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Abstract

The World Health Organization (WHO) has clear guidelines regarding the use of Ki67 index

in defining the proliferative rate and assigning grade for pancreatic neuroendocrine tumor

(NET). WHO mandates the quantification of Ki67 index by counting at least 500 positive

tumor cells in a hotspot. Unfortunately, Ki67 antibody may stain both tumor and non-tumor

cells as positive depending on the phase of the cell cycle. Likewise, the counter stain labels

both tumor and non-tumor as negative. This non-specific nature of Ki67 stain and counter

stain therefore hinders the exact quantification of Ki67 index. To address this problem, we

present a deep learning method to automatically differentiate between NET and non-tumor

regions based on images of Ki67 stained biopsies. Transfer learning was employed to rec-

ognize and apply relevant knowledge from previous learning experiences to differentiate

between tumor and non-tumor regions. Transfer learning exploits a rich set of features previ-

ously used to successfully categorize non-pathology data into 1,000 classes. The method

was trained and validated on a set of whole-slide images including 33 NETs subject to Ki67

immunohistochemical staining using a leave-one-out cross-validation. When applied to 30

high power fields (HPF) and assessed against a gold standard (evaluation by two expert

pathologists), the method resulted in a high sensitivity of 97.8% and specificity of 88.8%.

The deep learning method developed has the potential to reduce pathologists’ workload by

directly identifying tumor boundaries on images of Ki67 stained slides. Moreover, it has the

potential to replace sophisticated and expensive imaging methods which are recently devel-

oped for identification of tumor boundaries in images of Ki67-stained NETs.

Introduction

Historically, pancreatic neuroendocrine tumors (NETs) were considered rare. However, there

is a recent and increasing trend in the incidence of these tumors [1, 2]. These tumors arise

from pancreatic islet cells and have a better prognosis than tumors arising from the exocrine
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pancreas. Most pancreatic NETs are sporadic, but they may occur as a result of the autosomal

dominant multiple endocrine neoplasia type-1 (MEN-1) inherited syndrome that results from

the inactivation of the tumor suppressor gene menin located on chromosome 11q13. MEN-1

is comprised of tumors of the anterior pituitary and parathyroid along with the pancreatic

endocrine glands. Pancreatic NETs can be functionally active with production of different hor-

mones like insulin, gastrin, glucagon, vasoactive intestinal peptide and somatostatin, or they

may be functionally inactive [3]. The factors that determine the malignant potential of these

tumors are metastasis to regional lymph nodes and liver or contiguous spread to adjacent

organs, tumor size greater than 2cm, angioinvasion, and proliferative activity greater than 2%

[3]. Therapy for pancreatic neuroendocrine neoplasms depends on multiple factors, but for

localized disease, complete surgical resection is the mainstay of treatment.

Pancreatic NETs are group of neuroendocrine neoplasms with unpredictable biologic

behavior [4]. The rate of tumor cell proliferation (often measured as Ki67 index) has been

found to be a consistent prognostic factor amongst the numerous factors studied to assess clin-

ical/prognostic outcome [5]. The grading systems described by various studies include either

counting mitotic cells and/or the Ki67 index. In 2010, the World Health Organization (WHO)

and the American Joint Commission on Cancer (AJCC) adopted a proliferative index deter-

mined by Ki-67 immunostaining and mitotic counts to establish a tumor grading system for

NETs of the digestive system [6]. The WHO proposed to combine histological differentiation

with stratification into three tiers of proliferative activity, using Ki67 as the most reliable mea-

sure of proliferation [7] (See Table 1). WHO guidelines require counting a minimum of 500

mitotic cells in a Ki67 positive hotspot [5, 8] in 10 high power fields.

