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Abstract

Enhanced shrub growth and expansion are widespread responses to climate warming in

many arctic and alpine ecosystems. Warmer temperatures and shrub expansion could

cause major changes in plant community structure, affecting both species composition and

diversity. To improve our understanding of the ongoing changes in plant communities in

alpine tundra, we studied interrelations among climate, shrub growth, shrub cover and plant

diversity, using an elevation gradient as a proxy for climate conditions. Specifically, we ana-

lyzed growth of bilberry (Vaccinium myrtillus L.) and its associated plant communities along

an elevation gradient of ca. 600 vertical meters in the eastern European Alps. We assessed

the ramet age, ring width and shoot length of V. myrtillus, and the shrub cover and plant

diversity of the community. At higher elevation, ramets of V. myrtillus were younger, with

shorter shoots and narrower growth rings. Shoot length was positively related to shrub

cover, but shrub cover did not show a direct relationship with elevation. A greater shrub

cover had a negative effect on species richness, also affecting species composition (beta-

diversity), but these variables were not influenced by elevation. Our findings suggest that

changes in plant diversity are driven directly by shrub cover and only indirectly by climate,

here represented by changes in elevation.

Introduction

Plant species and communities in alpine and arctic environments are undergoing considerably

changes (e.g. [1–4]). In both regions, a prominent piece of evidence of vegetation changes is

shrub expansion [5–7] which can significantly alter ecosystem functioning and diversity [7–9].

Shrub expansion has most likely been driven by climate change [10,11], as shrub vegetation

showed to be highly sensitive to changes in temperature [11–14].

Shrub annual growth and growth rings can be highly linked to climate and can represent

year-to-year variation in temperature, where a general increase in shrub growth is expected as

a major response to global warming [14,15]. In addition, the age of shrubs or of their ramets
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has been shown to reflect environmental conditions [16–18]. Other shrub traits, such as shoot

length, leaf number, abundance and biomass, have commonly been found to be sensitive indi-

cators of environmental change and ecosystem functioning [19–21]. Hence, studying such

traits in combination with age distributions can improve our understanding on the ongoing

changes in arctic and alpine ecosystems and give insights into population dynamics [5,22,23].

Changes in plant growth resulting from climate warming can cause considerable modifica-

tions in vegetation traits [24–26], which can in turn influence species composition, ecosystem

functions and thus ecosystem services, such as regulation of nutrient cycles, gas exchanges or

biomass stock [4,27]. One major effect of climate-related vegetation alteration is changes in

biodiversity [1,28,29]. In particular, changes in the abundance and height of shrubs could lead

to tangible shifts in both structure and species composition of a plant community [27,30].

Elevation gradients represent a powerful tool for investigating relationships between cli-

mate and vegetation [31]. In many studies, elevation has been used as a proxy for temperature

because, on average, temperature drops by 5.5 K per vertical kilometer [31]. Changes in eco-

system properties along elevation gradients include plant diversity [32], productivity [33,34],

species traits [35,36] and physiology [37]. Plant species richness is commonly thought to

decrease with elevation [38–40]; however, several authors have shown the presence of a mid-

elevation peak in species richness [41,42], yielding a humped relationship. In alpine areas, this

peak has been found around the tree line [43], where both stress and competition are interme-

diate and habitat diversity is high. The relationship between elevation and species richness can

also depend on the study scale [44], in particular in cases where important local factors (e.g.

snowpack) vary drastically over short distances. However, plant communities along elevation

gradients can also be shaped by a few key species such as dominant shrub species [27]. Hence,

it is important to study traits of both individual key species and the entire plant community

along an elevation gradient. Shrubs traits often considered in elevation studies are plant age

and other dendrochronological [15,35], as well as morphological and physiological parameters

[35,45]. Most existing studies have focused on the effects of elevation on a single species, show-

ing its acclimation strategies along elevation, while little is known about elevation effects on

multiple species, their community and the feedbacks between them (but see [46]).

