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Abstract

Wind has a significant effect on the control of fixed-wing unmanned aerial vehicles (UAVs),

resulting in changes in their ground speed and direction, which has an important influence

on the results of integrated optimization of UAV task allocation and path planning. The

objective of this integrated optimization problem changes from minimizing flight distance to

minimizing flight time. In this study, the Euclidean distance between any two targets is

expanded to the Dubins path length, considering the minimum turning radius of fixed-wing

UAVs. According to the vector relationship between wind speed, UAV airspeed, and UAV

ground speed, a method is proposed to calculate the flight time of UAV between targets. On

this basis, a variable-speed Dubins path vehicle routing problem (VS-DP-VRP) model is

established with the purpose of minimizing the time required for UAVs to visit all the targets

and return to the starting point. By designing a crossover operator and mutation operator,

the genetic algorithm is used to solve the model, the results of which show that an effective

UAV task allocation and path planning solution under steady wind can be provided.

Introduction

At present, unmanned aerial vehicles (UAVs) are widely used by the military and civilians.

They are able to fulfill a variety of tasks, such as target reconnaissance [1], target tracking [2],

intelligence gathering [3], post-earthquake rescue [4], and geological exploration [5]. For

instance, when multiple UAVs are applied to cooperative target reconnaissance, it is necessary

to allocate reconnaissance targets for each UAV reasonably, and to plan optimal flight path for

each UAV. This involves the integrated optimization of task allocation and path planning con-

strained by multiple factors [6–8], which is also a NP-hard (non-deterministic polynomial-

time hard) problem [9].

For UAVs, one of the largest disturbances in flight is wind, as it affects the flight posture

[10] and flight path [11] of UAV, thus resulting in changes in flight time. In a windless envi-

ronment, UAV airspeed is equivalent to UAV ground speed. However, in a windy environ-

ment, ground speed is affected by both airspeed and wind speed. Therefore, although UAV

PLOS ONE | https://doi.org/10.1371/journal.pone.0194690 March 21, 2018 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Luo H, Liang Z, Zhu M, Hu X, Wang G

(2018) Integrated optimization of unmanned aerial

vehicle task allocation and path planning under

steady wind. PLoS ONE 13(3): e0194690. https://

doi.org/10.1371/journal.pone.0194690

Editor: Bo An, Nanyang Technological University,

SINGAPORE

Received: May 31, 2017

Accepted: February 22, 2018

Published: March 21, 2018

Copyright: © 2018 Luo et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by National

Natural Science Foundation of China (71671059,

71401048, 71521001, 71690230, 71690235,

71472058) and the URL is http://www.nsfc.gov.cn/

, and the Anhui Provincial Natural Science

Foundation (1508085MG140) and the URL is

http://218.22.27.67/Ahzrjj/index.action. The

funders had no role in study design, data collection

https://doi.org/10.1371/journal.pone.0194690
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194690&domain=pdf&date_stamp=2018-03-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194690&domain=pdf&date_stamp=2018-03-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194690&domain=pdf&date_stamp=2018-03-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194690&domain=pdf&date_stamp=2018-03-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194690&domain=pdf&date_stamp=2018-03-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194690&domain=pdf&date_stamp=2018-03-21
https://doi.org/10.1371/journal.pone.0194690
https://doi.org/10.1371/journal.pone.0194690
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nsfc.gov.cn/
http://218.22.27.67/Ahzrjj/index.action


can fly along the pre-planned path in a windy environment by adjusting its flight speed and

heading angle, the actual arrival time and fuel consumption will be higher than estimated [12],

and the flight time will no longer be the shortest.

The integrated optimization of UAV task allocation and path planning under steady wind

can be described as follows: In a windy environment, UAVs depart from the common starting

point to visit multiple targets, and each target can only be visited once by one UAV. Con-

strained by factors such as physical characteristics [13] of UAV, the task allocation scheme and

the optimal flight path are obtained, which enable UAVs to complete all the tasks and return

to the starting point in the shortest time. In this paper, based on the classical vehicle routing

problem (VRP) model, a variable-speed Dubins path vehicle routing problem (VS-DP-VRP)

model is established with minimum flight time as the objective function. The following two

factors are taken into account in the modeling:

First, given the flight dynamics constraints of UAV, the VRP model is extended to a Dubins

path VRP model (DP-VRP). When flying between different targets, UAVs are constrained by

flight dynamics and must change flight direction with the minimum turning radius. Thus, the

obtained flight distance is not the Euclidean distance, but rather the Dubins distance. In addi-

tion, the Euclidean distance between two targets is constant in the VRP model, but the Dubins

distance between the two targets in the DP-VRP model will change with the angle when a

UAV visits the target.