It is well known that mitotic counts can be more easily determined than the Ki67 index;

however, if performed manually both methods are subject to the opinion of the interpreting

pathologist [5]. Several methods to count Ki67 positive and negative tumor cells exist, includ-

ing eyeballing (i.e. best estimate) [9], counting 2000 cells in regions of interest (i.e. hotspots

[8]) with the most frequent Ki67 nuclear labeling [10], counting Ki67 positive cells in 10 high

power fields [11], or counting using automated image analysis (AIA) [5, 12]. In clinical prac-

tice, pathologists usually identify tumor boundaries (i.e. tumor regions that are distinct from

non-tumor areas such as stroma or benign pancreatic parenchyma) based on H&E stained sec-

tions, virtually translate these boundaries over to the corresponding Ki67 stained slide, and

subsequently approximate the Ki67 index. Well differentiated NET tumor cells are morpho-

logically characterized by cellular uniformity, central ovoid nuclei, large sized nuclei, relatively

low nuclear to cytoplasmic ratio, fine (“salt and pepper”) chromatin, sometimes the presence

of nucleoli, and, depending on grade, occasional mitotic figures. NETs may exhibit a variety of

architectural growth patterns such as trabeculae, nests, glands and pseudorosettes. Compared

to tumor cells, stromal cells (non-tumor) are often less numerous and more scattered. Some of

these stromal cells include fibroblasts and endothelial cells that line blood vessels, and these are

often more spindle-shaped. The quantity of tumor infiltrating lymphocytes (non-tumor) cells

is variable. These inflammatory cells are round like tumor nuclei; however, they are relatively

smaller in size than tumor cells and typically have higher nuclear to cytoplasmic ratios (See

Fig 1).

Although, manual counting and eyeballing are susceptible to inter- and intra-reader vari-

ability, they are still preferred over AIA due to their minimal disruption on current “manual”

(non-digital) workflow and the inability of AIA to reliably differentiate Ki67 tumor positive

and negative cells from non-tumor positive and negative cells. This inability stems from the

fact that Ki67 stains both dividing tumor as well as non-tumor cells (e.g. lymphocytes) that are

in either the G1, S, G2 or M phase of the cell cycle [13]. Likewise, the counter stain (hematoxy-

lin) labels both tumor and non-tumor nuclei whether they are dividing or not. [14, 15].
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In recent years, several researchers have developed sophisticated imaging and AIA methods to

differentiate between Ki67 tumor positive and negative cells from non-tumor positive and nega-

tive cells [16–18]. These imaging based solutions rely on the use of quantum dot double staining

while AIA methods require image registration [19] of adjacent tissue sections stained for Ki67

and pancytokeritan [18]. Although Wang et al. have reported success in identifying tumor nuclei

using quantum dot-based methods, the cost of quantum dot-based double staining is consider-

ably higher than Ki67 staining, which restricts its availability for clinical use [20]. The AIA

method relies on staining tumor nuclei with Ki67 and cytoplasm with pancytokeratin to accu-

rately identify tumor nuclei. The introduction of pancytokeratin to identify nucleated tumor cells

in Ki67 stained slides has two main disadvantages–increased cost and misalignment-susceptible

non-rigid image registration between nuclei in Ki67 slides and cytoplasm in pancytokeratin slides

[21]. It is nearly impossible for pathologists to visually align Ki67 slides with pancytokeratin with

cellular-level precision. Although pancytokeratin has the potential to assist in identifying nucle-

ated tumor cells, the lack of reliable, non-rigid registration methods and the inability of patholo-

gists to visually align corresponding fields with Ki67 restricts its utility among clinicians.

Inspired by the recent success of deep learning in identifying mitotic cells and immune cells

from histology images [22–24], we present a novel method to automatically identify tumor

Fig 1. Image showing Ki67 immunostaining of pancreas NET including tumor and non-tumor regions. The green

annotation shows a tumor nest (Ki67 negative) while the red region shows non-tumor chronic inflammatory cells

(including both Ki67 positive and negative cells).

https://doi.org/10.1371/journal.pone.0195621.g001

Table 1. WHO guideline (2017) for grading pancreatic NETs. All grades require counting mitotic cells in H&E

stained sections, and computation of the proliferation index assessed using the Ki67 immunostain.