In this study, we used a dendrochronological approach in subalpine ecotonal dwarf shrub

communities to analyze the relationships between growth traits (i.e. age distribution, xylem

rings width and shoot length) of Vaccinium myrtillus L., shrub cover and plant diversity along

an elevation gradient. This approach allowed us to disentangle the possible effects of climate,

using elevation as a proxy, and shrub abundance on plant diversity and vegetation composi-

tion in an alpine ecosystem. Specifically, we hypothesized that V. myrtillus ramets would be

younger and smaller and overall shrub cover would be lower at higher elevation. We also

expected V. myrtillus traits to be related to shrub cover, which, along with elevation, would

affect species richness and composition (beta-diversity) of the whole community.

Material and methods

Study sites and plant communities

The study was carried out in two valleys (ca. 15 km apart) in the central part of the Carnic Alps

(Friuli Venezia Giulia, Italy 12˚ 44’ 21” E 46˚ 38’ 01” N). Bedrock is mainly constituted of

Paleozoic metamorphic siliceous sandstone and mudstone [47]. The area has a mean annual

precipitation of 1400 mm and a mean annual air temperature of 3.8˚C (climate station at 1750

m a.s.l.). The study was conducted in alpine dwarf shrub communities dominated by V. myrtil-
lus and Rhododendron ferrugineum (Rhododendro-Vaccinion) [48–50]. The most frequent

herbs at the sites were Deschampsia flexuosa, Arnica montana, Carex sempervirens, Homogyne
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alpina, and Solidago virgaurea subsp. minuta. The area was previously grazed by livestock, but

this activity ceased at least 10 years before the surveys. Grazing by wild ungulates in the area is

probable, but no direct evidence of grazing was found during the field surveys in the selected

plots.

Sampling design

Sampling was conducted using a nested design at the two study sites (i.e. valley), with 20 sam-

pling plots each 25 m2 in area (5 x 5 m) selected along an elevation gradient spanning ca. 600

vertical meters (i.e. from 1690 to 2220 m a.s.l. in the first valley, and from 1560 to 2080 m a.s.l.

in the second valley). Plots were selected using a vegetation map and a digital elevation model

(DEM); using a GIS environment (ESRI—ArcGIS 10.0), the plots were randomly positioned

within dwarf-shrub communities along elevation belts of ca. 30 m. The plots were selected

based on the following criteria: (i) dwarf-shrub cover > 30% of the overall vegetation cover;

(ii) aspect between east (90˚) and south (180˚); and (iii) slope between 20 and 30˚. In one of

the two valleys, three plots were discarded due to lack of suitable dwarf-shrub patches, result-

ing in a total of 37 plots. All samplings were completed in August 2014. All surveys were

conducted under the supervision and permission of the “Provincia di Udine”, which was

responsible for the area management and conservation. The study did not involve collection

or damages to any endangered or protected species.

Growth traits of Vaccinium myrtilluspopulations

Ten ramets of Vaccinium myrtillus were collected in each plot, clipping them at 5 cm below

ground level. The longest new shoot (length increment from one year) of each ramet was mea-

sured in the field. All the collected stems were treated with glycerin-alcohol and embedded in

paraffin. Cross-sections of 5 μm thickness were then cut from the basal 1.5 cm of each stem

using a rotary microtome (Leica RM 2135). Sections were dried at 60˚C for 2 hours. Afterward,

they were immersed in Xylol I (2 min), Xylol II (2 min), ethanol solutions (100% I, 100% II,

95%, 80%, 50%; 1 min each) and distilled water (1 min). Sections were stained with toluidine

blue to emphasize the growth ring structure. Images of cross sections were captured at x40–

x200 magnification through a microscope (Leica DMLB—Leica Microsystems, Germany) with

a digital camera (Leica ICC 50). Overall, 370 cross sections were analyzed. Images were used to

visually count xylem rings and to measure ring widths in three radii per section, using the

plug-in ObjectJ of the ImageJ software [51]. Ring counts and ring width were averaged for

each ramet.

Plant community

In each plot, the cover value of all plant species was visually estimated as a percentage of

ground area, by using a 5% step scale. Dwarf shrub cover (%) was also recorded. Taxonomy

and nomenclature were assigned following Flora Alpina [52]. Species richness was calculated

for each plot as the number of occurring species.

