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Abstract

The Chinese pine (Pinus tabulaeformis Carr.) is an ecologically and economically important

evergreen coniferous tree which dominates warm temperate forests throughout northern

China. We established two permanent plots within the Chinese pine forest in the Jiulong

Mountains, Beijing, China. To understand the structural characteristics and dynamics of

these plots, we analyzed the spatial structural characteristics within nearest-neighbor rela-

tionships using the bivariate distributions of the stand spatial structural parameters: uniform

angle index, W; mingling index, M; dominance index, U; and crowding index, C. Results

revealed that most trees in the forest were randomly distributed. The predominant individu-

als and randomly arranged trees were in very dense areas and surrounded by the same

species. In addition, both plots exhibited a uniform size differentiation pattern. The two plots

differed mainly in the level of species mixture and dominance. The majority of reference

trees in the pure Chinese pine forest (plot 1) exhibited poor species mingling and low domi-

nance, whereas trees in the mixed Chinese pine forest (plot 2) were evenly distributed in

each mingling class and most trees were of intermediate dominance. The study results are

useful for optimizing forest management activities in the studied stands, promoting tree

growth, regeneration and habitat diversity, and improving forest quality at a fine scale.

Introduction

Forests are three-dimensional systems whose biophysical structure plays an important role in

ecosystem functioning and diversity [1,2]. Forest structure is both a product and driver of eco-

system processes and biological diversity [2]. It reflects both autogenic developmental pro-

cesses, such as the regeneration pattern, competition, and the consequent self-thinning, and

past and present disturbance events. Thus, forest structure has become an important factor

when analyzing and managing forest ecosystems.

Forest spatial structure describes the spatial relationships among different species in the

same forest community. In other words, it is the spatial distribution of tree positions and their

attributes. Forest spatial structure provides a more detailed description of a forest and largely

determines the properties of the system as a whole, including total biomass production,
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biodiversity, habitat functions, and the quality of ecosystem services [3]. It is a significant

component of forest structure and has been used to monitor the spatial and environmental

heterogeneity, identify the niche requirements of tree species, assess the temporal and spatial

dynamics of vegetation, identify the effects of inter- and intra-specific competition, predict for-

est productivity, explain climate-related changes, provide valuable information for more adap-

tive and sustainable forest management, and investigate hydrological processes [4,5]. The

accurate and effective description of spatial structure has attracted the attention of scholars [6].

Various qualitative and quantitative indices have been developed to describe and compare

stand spatial structures, such as the index of Clark and Evans [7], the diffusion index [8], Rip-

ley’s K-function [9], the K-function [10], the O-ring statistic [11], the Gini coefficient [12], Pie-

lou’s isolation index [13], the mean directional index [14], Gadow’s species mingling [15], the

mixed ratio [16], and the uniform angle index [6,17]. Some of these indices have been used

widely in forestry and ecology. Many of these indices are related to the spatial relationships

between neighboring trees.

In recent years, a set of structural parameters that reflects the nearest neighbor relationships

between a reference tree and its four nearest neighbor trees has attracted attention for analyz-

ing the characteristics of spatial structure and competition, calculating dominance and species

diversity, adjusting structure, and guiding good forestry practices [16,18–28]. This approach

uses four indices: uniform angle (W), mingling (M), dominance (U), and crowding (C) indi-

ces. The W index reflects the degree of distribution regularity. M is the similarity probability of

tree species. U indicates the relationships of tree size. C is the degree of crowding of the neigh-

bors surrounding the reference tree. Compared with traditional methods, this method has

many advantages that involve using frequencies to express the attributes among trees [29–32].

The Chinese pine (Pinus tabulaeformis Carr.) is an endemic dominant species of temperate

warm forests in China that grows mainly in northern China [33]. It grows on more than 2.5

million ha, with an estimated stocking volume of 0.13 billion m3 [34]. Chinese pine occupies a

very important position in mountain vegetation restoration and has invaluable ecological,

social, and economic benefits. Due to insufficient planting and the need for extensive manage-

ment with a long time lag, Chinese pine plantations have done poorly and have low ecological

function. Therefore, the scientific management of Chinese pine plantations has become a top

priority. A comprehensive analysis of stand structure is an important basis for scientific

management. Although many structural characteristics of this species (age structure, distribu-

tion pattern, species diversity, etc.) have been published [35–38], they mainly use the non-spa-

tial structure or one-dimensional distribution of spatial structure to analyze the overall

characteristics.