Grade I Ki67 Index <3 & mitotic count <2

Grade II 3� Ki67 � 20 or 2�MC � 20

Grade III Ki67 > 20 orMC> 20

https://doi.org/10.1371/journal.pone.0195621.t001
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cells from whole-slide images of Ki67 slides. Though it is relatively easy for an experienced

pathologist to identify tumor nuclei from Ki67 slides, they find it challenging to provide a con-

cise set of rules to describe this process. The difficulty stems from the fact that much of this

acquired knowledge is subjective, intuitive and therefore difficult to articulate in a formal way.

Computers need to capture this informal knowledge to replicate pathologists’ methods. How-

ever, it is difficult to devise formal rules to accurately describe this informal knowledge. So,

instead of hard-coding pathologists’ knowledge, we aimed to develop an automated system

based on deep learning [25] and transfer learning [26].

Transfer learning is a machine learning strategy by which features learned from a problem

in one domain are applied to a problem in a different domain. For example in Shin et al. [27],

Alexnet [22] and GoogLeNet [28], both previously trained on the Imagenet [22] dataset, are

retrained to 1) detect thoracoabdominal lymph nodes in abdomen CT scans and 2) classify

interstitial lung disease into six categories. It is particularly useful when the dataset of the new

domain is limited, as a model can be trained on a larger, more robust dataset then transferred

to the new domain using a smaller dataset. In the case of our method, transfer learning is per-

formed on an Inception v3 neural network pre-trained on the Imagenet dataset and applied to

tumor and non-tumor regions of pancreatic NETs. This method has the ability to acquire this

informal knowledge by automatically extracting discernable patterns from tumor regions in

Ki67 images of pancreas NETs.

Our method retrains Inception v3 via transfer learning to classify 64x64 pixel tiles extracted

from Ki67 stained neuroendocrine tumor biopsies. In addition, Alexnet is fine-tuned using the

same dataset to serve as a baseline comparison (Materials and Methods). Both are tested on 30

high power field images, the results of which are evaluated by two expert pathologists and

edited to create the ground truth (Results). Finally, the original output of the method is com-

pared against the ground truth to determine the sensitivity, specificity, and precision (Discus-

sions and Conclusions).

Materials and methods

This study is IRB approved by the University of Pittsburgh, Cancer Institutional Review

Board. All images used in this study were fully anonymized.

Database

Our database consists of 33 whole-slide images of Ki67 stained neuroendocrine tumor biopsies

acquired from 33 different patients. All slides were anonymized and digitized at 20x magnifica-

tion using a high-resolution scanner (Aperio ScanScope, Leica Biosystems) at 0.2437 microns

per pixel squared. All whole-slide images were annotated for tumor positive/negative and non-

tumor positive/negative (lymphocytes and stromal cells) regions by an expert pathologist (LP,

DH). The annotations were edited to exclude slide background for higher quality ground

truth. Each annotation was sampled for 64x64 pixel tiles at 20x magnification using a method

inspired by point counting stereology [29]–a grid of points arranged in squares is laid across

the image, and squares that fall within the boundary of the annotation are extracted as patches.

The Euclidean distance between every tile of a class across all slides was computed and sub-

jected to multidimensional scaling to eliminate outliers [30].

Convolutional neural network (CNN)

CNNs are a class of neural networks that have been shown to be effective in domains such as

image recognition and classification. On a superficial level, they consist of many consecutive

convolutional, pooling, activation, and fully-connected ‘layers’. Convolutional layers learn and
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extract meaningful features from their inputs, pooling layers simplify computation by down-

sampling inputs, activation layers introduce non-linearity into the otherwise linear convolu-

tional operation, and fully-connected layers use high-level features for classifying the input

image. ‘Deep’ CNNs typically feature multiple, successive combinations of these layers, often

employing more than 5 convolutional layers. Fig 2 shows a simple and typical configuration of

a CNN.

CNNs often require a huge number of training samples to self-learn discernable features.

Unfortunately, the limited availability of labeled Ki67 samples makes the use of CNNs imprac-

tical for automatic tumor identification. In such situations, transfer learning enables CNNs to

equip computers with an ability to recognize and apply relevant knowledge from previous

learning experiences when encountering new tasks [26, 31]. Here we present a similar

approach to automatically learn using transfer learning and apply learned knowledge to auto-

mated tumor identification.