Second, in light of the influences caused by wind, the DP-VRP model is further extended to

the VS-DP-VRP model. In the standard VRP model, the time of a vehicle moving between two

targets is constant or quantitatively changes according to the traffic conditions between the

two points [14]. In the VS-DP-VRP model, on the other hand, because of the real-time changes

in direction of UAV airspeed vector, as well as in the ground speed vector affected by both air-

speed and wind speed, flight time of UAV between two targets is determined by real-time

ground speed and Dubins distance between the two targets.

Currently, the heuristic algorithm is used to solve the VRP model. In particular, the genetic

algorithm (GA) has been proved to be effective [15] in solving the bench mark dataset, and

better results can be obtained by adjusting parameters. When solving practical problems, the

GA has also been used as an efficient algorithm with which to solve the problem of task alloca-

tion and path planning [9]. In most cases, it is better than other algorithms [16] and requires

shorter computation time [17]. In this paper, based on the GA framework, the VS-DP-VRP

model is solved by designing a crossover operator and mutation operator.

The remainder of this paper is organized as follows: research related to this problem is

introduced in the next section, and the VS-DP-VRP model is presented in the Section 3. Then,

a GA is proposed for solving the VS-DP-VRP in Section 4. The model and algorithm are ana-

lyzed using example comparison in Section 5 and the parameter sensitivity experiment and

simulation experiments are described in Section 6. Conclusions and the future prospects of

this study are provided in Section 7.

Related work

When UAVs are on a mission, the impact exerted by wind cannot be ignored, especially in

terms of UAV task allocation and path planning [18, 19], because wind changes flight time

and flight path [20–22] of UAV. At present, the modeling of wind can be divided into three

ways: the first is the steady wind, which is of constant speed and direction [23–25]; the second

is to model the wind according to the cause of wind [26], such as pressure, temperature,

humidity, terrain, altitude, etc.; the third way is to estimate the status data of the current wind

by analyzing historical data. Among these three methods, the steady wind is the typical one
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chosen for UAVs. It is believed that the speed and direction of wind influencing UAVs are

constant. Aiming at UAV path planning in the steady wind, Zhang et al. [25] took into account

the impact of steady wind on flight path of UAV, and set a virtual target, then the problem

became the path planning for UAV that would cost the least time to reach the virtual target in

a windless environment. Techy et al. [27] suggested linking straight and trochoidal path seg-

ments to form a feasible path and choosing the scheme that costs the least time from the result

set.

Actually, when UAVs are in a steady wind, if they have a constant airspeed, their actual

speed and direction are always changing relative to the ground [27], as they are under the

influence of wind. That means their ground speed is changing all the time. In this case actual

flight path of UAV no longer meets the estimated result of the plan and flight time changes as

well. To keep the constant ground speed of UAV, airspeed and direction must be changing

constantly under steady wind according to the vector relation [28] between UAV ground

speed and airspeed. Although it can be guaranteed that UAV will fly along the pre-planned

route, flight time changes. Thus, in steady wind, the time UAVs require to accomplish the task

does not conform to the pre-planned time, no matter which flight control strategy is adopted.

Affected by the wind, the optimization objective of UAV task allocation and path planning is

to minimize execution time.

At present, in terms of UAV task allocation and path planning, the travelling salesman

problem (TSP) model, team orienteering problem (TOP) model, and VRP model are usually

adopted for the modeling. In particular, when all targets need to be visited, the optimization is

often to minimize flight path, and the TSP model can be used for modeling. For example, Sath-

yan et al. [29] changed the UAV task allocation problem to the multiple travelling salesman

problem (MTSP), and put forward a cluster-first approach in which each UAV is distributed

to a target subset. Ernest et al. [30] extended the MTSP of multiple UAVs visiting multiple

sites to the multi-depot polygon visiting Dubins MTSP, with a view to accounting for the con-

straint of UAV minimum turning radius.