In comparison, this study examined the spatial structure characteristics of Chinese pine for-

ests based on the relationships with neighboring trees. To clarify the ecological characteristics,

the stability and succession of Chinese pine communities, and the formation and maintenance

of Chinese pine ecosystems, we analyzed the spatial structure characteristics of two types of

forest stand dominated by Chinese pine. This study explored the community structure charac-

teristics of pure and mixed Chinese pine forests and the structural differences between pure

and mixed Chinese pine forests. It also discusses possible methods for increasing the stability

of Chinese pine plantations.

Materials and methods

Ethics statement

This research was conducted in Experimental Center of Forestry in North China, Chinese

Academy of Forestry (ECFNC for short). This study was also supported by this center. We
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confirmed that the location is not privately owned and the trees investigation was approved by

ECFNC. We also confirmed that the field studies did not involve endangered or protected

species.

Study area

This investigation is based on observations made in forest stands dominated by P. tabulaefor-
mis in the Jiulong Mountains (ll5˚590–ll6˚070E, 39˚540–39˚590N), which are located near Bei-

jing east of the Taihang Mountains (Fig 1). The climate in this region has been classified as

temperate continental affected by monsoon climate. The elevation in the area ranges from 100

to 997 m. The annual average temperature is 11.8˚C. The region receives an annual mean pre-

cipitation of 630 mm and has an average yearly relative humidity of 66%. The distribution of

the precipitation is relatively uneven during the year, with a relatively wet season from June to

September and a relatively dry season beginning in October and ending in May of the

Fig 1. Map of the study site. The map was produced using the Ggmap package in R [40].

https://doi.org/10.1371/journal.pone.0194710.g001
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following year. The total evaporation capacity and frost-free period are approximately 1870

mm and 216 days, respectively. The soil is a brown rocky mountain forest soil with a high

stone content and the average soil layer thickness is 20 to 50 cm. Furthermore, the topography

is steep and undulating [39].

Field sampling

Two permanent plots were established in the summer of 2015. The pure forest site covered

2500 (50 × 50) m2 and the mixed forest site 5000 (50 × 100) m2. Both plots were dominated by

P. tabulaeformis. The main canopy species in the pure forest (Plot 1) were P. tabulaeformis and

Ulmus pumila, while those in the mixed forest (Plot 2) were P. tabulaeformis, Larix principis-
rupprechtii, Syringa pekinensis, and Tilia mandshurica. In each plot, all of the trees with a diam-

eter at breast height (DBH) >5 cm were tagged, and their positions were mapped with a Top-

con GTS602 (Topcon, Tokyo, Japan) autofocus total station. The tree DBH, height, and crown

diameter were recorded S Data. Fig 2 shows the spatial distributions of the trees in both plots

[40]. Table 1 provides general information on the plots.

Data analysis

Stand structural parameters based on neighborhood relationships. The ‘structural unit’

was defined as a neighborhood involving a focal tree and its four nearest neighbors (Fig 3).

Any structural unit can be synchronously described by multiple factors, such as tree size

(DBH or crown), tree species, and tree distribution in the space. These factors can be readily

expressed by a group of stand structural parameters (Fig 4): the W index [3,32], M index

Fig 2. Observed tree point patterns in plots (a) 1 and (b) 2. Tree species are indicated by circles of different colors. Symbol sizes

are proportional to the diameter at breast height (DBH). X and Y are the perpendicular coordinate axes of the plots.

https://doi.org/10.1371/journal.pone.0194710.g002

Table 1. Stand characteristics of the two plots.

Plot Slope (˚) Mean Altitude (m) Canopy Cover Tree Density (trees/ha) Mean Basal Area (m2/ha) Mean DBH (cm) Number of Species

Plot 1 25 685 0.80 1148 17.8 14.0 6

Plot 2 23 725 0.85 1350 25.5 15.5 11

https://doi.org/10.1371/journal.pone.0194710.t001
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[16,31], U index [41,42], and C index [27]. These four parameters have obvious biological sig-

nificance and can be easily and rapidly obtained in the field.

The W index, which is defined as the proportion of the angles α that are smaller than the

standard angle α0(72˚), is calculated as:

Wi ¼
1

4

X4

j¼1

zij ð1Þ

Where zij = 1 if a< a0, and zij = 0 otherwise.