CNNs are characterized by the utilization of mathematical convolutions, more specifically,

the operation known as cross-correlation [22]. The 2D cross-correlation of two functions (an

Image I and kernel K) produces a third function defined by the following equation:

Cðq; rÞ ¼
P

m

P
nIðm; nÞ � Kðmþ q; nþ rÞ ð1Þ

Here, q, r represent the image coordinates. In CNNs, several convolutions are computed

with respect to the number of kernels in what is known as a convolutional layer. Here, we

briefly describe aspects of a CNN relevant to the eventual architecture that we employed for

this study.

Convolutional, pooling, fully connected, and activation layers. Typical CNNs consist of

one or more convolution layers. Each convolution layer often contains multiple kernels. The

input for a convolutional layer is a 3D matrix, n x n x d, to which each kernel is applied where

n represents the size and d stands for the number of color channels. The output is colloquially

referred to as a feature map. Pooling layers reduce the dimensionality of their input data. Their

purpose is two-fold–saving memory and compressing features. Like the convolutional layer,

pooling layers [32] have kernels, which serve as the area upon which the operation acts. Typical

pooling operations include taking the maximum or average of the kernel. Distinct from these

pooling operations, which typically follow convolutional layers, is the global pooling operation.

This pools each feature map outputted by a convolutional layer into a single value per map.

This operation precedes fully connected layers, near the end of the CNN.

Fully connected layers have each input connected to each output. They contrast with con-

volution layers in that convolution layers typically function as features extractors while fully

connected layers function as classifiers. In CNNs and in deep neural networks in general, they

often precede the final layer in the network, a classification layer. Generally, the input is

Fig 2. Example of a CNN. Each convolutional layer is typically followed by an activation and pooling layer. The final pooling layer is followed by a series of fully-

connected layers then a final classification layer.

https://doi.org/10.1371/journal.pone.0195621.g002
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arranged into a vector and is multiplied by weights. This operation can be expressed with the

following equation:

yj ¼ f ð
P

iwijxi þ bjÞ ð2Þ

where x is the input vector, w is the weight matrix, b is bias, and y is the output vector. Here i is

the indices into the input vector while j represents the number of classes.

Following convolutional and fully connected layers, one generally applies an activation

function to each output value. These historically have been sigmoid or tanh functions [33, 34],

but have been abandoned due to infinitesimally small gradients they eventually produce in dif-

ferentiation during back propagation. The current more popular function is ReLU [34], or

Rectified Linear Unit. ReLUs essentially round output values less than to zero up to zero and

leave every other value the same. Since the derivative of this function is a constant, the vanish-

ing gradient problem is overcome.

Loss function and softmax layer. Cross-entropy serves as the standard for measuring the

loss of a neural network, i.e. how well the network classifies a set of labelled data.

L ¼ �
1

M
PM

j¼1
�yjlogðyjÞ ð3Þ

Here, M is the number of classes, �yj is the one-hot encoded target vector (containing a sin-

gle 1, which indicates the label), and yj is the predicted target vector. A softmax layer is often

used for classification in CNNs [34]. Usually, they follow one or two fully connected layers at

the end of the network. The softmax function is defined by the following, where z is a one-

dimension vector of activations.

zk ¼
ezk

PM
j¼1

ezj
ð4Þ

The activation vector z is the product of a one-dimensional matrix, x (the output of a fully

connected layer), and a weight matrix, w, whose weights are optimizable. Simply put, softmax

function takes a 1 x z vector, where z is the number of classes, and forces the sum of the ele-

ments to be 1, while maintaining the proportions between each element. The output represents

the probabilities of belonging to any of the z classes and is used as the predicted target vector

for computing cross-entropy.