However, in the case in which not all targets need be visited, the TOP model can be used to

transfer the problem of the shortest flight path to the problem of maximizing profits. For

example, Evers et al. [31] established a standard orienteering problem (OP) extended model,

with a view of time windows and time-sensitive targets, with the purpose of solving the UAVs

task allocation problem. Considering the impact on UAV flight time caused by sensor alloca-

tion, Mufalli et al. [32] established a TOP model to maximize the profits. The VRP model is

generally used for modeling in consideration of the time used by UAVs to visit all targets. In a

study conducted by Faie et al. [33], a VRP model was established with minimum flight time of

each UAV as the cost function. In the meantime, it was pointed out that in the cases where

wind could be ignored, the minimum flight time of UAV has the same meaning as the mini-

mum path length. Guerrero J A et al. [19] took into account the wind and UAV energy con-

straints, and established a capacitated vehicle routing problem (CVRP) model targeting time

minimization.

In the VRP standard model and extended model [34], it is believed that targets and their

distances are constant. However, constrained by flight dynamics like minimum turning radius,

the shortest flight distance of UAV is the length of the Dubins path rather than the Euclidean

distance. The Dubins path is the feasible path [35] of minimum length, which moves along a

bounded curve path with a constant speed. Moreover, it is a UAV’s shortest flight path in

either a windless [36, 37] or windy environment [38]. According to the method of calculating

the Dubins path [36], if the ground speed heading angles when a UAV visits two targets are

equally divided into 360 parts, there are 6×360×360 = 777600�7×105 solutions in the Dubins
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path between these two targets. Therefore, optimizing the Dubins path on the basis of optimiz-

ing the standard VRP is required.

At present, integer programming or a heuristic method is generally adopted to solve the

standard or extended VRP model, but the calculation time of integer programming grows

exponentially with the expansion of scale. The solution can be quickly acquired on the premise

of ensuring the quality of the solution by designing a heuristic algorithm [39]. The common

heuristic algorithm includes the GA [40], tabu search (TS) [41], particle swarm optimization

(PSO) [42–43], differential evolution (DE) [44] etc. Among these, the GA can obtain a good

solution in a shorter time [45–47], especially in solving UAV task allocation [48] and path

planning [49, 50]. The GA has obtained a better effect not only in experiments, but also in

engineering applications [51, 52].

Problem description and modeling

In this section, wind, UAVs, targets, airspeed, and ground speed are described, and an inte-

grated optimization model of UAV task allocation and path planning under steady wind is

established. The symbols and nomenclature are shown in Table 1.

Wind

Let

Vw
�!
¼ ðVw; bwÞ ð1Þ

be the wind vector. Vw denotes wind speed; that is, the distance wind travels relative to the

ground in unit time. βw denotes the direction of wind, which refers to the direction of ambient

air’s motion, and it is described by angle.

In this paper, west wind (W) is defined as 0˚, and south wind (S), east wind (E), and north

wind (N), respectively, correspond to angles of 90˚, 180˚, and 270˚, as depicted in Fig 1.

Table 1. The nomenclature.

Nomenclature

Vw
�! wind vector rmin minimum turning radius

βw wind direction Vw wind speed

NU number of UAVs U cooperating fixed wing UAVs set

x! a UAV’s X-axis in a Cartesian inertial reference system y! a UAV’s Y-axis in a Cartesian inertial reference system

Omax
��! maximum angular velocity c steering command

bg
! the angular velocity of ground speed ba

! the angular velocity of air speed

βg heading angle of ground speed Vg
�! ground speed vector

βa heading angle of air speed Va
�! air speed vector

Vg ground speed Va air speed

Nr number of targets T set of targets

L turning to the left T0 the common starting point

S straight line motion R turning to the right

H ground speed heading angle discretization set Ng ground speed heading angle discretization coefficient

Δθ the angular rotation Vg(θ) ground speed when UAV’s βg = θ
Xi
ðTj ;bgj;Tk ;bgkÞ

decision variable ti
ðTj ;bgj;Tk ;bgkÞ

flight time

J the objective function of VS-DP-VRP model

https://doi.org/10.1371/journal.pone.0194690.t001
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Meanwhile, only the steady wind is taken into account. To be specific, the speed and direction

of wind are constant in the given environment.