Fig 3. The structural unit.

https://doi.org/10.1371/journal.pone.0194710.g003

Fig 4. Specific characteristics of the four stand structural parameters.

https://doi.org/10.1371/journal.pone.0194710.g004
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The W index indicates the spatial dispersion of the four nearest neighbors around the refer-

ence tree. Increasing values indicate a transition from regular to random to clumped spatial

pattern.

The M index reflects the probability that the reference tree belongs to the same species as its

four nearest neighbors and can be calculated as:

Mi ¼
1

4

X4

j¼1

vij ð2Þ

Where vij = 1 if the jth neighboring tree is not of the same species as the ith reference tree, and

vij = 0 otherwise. A higher value implies more species in the structural unit.

The U index reflects the relationship between the size of the reference tree and its four near-

est neighbors and is defined as:

Ui ¼
1

4

X4

j¼1

kij ð3Þ

Where kij = 1 if the jth neighboring tree is smaller than the ith reference tree, and kij = 0 other-

wise. A higher value implies that the reference is larger (dominant) than all four neighbors.

The C index reflects the relationship between the canopy of the reference tree and its four

nearest neighbors and can be expressed as follows:

Ci ¼
1

4

X4

j¼1

yij ð4Þ

Where yij = 1 if the canopy projection of the jth neighboring tree overlaps that of the ith refer-

ence tree, and yij = 0 otherwise. The C index reflects not only the degree of crowding of trees

and their four nearest neighbors with competition information, but also whether the forest

canopy layer covers the woodland continuously. The greater the cumulative value of C, the

higher the stand density, and the more continuous the coverage of the canopy is.

The bivariate distribution characteristics of the stand structural parameters. Bivariate

distributions were studied involving the following six pairs of stand structural parameters:

mingling-dominance (M-U), mingling-uniform angle index (M-W), mingling-crowding

(M-C), dominance-uniform angle index (U-W), dominance- crowding (U-C), and uniform

angle index-crowding (W-C). Each joint probability of the bivariate distribution contains 25

structural combinations.

Results

M-U bivariate distribution

One feature of the M-U bivariate distribution (Fig 5) common to each plot was that the fre-

quency values for each class of U (U = 0.00–1.00) were approximately the same. By contrast,

the frequency values for each grade of M (M = 0.00–1.00) differed completely. Of the trees in

plot 1, a proportion of 0.824 showed low M (M = 0.00–0.25) (Fig 5a), whereas the trees in plot

2 were evenly distributed at each grade of M (Fig 5b). Specifically, most reference trees in plot

1 are surrounded by the same species. Another different feature of each plot was that the fre-

quencies of trees in plot 1 increased with decreasing M levels, with a maximum proportion of

0.132 at structural combination (M = 0.00, U = 1.00). The maximum value was three times

greater than that of the other combinations, which had a mean frequency< 0.037 (Fig 5a). By

contrast, with the exception of the structural combination (M = 1.00, U = 0.75), the frequency

Bivariate distribution of four structural parameters based on nearest neighbour relationships

PLOS ONE | https://doi.org/10.1371/journal.pone.0194710 April 13, 2018 6 / 13

https://doi.org/10.1371/journal.pone.0194710


values of trees in plot 2 changed between 0.10 and 0.60, and no trend was obvious. It peaked

(0.068) at the combination (M = 0.00, U = 0.50) (Fig 5b).

M-W bivariate distribution

The M-W index models (Fig 6) show that the highest frequency in the two plots was where the

M index = 0.00 and the W index = 0.50. The frequencies were 0.346 and 0.169 for plots 1 and

2, respectively. In other words, the most common structural units were those in which the

tree species of all four neighbors were the same as that of the reference tree and had a random

distribution pattern in the quadrats. Another common feature of each plot was that more

than half of the trees were randomly distributed (W = 0.50) and the number of individuals

with a regular distribution (W = 0.00–0.25) exceeded the number of individuals in clumps

(W = 0.75–1.00). However, plots 1 and 2 differed in that approximately 1.2 and 2 times as

many individuals, respectively, had regular distributions than were in clumps (Fig 6a and 6b).

The frequency values for each M class increased initially and then declined, accompanied by

an increase in the degree of the uniform angle index.