Data analysis

General linear mixed-effects models (LMMs) were used to test: (i) the effects of elevation on

growth traits of V. myrtillus (i.e. ramet age, ring width and shoot length; three separate mod-

els); (ii) the effects of elevation and considered plant traits on shrub cover (one model); and

(iii) the effects of elevation and shrub cover on alpha-diversity (i.e. species richness; one

model). The ramet age pattern was preliminary evaluated as mean and standard deviation of
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the number of xylem rings, while in the final models we considered only mean age and stan-

dard deviation was added as supplementary result (S1 Fig). In all models, the valley was

included as a random effect, evident outliers were discarded, and for all variables a quadratic

term was preliminarily included to account for possible non-linear relationships. Despite the

low number of levels, we decided to include valley as random factor to focus on the main effect

of the tested hypothesis. Furthermore, we preliminary included the valley as fixed-effect to

take into account of possible interactions between locality and tested variables. No significant

interactions emerged, showing a consistence of results with the used LMMs. All statistical anal-

yses were performed using the “nlme” package version 3.1–131 [53] in R [54]. For all models,

we also preliminarily included aspect (cosine transformation–southness index) and slope of

each plot as environmental covariates. No significant effect emerged, and thus covariates were

dropped from the final models. In addition, the correlation between dwarf shrub cover and

cover of the two most abundant shrub species (i.e. V. myrtillus: r = 0.5, p< 0.05, LMM, p<

0.05; and Rhododendron ferrugineum: r = 0.4, p< 0.05, LMM, p< 0.05) were analyzed. More-

over, all models were recalculated using V. myrtillus cover values instead of dwarf shrub cover;

as the results were comparable, the two variables were considered interchangeable, using

dwarf shrub cover in the presented models. We used general linear mixed-effects models

(LMMs) to estimate model parameters, as model residuals did not violate any linear model

assumption.

We tested the influence of elevation and shrub cover on plant beta-diversity, expressed as

an index of floristic similarity decay. Beta-diversity was calculated using the Bray-Curtis dis-

similarity index [55]. The analyses were performed by regression on distance matrices (MRM)

[56], which estimate regressions between two matrices. The matrices contained distances or

dissimilarities among all the pairwise combinations of the plots. The response matrix was the

Bray-Curtis dissimilarity index, the explanatory matrices were the elevation difference (vertical

distance in meters between each pair of plots) and shrub cover difference (difference in shrub

cover between each pair of plots). MRMs were conducted separately for each response variable

(i.e. beta-diversity vs. differences in shrub cover and beta-diversity vs. differences in elevation)

and using a linear model with and without a quadratic term to account for possible non-linear

relationships. Statistical significance was determined using permutation tests (n = 9999). The

MRM analyses were conducted using R [54] with the “MRM” function in the “ecodist” pack-

age version 2.0.1 [57]. R2 values were used to determine the variance explained by the model.

Piecewise Structural Equation Models (piecewise SEM) were fitted to assess potential net-

work causalities between the considered variables. Piecewise SEMs are an extension of tradi-

tional SEMs that allow one to encompass hierarchical data by piecing multiple LMMs into one

causal framework [58]. From an overall model based on a priori knowledge of interactions

with all hypothesized effects, we used Shipley’s test of direct separation to fit the model, which

evaluates the probability that none of the paths missing from the hypothesized network con-

tain useful information [59]. Model should be rejected if a chi-squared test of Fisher’s C statis-

tic is below the significance level (p< 0.05), indicating that model is inconsistent with the data.

Results

All the studied plant traits (i.e. ramet age, ring width, shoot length) showed significant negative

relationships with elevation. At higher elevation, ramets of V. myrtillus were younger, with

thinner growth rings and shorter shoots (Fig 1a–1c). V. myrtillus ramets had a mean age of

13.4 ± 3.2 years (max = 44 rings, min = 4 rings), which decreased ca. 1 year every 100 vertical

meters. Ramet age was also more evenly distributed at high elevation (S1 Fig; r2 = 0.24,

p = 0.001), where younger plants showed less variability in ring numbers. On average, rings
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were 84.8 ± 19.8 μm wide (max = 783.7 μm, min = 12.0 μm) and shoots were 14.5 ± 2.7 cm

long (max = 25.0 cm, 7.0 cm), which decreased ca. 5 μm and 2 cm every 100 vertical meters,

respectively.

