIR affects cell cycle and protein synthesis pathways with

activation of PP2A and p38 MAPK, in skin-infiltrating monocytic cells directly and indirectly

via interactions with irradiated neighboring normal skin cells via bystander effects (Fig 2).

Fig 2. LDIR inhibits cell growth and protein synthesis and induces bystander effects. Cell signaling pathways affected by LDIR. LDIR

downregulates c-Myc and upregulates p21 WAF1/CIP1 via stimulation of TGFβ and PP2A. PP2A also inhibits mTOR signaling with repression of

S6K activation and 4EBP1 phosphorylation that resulted in decrease in protein synthesis. Furthermore, LDIR induces bystander effects

through p38 MAPK activation. Directly-irradiated cells release cytokine signals that affect non-irradiated (bystander) cells.

https://doi.org/10.1371/journal.pone.0199117.g002
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LDIR exposure, including iatrogenic exposure with diagnostic imaging, may cause molecular

alterations associating with skin inflammation and proliferation in our skin-infiltrating model.

Supporting information

S1 Table. Genes with altered expression in U937 cells after 0.1 Gy X-ray irradiation. Genes

that showed a fold-change >1.7 compared with controls are shown.

(DOCX)

S2 Table. Proteins with altered expression in U937 cells and HPKs after 0.1 Gy X-ray irra-

diation. The protein expression levels in U937 cells and HPKs were detected by two indepen-

dent iTRAQ experiments. The protein expression changes measured three times in each

experiment. The expression of all proteins listed differed significantly (P< 0.05) between con-

trols and cells exposed to LDIR. Values indicate the fold-change relative to untreated cells. The

confidence score (a percentage measure of the confidence of protein identification) for all pro-

teins in the table was 99%.

(DOCX)

S1 Fig. Network of proteins involved in the responses of U937 cells and HPKs to LDIR.

Data were analyzed using IPA (QIAGEN, www.qiagen.com/ingenuity). The IPA network anal-

ysis showed direct interactions between differentially expressed molecules in U937 cells and

HPKs after the LDIR treatment directly or in the bystander condition. U937-IR cells; (B)

U937-(IR)-BS cells; (C) HPK-IR cells; (D) HPK-(IR)-BS cells. Arrows indicate direct interac-

tions between molecules. Lines represent direct (solid lines) and indirect (dashed lines) inter-

actions between molecules. The network with the highest score is shown. Upregulated

proteins in the dataset are depicted in pink and downregulated proteins in green. The depth of

color indicates the degree of change [72].

(TIF)
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