Optimization. Optimization is the process of changing weights in CNNs (like those of the

kernel in convolutional layers and weights in fully connected and softmax layers) to minimize

loss [34, 35]. There are countless optimization strategies for CNNs. Relevant to our study is

mini-batch stochastic gradient descent (SGD) with momentum [36]. After back-propagation

of the loss, the gradient of each weight is known. Gradient descent updates the weights in the

direction opposite of gradient to minimize loss. The magnitude of this change is denoted by

the learning rate parameter. Mini-batch simply means that loss (and thus parameter update) is

computed with respect to a subset of the dataset, known as the mini-batch. Momentum simply

adds a proportion of the previous gradient of a weight to the current gradient. The result is

that when the previous and current gradient point in the same direction, the parameter update

is large in magnitude.

Alexnet

Alexnet is a large, deep convolution neural network trained on the Imagenet large Visual Rec-

ognition Challenge dataset from 2012 [22], a standard dataset in computer vision classification

tasks, consisting of 1000 classes. It consists of five ReLU convolutional layers followed by three
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fully-connected layers and a final softmax for classification. It is trained with stochastic gradi-

ent descent with momentum and decay rate of 0.9, a mini-batch size of for 10 epochs, a learn-

ing rate of 0.0001 with an exponential decay of 0.9, and employs cross-entropy for loss. The

first decay rate reduces the effect of momentum by a factor of 0.9 every epoch, and the second

decay rate reduces the learning rate by a factor of 0.9 every epoch. Rather than training solely

the final softmax layer, the error is allowed to backpropogate through the entire network,

allowing for fine-tuning of each weight. 10% of the training data was utilized for validation.

An average of 3909 tumor and 274 non-tumor tiles were used for testing.

Inception-v3

Inception-v3 is a large, deep convolution neural network trained also trained on Imagenet.

Inception-v3 is distinguished from conventional CNNs in four respects– 1x1 convolutions,

‘inception modules,’ label smoothing, and auxiliary classifiers. 1x1 convolutions reduce com-

putation through dimensionality reduction. Inception modules allow the network to choose

which size convolution at each layer is best by performing smaller, parallel convolutions of dif-

ferent sizes, whose filters are concatenated as a final output. Conventional CNNs are limited

by fixed convolution sizes [37]. Label smoothing is a regularization method that replaces target

vector 0s and 1s used for classification of k different classes with ε/k and 1- ε (k-1)/k, respec-

tively, where ε is the estimated proportion of mislabeled training samples. Finally, inception-

v3 contains two auxiliary softmax classifiers, connected to the outputs of two intermediary

Inception modules. In a sense, these allow the network to choose at which inception module

output it classifies, rather than propagating to the end.

Inception v3 is trained with stochastic gradient descent with momentum and decay rate of

0.9, a learning rate of 0.045 with an exponential decay of rate of 0.94, and employs cross-

entropy to measure loss. The first decay rate essentially reduces the effect of momentum by a

factor of 0.9 every epoch, and the second decay rate reduces the learning rate by a factor of

0.94 every epoch. Inception-v3 has learnt succinct features to successfully categorize data into

1000 classes. We use transfer learning to exploit these rich set of features, i.e., we used Incep-

tion-v3 as a feature extractor and trained solely its softmax classifiers (auxiliary and principal)

on our two class (tumor and non-tumor) dataset. The learning rate was set to 0.01, 10% of the

training data was utilized for validation, and a mini-batch size of 100 was used over 3000 itera-

tions. An average of 3909 tumor and 274 non-tumor tiles were used for testing.

Results

A total of three pathologists participated in the design and evaluation of this method.

Training and validation based on Pathologist A

Pathologist A was responsible for annotating tumor and non-tumor regions in images of Ki67

stained pancreas NETs. Annotating the whole slide is a labor-intensive, expensive, and time

consuming process, hence impractical. To overcome these issues and obtain high-quality

annotations, pathologist A precisely annotated small regions of tumor and non-tumor in all 33

whole-slide images. In our current dataset, we noticed that non-tumor cells are often outnum-

bered by tumor cells and are frequently interlaced as either scattered single cells (See Fig 3) or

form infiltrating lymphoid aggregates.