M-C bivariate distribution

In the M-C bivariate distribution (Fig 7), the highest pole value of both plots always occurred

with the combination of M = 0.00 and C = 1.00, which represents the case in which proximity

of trees around the reference tree is very dense and it is surrounded by the same species. This

case always had a frequency value> 0.200, and the mean value was six times greater than that

of the other combinations, which had a mean frequency value less than 0.033. The frequency

of each C class increased gradually from 0.00 to 1.00, and most of the individuals were parts of

Fig 5. Bivariate distributions for mingling vs. dominance: Plots (a) 1 and (b) 2.

https://doi.org/10.1371/journal.pone.0194710.g005

Fig 6. Bivariate distributions for mingling vs. uniform angle index: Plots (a) 1 and (b) 2.

https://doi.org/10.1371/journal.pone.0194710.g006
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aggregations with high to very high degrees of C (C = 0.75–1.00); the frequencies were 0.769

and 0.930 for plots 1 and 2, respectively (Fig 7a and 7b).

U-W bivariate distribution

The two plots had similar U-W index bivariate distributions (Fig 8). Namely, the U-W bivari-

ate distribution was approximately symmetrical around the random distribution axis

(W = 0.50) and declined gradually toward zero on both sides. The frequency of U increased

with the W index and then decreased, suggesting a normal distribution. In addition, more

than half of the frequency values fell along the random distribution axis (W = 0.50), and their

frequencies in each row were between 0.104 and 0.154. When compared with the combina-

tions in each plot with frequency values between 0.000 and 0.062, the high frequency of W

index = 0.50 is notable, and accounted for 0.632 and 0.588 of the whole, respectively. One

slight difference between the two plots was that the frequency value of plot 1 was 6% lower

than that of plot 2 on the regular distribution axis (W = 0.25). The highest pole value appeared

with different structural combinations: the highest frequency value of plot 1 was concentrated

at the structural combination (U = 0.75, W = 0.50) (Fig 8a), whereas that of plot 2 was located

at structural combination (U = 0.50, W = 0.50) (Fig 8b). In other words, most trees had ran-

dom distributions; however, the former were in the disadvantageous U range, whereas the lat-

ter were in the intermediate U range.

U-C bivariate distribution

One common feature of the U-C bivariate distribution (Fig 9) in the two plots was that the

highest frequency was at U = 0.00 and C = 1.00. The frequencies were 0.143 and 0.181 for plots

1 and 2, respectively. Namely, the most common structural units were those in which the

Fig 7. Bivariate distributions for mingling vs. crowding: Plots (a) 1 and (b) 2.

https://doi.org/10.1371/journal.pone.0194710.g007

Fig 8. Bivariate distributions for dominance vs. uniform angle index: Plots (a) 1 and (b) 2.

https://doi.org/10.1371/journal.pone.0194710.g008
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reference tree was predominant and belonged to a very dense group. Another feature common

to each plot was that the frequency values of U increased with the C level, and most individuals

fell along intermediate-high degrees of C (C = 0.75–1.00). However, compared with plot 1 (Fig

9a), a majority of the frequency values (0.763) for plot 2 were aggregated at a high degree of C

(C = 1.00) (Fig 9b).

W-C bivariate distribution

The W-C bivariate distributions in both forests were similar (Fig 10). Most of the frequency

values were located at the structural combination (W = 0.50, C = 1.00), accounting for 0.330

and 0.443 of the entire combination, respectively. That is, the most common structural units

were those in which the reference tree was in a very dense group and had a random distribu-

tion pattern in the quadrats. The frequency values of the W index increased with the C level,

and most individuals fell among intermediate -high degrees of C (C = 0.75–1.00). In addition,

more than half of the frequency values fell along the random distribution axis (W = 0.50), and

the closer the W index was to 0.50, the greater the disproportion.

Discussion and conclusions

The bivariate distributions of forest stands dominated by Chinese pine revealed that the major-

ity of reference trees were in very dense groups and randomly distributed, and that the tree

size differentiation was not significant. It also demonstrated that the proportions of frequency

values were distributed almost uniformly in each grade with a mean U value of nearly 0.20.