Dwarf shrub cover showed a significant positive relationship with V. myrtillus shoot length

(Fig 1d), whereas the effects of the other plant traits (i.e. ramet age and ring width) and eleva-

tion on shrub cover were not significant.

Species richness was lower in plots with higher shrub cover (Fig 1e), whereas no significant

relationship with elevation was found. Species numbers ranged from 46 in plots with low

shrub cover to 11 in plots where cover was high.

Beta-diversity (i.e. floristic dissimilarity) was most influenced by dissimilarities in dwarf

shrub cover values (Δ dwarf shrub cover; r2 = 0.28, p = 0.001), showing an increase of floristic

dissimilarity between pair of plots where differences of shrub cover for the same pair of plots

were higher (Fig 1f). In contrast, the effect of elevation (Δ elevation) on beta-diversity was neg-

ligible (r2 = 0.02, p = 0.07).

Fig 1. Effect of elevation on Vaccinium myrtillus traits (a, b, c), of V. myrtillus shoot length on shrub cover (d), and of shrub cover on species richness (e) and beta-

diversity (f). Plots show the results of general linear mixed-effects models (a-e) and regression on distance matrices (i.e. floristic dissimilarity vs differences in shrub cover

among all the pairwise combinations of the plots) (f). Confidence intervals (95%) are also shown (a-e). In the regression on distance matrices (f), the density of paired

plots is represented by the intensity of the background color (smoothed scatter plot).

https://doi.org/10.1371/journal.pone.0196653.g001
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Results of piecewise SEMs depicted possible causalities between the studied variables (Fish-

er’s C statistic = 11.46, p = 0.49). SEM analysis confirmed that elevation significantly affected

all V. myrtillus growth traits but not shrub cover (Fig 2a). In turn, shrub cover was significantly

related to V. myrtillus shoot length (Fig 2b). Species richness was significantly related to shrub

cover but not to elevation (Fig 2c).

Complete outcomes of all the models tested in the Piecewise SEM are presented in the sup-

plementary material S1 Table.

Discussion

All the traits measured for V. myrtillus (ramet age, ring width, shoot length) were directly and

negatively related to elevation. Elevation, however, did not affect shrub cover, which was posi-

tively related to V. myrtillus growth (i.e. shoot length). Dwarf shrub cover was the main driver

of plant diversity, whereas elevation did not affect species richness or beta-diversity. These

findings suggest that elevation directly influences V. myrtillus growth but not plant diversity.

Hence, the growth of a key species, such as V. myrtillus, may overrule the effect of elevation on

alpine shrub-dominated ecosystems.

As we hypothesized, all V. myrtillus growth traits decreased with increasing elevation, i.e.

ramets were shorter and younger, and growth rings were thinner at higher elevation. These

results support previous studies on V. myrtillus [21,35,45] and other vascular plants [15,60–

62]. The observed trends in growth traits occur in parallel with changes in environmental con-

ditions for plant growth with increasing elevation. In temperate seasonal zones, the atmo-

spheric pressure and associated CO2 concentration, as well as temperature, length of the

vegetation period and nutrient availability, usually decrease with increasing elevation, whereas

annual precipitation, frequency of frost during the vegetation period and solar radiation tend

to increase [61,63,64]. These factors affect plant growth by generating limiting conditions

[60,63]. Among the plant traits, plant age distribution has been proved to be strongly affected
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c= 0.53
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Fig 2. Structural equation model diagram showing the hypothesized relationships among elevation (gray box)

and Vaccinium myrtillusgrowth traits (a, purple boxes), shrub cover (b, yellow boxes) and species richness (c, blue

boxes). Solid lines indicate significant relationships (p<0.05), whereas dashed lines indicate tested relationships that

were not statistically significant. Standardized effect size (i.e. scaled by mean and variance) of significant variables and

conditional coefficient of determination (r2
c) are also shown in the boxes.

https://doi.org/10.1371/journal.pone.0196653.g002
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by elevation. Hallinger et al. [62] proposed that a decrease in the estimated age of shrub indi-

viduals along the elevation gradient provides evidence that an upslope advance of the altitudi-

nal shrub line is underway. An upward shift of some dwarf shrub species has already been

shown using diachronic analyses of vegetation surveys in artic ecosystems (e.g. [29,64,65]).