As a result this distribution, pathologist A annotated approximately 14 times more tumor

regions than the non-tumor regions. Pathologist A’s annotations resulted in a total of 129,024

tumor and 9,032 non-tumor tiles of size 64x64 pixels at 20x magnification for training and val-

idation of Inception-v3. We only considered tiles that were completely inside the areas
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annotated by pathologist A. We created 33 distinct training/validation datasets from the result-

ing tiles. Each of these datasets was created by withholding tiles from one of the 33 whole-slide

images for validation and using the rest for training (See Fig 4).

Testing by Pathologists B and C

For testing, we cropped a set of 30 images from the 33 Ki67 whole-slide images. Each image in

this test set had a size equal to one HPF. To expedite a comprehensive and precise evaluation

to of images in the test set, we preferred HPFs over whole-slide images. The HPFs in test

images were cropped from regions which were not annotated by pathologist A during the

training and validation. Moreover, while testing a HPF image from a certain slide, S, we used

the model which excluded S during training.

For each test image, two blank probability maps were generated, corresponding to tumor

and non-tumor classes. An additional third map was generated to keep track of the number of

passes over a pixel. Much like a convolution, a 64x64 pixel sliding window passes over the test

input image with a step size of 8 pixels. As each tile is classified, the probabilities were accumu-

lated in the tile’s corresponding area in the probability maps, respectively. The third map

added 1 to each corresponding pixel of the tile to track the number of passes. As classification

was completed, the probability maps were averaged over the third map, to produce an average

Fig 3. Interleaving of tumor (green annotation) and non-tumor (yellow annotation) regions. The predominance of Ki67 positive cell sin this image is confined to

regions of tumor.

https://doi.org/10.1371/journal.pone.0195621.g003
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probability per pixel. Both probability maps were thresholded to 0.5, to make binary masks for

tumor and non-tumor. The morphological erosions (disk structuring element, r = 2) of both

masks were subtracted from the binary masks to produce a decision boundary, which was

overlaid on the HPF test image as shown in Fig 5.

HPF images with overlaid tumor decision boundaries were shared with pathologists B and

C for evaluation. These pathologists could freely edit or draw new decision boundaries if they

did not agree with the automated annotations. The pathologists were also instructed to leave

boundaries unchanged if they agreed with the computer annotations (decision boundaries).

There were some differences between the annotations of pathologist B and C. These two

pathologists had an agreement of 96.2% while annotating tumor regions. However, this value

dropped to 83.6% in the non-tumor regions. Due to this variability, we considered two differ-

ent scenarios to create consensus readings between the two pathologists. First, annotations

Fig 4. Overview of model. 64x64 tiles were extracted from annotated regions of whole-slide images. The tiles resulting from 32 of these slides comprised the training set,

while tiles from 1 slide were withheld for testing. Additionally, multiple HPF regions were extracted from the test slide from areas without annotation. The inception

model was trained on the training set and its performance evaluated on the tiles from the test set. Finally, the high power fields were segmented using the inception

model and assessed by two separate pathologists to determine segmentation accuracy. Note that due to variability in the number of tiles each slide contributes, the size of

these 33 training and testing sets varied slightly. On the training data set, the average validation accuracy was 86.7% (±0.82%).

https://doi.org/10.1371/journal.pone.0195621.g004
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were considered accurate when both pathologists left computer annotations unchanged. For

consensus reading C1, the overlap, i.e. the logical ‘and’, between the pathologists’ edits were

considered part of the ground truth. We also considered the scenario in which consensus was

defined as both of the two pathologists’ corrective boundaries, i.e., logical “or” operation of

both pathologists’ annotations. This was denoted as consensus reading C2. These results are

shown in Tables 2 and 3. In addition, there were far more tumor pixels compared to non-

tumor pixels (4:1 average across all test HPFs). To evaluate how this disparity could change the

outcome, results for bootstrapped method without replacement are also shown in Tables 4 and

Fig 5. Pancreas NET test image process. Top) Example of a cropped static image used during testing. Bottom) The

proposed method identified tumor highlighted in light red while non-tumor was overlaid in light green. Distinct

boundaries between tumor and non-tumor are delineated using red and green annotation lines, respectively.

https://doi.org/10.1371/journal.pone.0195621.g005

Table 2. Comparison of proposed method with C1 readings.