The frequency of each C class increased gradually from 0.00 to 1.00. In addition, most trees

were not mixed in the pure Chinese pine forest, and most neighbor groups consisted of five

conspecific trees; whereas the trees were evenly distributed in each grade of M in the mixed

Fig 9. Bivariate distributions for dominance vs. crowding: Plots (a) 1 and (b) 2.

https://doi.org/10.1371/journal.pone.0194710.g009

Fig 10. Bivariate distributions for uniform angle index vs. crowding: Plots (a) 1 and (b) 2.

https://doi.org/10.1371/journal.pone.0194710.g010
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Chinese pine forest (Figs 5–7). In a microenvironment, the frequency of U increased with the

W index and then decreased, suggesting a normal distribution. The largest proportion of trees

in the pure Chinese pine forest were at a disadvantageous dominance level and randomly dis-

tributed, whereas the largest proportion of trees in the mixed Chinese pine forest was in the

intermediate U level and randomly distributed (Fig 8). Most of the predominant individuals

and randomly arranged trees were very densely grouped and surrounded by the same species

(Figs 7, 9 and 10). In other words, the difference in the six bivariate distributions of the stand

structural parameters (M, W, U, and C) between the pure and mixed Chinese pine forests was

mainly caused by the distribution of M. The pure and mixed Chinese pine forests were low-

and intermediate-mixture states, respectively. These attributes indicate that Chinese pine for-

ests have relatively low heterogeneity. The results provide valuable, detailed information on

the structure of Chinese pine forests, which will help when developing sustainable manage-

ment plans.

Chinese pine is famous for its ecological characteristics, including strong root systems and

cold and drought resistance. Chinese pine forests have important ecological functions and

include many warm-temperate components. Regionally, mixed forest containing Quercus is

the top vegetation and climax community. Compared with natural forests of Chinese pine, the

studied forests had lower spatial heterogeneity due to their artificial origin, disturbance history,

and subsequent development. This difference was also related to their regeneration patterns

and reproduction strategies. After the canopy closes, the competition among conspecific plants

for the same resources gradually intensifies because of their similar requirements. Conse-

quently, the weaker conspecific trees tend to die, resulting in self-thinning. These processes

not only provide the necessary conditions for the invasion and growth of other species, but are

also the primary reason why pure Chinese pine forest has some associated species. In addition,

these results describe an ecological pattern in which the trees in Chinese pine forests are

arranged randomly. Other researchers have found that the tree distribution pattern in Chinese

pine forests changes constantly among different growth and development stages [35,43].

In this study, structural parameters were considered to be tightly associated with mixture,

size differentiation, distribution patterns, and crowding between each individual and the four

adjacent neighboring trees. These structural parameters have strong operability [3, 22–23, 41],

which makes the precise adjustment of spatial structure possible. The bivariate distributions of

the structural parameters are not only applicable to the spatial structure analysis of the com-

munity, but also to the structure analysis of tree populations [24]. This method should further

our understanding of the diversity of population structure. Moreover, it is not necessary to

conduct a comprehensive survey to obtain spatial information on specific species because this

can also be achieved with a sample survey based on the tree structure unit [3,41], which can

save much time and effort. Finally, analysis of the dynamic succession of a population may be

part of future work by combining the bivariate distributions of structural parameters with dif-

ferent environmental factors.

The bivariate distributions of the structural parameters are useful for adjusting spatial struc-

ture and the optimization and restructuring of management practices. For example, they can

be used to analyze selective harvest events in a continuous cover forest (CCF) management

system. This method can provide critical and detailed information about spatial species min-

gling, distribution patterns, dominance, and crowding. Using the bivariate distribution charac-

teristics, foresters can not only accurately determine the harvesting priority for trees, but also

control the intensity of harvest. For example, according to the frequency distribution shown in

Fig 6, trees with a low mixed and clumped status would be harvested to promote forest devel-

opment towards a higher species mixture and random distribution. When it is necessary to

promote forest development towards a higher dominance and less crowding, trees with low

Bivariate distribution of four structural parameters based on nearest neighbour relationships
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dominance and very dense status would be harvested according to the frequency distribution

shown in Fig 9. Previous studies have confirmed the advantages of using the bivariate distribu-

tions of structural parameters. These advantages have been illustrated for harvesting [44, 45].

Daume used the bivariate distribution of mingling and diameter differentiation for selecting

trees to harvest [44], while Li used the bivariate distributions of mingling, uniform angle

index, and dominance for selecting trees to harvest [45].

The bivariate distributions of the structural parameters also have other advantages when

modeling forest, i.e., they are affected less by forest type and status, more flexible for analyzing

complex forests, more practical for forest management, and less expensive.
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