Although we collected ramets belowground, where effects of missing rings are less strong [66],

ramet age might not actually reflect the age of plant individuals, as it is not know where below

ground the oldest parts of this clonal plant is located. If the ramet age in our study reflects

plant age, our findings could depict dynamics due to either (i) colonization by plants from

lower to higher elevation or (ii) an increase in individual (and/or ramet) turnover due to envi-

ronmental stress at higher elevation. Studies of other dwarf shrub communities have shown

that, during colonization, pioneer stands have a peculiar age distribution pattern characterized

by even-aged and very young individuals [67–69]. These dynamics are consistent with the

ramet age distribution that we found, suggesting a plausible ongoing colonization of new

stand of V. myrtillus at high elevation. At the same time, the lack of more detailed information

concerning past grazing activities could not exclude an influence of land use abandonment on

shrub encroachment, which could be more pronounced at high elevation, where grazing

would have ceased first.

We also hypothesized that shrub cover would decrease at higher elevation like the other

measured shrub traits, but this was not observed, as elevation and shrub cover were not

directly related. Among the traits measured for V. myrtillus, only shoot length was related to

overall shrub cover. We expected that elevation and decreasing temperature would directly

affect shrub cover, reducing the cover of this life-form. On the other hand, previous studies

have already demonstrated that climate effects can be remarkably blurred by other factors,

such herbivores activity [70,71] or alterations in nutrients cycling [72,73]. Although no signs

of grazing were found during our surveys, it is not possible to exclude the legacy effects of past

land use on shrub abundance. Moreover, the effects of small-scale ecological features (e.g. soil

conditions) can also have an important influence on shrub cover [70,74]. The finding that

shrub cover was explained by changes in shoot growth of V. myrtillus points to the importance

of understanding growth responses of key species.

In our study, the importance of growth of a key alpine species, V. myrtillus, was particularly

relevant at the whole community scale: we found that dwarf shrub cover rather than elevation

affected both species richness and beta-diversity by drastically reducing species number and

shifting species composition. Changes in the dominance structure of the plant communities

(i.e. where fewer species contribute a larger proportion of the total cover) can decrease the

evenness of a community and trigger local extinctions of many species [27]. The lack of effect

of elevation on species richness in our study may be due to factors like soil heterogeneity and

grazing [75] or to a shift in the relative abundance of extant species [27,76]. The effect of shrub

cover on beta-diversity was particularly apparent through an increase of floristic dissimilarity

with increasing shrub cover heterogeneity (i.e. difference) between pairs of plots (Fig 1f). This

finding highlights that a change in dwarf shrub cover had a significant effect on species turn-

over within the study community. This, coupled with the observed decrease of species rich-

ness, points to a homogenization of species composition, where few tall and competitive

species could dominate and replace smaller light-tolerant species. Hence, dwarf shrubs can be

considered as keystone species with considerable effects on other taxa and on ecosystem func-

tions, such general matter and energy fluxes [77]. Changes in the abundance and height of

shrubs could lead to considerable shifts in both the structure and species composition of a

plant community [27,30,78]. Our findings support that shrub encroachment may cause a

decline in biodiversity across a wide variety of tundra ecosystems, at least over the short term

[27].
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Conclusions

In this study of alpine vegetation, higher shrub cover had negative effects on species richness

drastically affecting also plant community (beta- diversity), which were not influenced by ele-

vation. These findings indicate that changes in cover of dwarf shrubs can cause species replace-

ment in plant communities, leading to a significant decrease in species richness. This process

seems to be indirectly mediated by an effect of elevation on the growth of key species. In fact,

V. myrtillus shoot growth enhanced shrub cover, which in turn decreased plant species rich-

ness. Our results demonstrate the importance of studying a wide range of variables, from key

species traits to community structure, to interpret changes in ecosystems. Our findings, hence,

suggest that changes in plant diversity are directly driven by shrub cover and only indirectly by

climate changes, here represented by the elevation gradient.
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