Actual tumor pixels Actual non-tumor pixels Accuracy

Predicted tumor pixels 64,507,911 328,719 99.5%

Predicted non-tumor pixels 200,560 13,482,410 98.5%

Accuracy 99.7% 97.6% 99.3%

https://doi.org/10.1371/journal.pone.0195621.t002
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5. Tables 2 and 4 show the C1 reading results when compared to computer generated annota-

tions for the 33 test images. Similarly, Tables 3 and 5 show C2 reading results compared to

computer annotations. Note that the total number of pixels for each of these tables does not

sum to the same number of pixels, as there were regions that the pathologists disagreed on the

true label, in which case that part of the HFP was ignored for computing accuracy. Fig 6 com-

pares Alexnet with Inception v3 for all consensuses (C1 and C2) and bootstrapping (with and

without) combinations using ROC curves.

Discussions and conclusions

Differentiating tumor cells that are Ki67 positive and negative cells from non-tumor cells that

are also stained positive and negative is a challenging problem [14, 38]. Although we described

a set of rules to identify tumor from non-tumor regions in Ki67 stained slides of pancreas

NET, those rules are insufficient to develop a reliable computer method to automatically dif-

ferentiate between tumor and non-tumor nuclei. Moreover, it is difficult to hand-craft some of

the aforementioned features into computer language. For instance, establishing nuclear to

cytoplasmic ratio based solely upon images of Ki67 stained tissue is difficult to compute

because cell boundaries are mostly indistinct from each other. For this reason, we opted to use

deep learning architecture as it has the potential to self-learn discernable features from a given

set of images.

To simplify analysis and facilitate evaluation, we intentionally posed the problem as tumor

vs non-tumor instead of posing it as a four-class problem (tumor positive, tumor negative,

non-tumor positive, and non-tumor negative). However, the problem can still easily be subdi-

vided into a four-class challenge after application of the proposed method. Automated image

analysis can be achieved by application of methods known for differentiating between brown

and blue hue [8, 12, 13, 39]. The application of such methods would accordingly divide tumor

regions into tumor positive and negative, and non-tumor regions into non-tumor positive and

non-tumor negative regions.

The results of this study suggest that pathologist B and C had good agreement when it

comes to identifying tumor. The test images usually contained large areas of tumor nuclei,

which made it possible for the pathologists to easily and quickly annotate these tumor regions.

The agreement between pathologists dropped to 83.6% in non-tumor regions. We attribute

this drop to the existence of numerous smaller segments of non-tumor cells in our test dataset.

We believe that annotating all these small regions is a laborious and time-consuming process

which might have led to relatively lower level of agreement.

Table 3. Comparison of proposed method with C2 readings.

Actual tumor pixels Actual non-tumor pixels Accuracy

Predicted tumor pixels 63,287,184 1,536,088 97.6%

Predicted non-tumor pixels 1,448,585 12,231,468 89.4%

Accuracy 97.8% 88.8% 96.2%

https://doi.org/10.1371/journal.pone.0195621.t003

Table 4. Bootstrapped comparison of proposed method with C1 readings.

Actual tumor pixels Actual non-tumor pixels Accuracy

Predicted tumor pixels 68,517,651 1,640,240 97.7%

Predicted non-tumor pixels 537,994 67,415,405 99.2%

Accuracy 99.2% 97.6% 98.4%

https://doi.org/10.1371/journal.pone.0195621.t004
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Comparing the results for Tables 2–5 and Tables 6–9, it seems that Inception-v3 trained by

transfer learning is far superior to Alexnet trained by fine-tuning. This is mostly likely due to

the fact that fine-tuning an entire network often leads to overfitting on the training set and

non-generalization to unseen datasets. In addition, the characteristics that set Inception apart

from conventional neural networks counteract overfitting.

The results in Tables 2 and 4 show that there is strong consensus between computer anno-

tations and the areas where both pathologists agreed (in terms of Venn Diagram [40], this rep-

resents the areas where both pathologists agreed with each other), i.e., the computer can

reproduce consensus readings of pathologists B and C with high level of confidence. However,

this does not necessarily imply that both pathologists will agree with the computer annota-

tions. For instance, there is a possibility that pathologist B might have missed some regions

that were marked by pathologist C. For this reason, we introduced consensus reading C2

which compares computer annotations to those areas where either of the two pathologists

agreed, i.e., union [40] of the pathologist B and C’s annotations. The results in Tables 3 and 5

Table 5. Bootstrapped comparison of proposed method with C2 readings.

Actual tumor pixels Actual non-tumor pixels Accuracy

Predicted tumor pixels 66,247,130 7,682,702 89.6%

Predicted non-tumor pixels 2,590,650 61,155,078 95.9%

Accuracy 96.2% 88.9% 92.5%

https://doi.org/10.1371/journal.pone.0195621.t005

Fig 6. ROC curves comparing inception and Alexnet results presented in Tables 2–9. Here, TP and FP stand for true positive and false positive, respectively. Top

Left) ROC curve for Table 2 and Table 6. Top Right) ROC curve for Table 3 and Table 7. Bottom Left) ROC curve for Table 4 and Table 8. Bottom Right) ROC curve for

Table 5 and Table 9.

https://doi.org/10.1371/journal.pone.0195621.g006
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are slightly inferior to those shown in Tables 2 and 4, respectively; however, the high sensitivity

and specificity values still show that the proposed method is successful in reproducing the

pathologists’ annotations with a high level of accuracy.

We used different sets of images during training and testing to avoid selection bias [41], i.e.,

training and testing on two independent datasets. The test images were always evaluated on

the models which excluded the slides used during training and validation. Additionally, differ-

ent pathologists were used during training and testing. This demonstrates that the computer

results are not only in agreement with the pathologists whose annotations were used during

training, but likely also has the ability to generalize and reproduce annotations that are accept-

able across clinical institutions.

Based on the presented results, we conclude that our deep learning method has the potential

to replace sophisticated imaging techniques performed on tissue or other AIA methods and

will accordingly reduce the pathologists’ workload by directly identifying tumor boundaries

on images of Ki67 stained slides. We expect that this method will not only catalyze efforts used

in determining the exact quantification of the Ki67 index but will also contribute towards

unfolding the prognostic significance of this index in NETs. Our deep learning method can

easily be adopted for quantification of Ki67 index in other tumor types, such as breast cancer.

Future studies will explore the prognostic significance of computing Ki67 index in hotspots

and its relationship to patient outcome.

Table 7. Fine-tuned Alexnet compared to C2 readings.

Actual tumor pixels Actual non-tumor pixels Accuracy

Predicted tumor pixels 55,471,626 7,615,267 87.9%

Predicted non-tumor pixels 1,502,601 6,074,895 80.2%

Accuracy 97.4% 44.4% 87.1%

https://doi.org/10.1371/journal.pone.0195621.t007

Table 8. Bootstrapped fine-tuned Alexnet compared to C1 readings.

Actual tumor pixels Actual non-tumor pixels Accuracy

Predicted tumor pixels 66,737,239 38,122,251 66.6%

Predicted non-tumor pixels 2,318,406 30,933,394 93.0%

Accuracy 96.6% 44.8% 70.1%

https://doi.org/10.1371/journal.pone.0195621.t008

Table 6. Fine-tuned Alexnet compared to C1 readings.

Actual tumor pixels Actual non-tumor pixels Accuracy

Predicted tumor pixels 55,466,041 7,624,103 87.9%

Predicted non-tumor pixels 1,390,470 6,187,026 81.7%

Accuracy 97.6% 44.8% 87.2%

https://doi.org/10.1371/journal.pone.0195621.t006

Table 9. Bootstrapped fine-tuned Alexnet compared to C2 readings.

Actual tumor pixels Actual non-tumor pixels Accuracy

Predicted tumor pixels 65,919,730 38,073,653 63.4%

Predicted non-tumor pixels 2,531,080 30,377,157 92.3%

Accuracy 96.3% 44.4% 70.3%

https://doi.org/10.1371/journal.pone.0195621.t009
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