UAVs

Let

U ¼ fU1;U2; � � � ;UNU
g ð2Þ

be the set of NU cooperating fixed wing UAVs. We assume that the vehicles spatial configura-

tion can be defined by three states

q ¼ ðx; y; baÞ ð3Þ

with the following equations of motion:

x!¼ Vg

!
cosbg

!
ð4Þ

y!¼ Vg

!
sinbg

!
ð5Þ

ba

!
¼ cOmax

!
ð6Þ

where x! and y!are a UAV’s coordinates in a Cartesian inertial reference system; Vg
�!

repre-

sents the ground speed of UAV; bg
!

denotes the heading angle of ground speed; b
!

a denotes the

angular velocity of airspeed; c is the steering command, such that |c|�1; and Omax is the maxi-

mum angular velocity of UAV. The definition and relationship between b
!

g and b
!

a will be

explained in the Airspeed and ground speed section. Moreover, the UAVs mentioned in this

paper also meet the following conditions: (1) all UAVs have the same minimum turning radius

Fig 1. Wind direction.

https://doi.org/10.1371/journal.pone.0194690.g001
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rmin; (2) all UAVs are equipped with a collision-avoidance function; and (3) all UAVs fly at

constant altitude with constant airspeed value.

Targets

Let

T ¼ fT0;T1;T2; � � � ;TNT
g ð7Þ

be the set of NT targets, with known positions, and each point can only be visited once. denotes

T0 the common starting point. According to Shima [8], continuous heading angle of UAV

when visiting a target can be equally divided into 36 parts, which can guarantee accuracy and

make the solving process less complex. Therefore, the ground speed heading angle discretiza-

tion set is defined as

H ¼ bgi; bgi ¼
2pi
Ng

; i ¼ 0; 1; . . . ;Ng � 1

( )

; Ng ¼ 36: ð8Þ

The shortest distance between two targets is the Euclidean distance. However, constrained

by flight dynamics, UAVs must be moved at the minimum turning radius, resulting in the

actual flight path is Dubins path. According to the method of calculating the Dubins path, the

Dubins path between two targets can be the combination of arc paths and straight path. There

are six combinations [9], namely D = {LSL,RSR,RSL,LSR,RLR,LRL}. L represents an arc path of

a UAV turning left with radius rmin; R represents an arc path of a UAV turning right with

radius rmin; and s represents a UAV flying along a straight line. For example, when a UAV

starts from T0 with βg = 0˚ to T1 with βg = 30˚, all the possible Dubins paths can be described in

Fig 2. With the changes in ground speed heading angles of two targets, there are a total of

6×36×36 = 7776 kinds of Dubins paths between the two targets.

Airspeed and ground speed

Let

Va

!
¼ ðVa; baÞ; ð9Þ

be the airspeed vector. Va is the airspeed and βa is the airspeed heading angle. In accordance

with the flight envelope of UAV, there are upper and lower bounds [27] for its airspeed when

flying at constant altitude with a constant load; namely, Va�[Va_min,Va_max]. Va_min and

Va_max represent, respectively, the minimum and maximum value of the airspeed at the speci-

fied height.

Let

Vg

!
¼ ðVg ; bgÞ; ð10Þ

be the ground speed vector; that is, speed relative to the ground under the influence of wind.

Vg is the ground speed and βg denotes its heading angle. The ground speed vector can be

obtained by formula (11) using the airspeed vector Va
�!

and wind speed vector Vw
�!

.

cosbg

sinbg

 !

Vg ¼
cosba cosbw

sinba sinbw

 !
Va

Vw

 !

ð11Þ

The relationship between the three speed vectors is shown in Fig 3. It can be easily seen that
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in a windless environment the airspeed of UAV is the same as the ground speed, namely Vw =

0m/s, Va
�!
¼ Vg
�!

, and ba
!
¼ bg
!

.

Fig 2. Dubins path.

https://doi.org/10.1371/journal.pone.0194690.g002

Fig 3. Relationship between speed vectors.

https://doi.org/10.1371/journal.pone.0194690.g003
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For instance, the ground speed vector of UAV at point X (100,330) when flying in a south

wind can be obtained by formula (10), Vw
�!
¼ ð11:33m=s; 28�Þ, as shown in Fig 4.

The time used by UAV Ui departing from a target Tj at a ground speed heading angle βgj to

reach target Tk at a ground speed heading angle βgk is calculated using

ti
ðTj;bgj;Tk ;bgkÞ

¼
Xbgk

y¼bgj

R yþDy

y

r
VgðyÞ

dy;8i 2 f1; . . . ;NUg;8j; k 2 f0; . . . ;NTg ð12Þ

where Δθ is the angular rotation and Vg(θ) is the ground speed when the UAV’s ground speed

heading angle is θ.

A UAV’s actual flight time between two targets is determined by both the ground speed

vector and the Dubins distance between the two targets.

VS-DP-VRP modeling

The integrated optimization of UAV task allocation and path planning under steady wind is

essentially the planning of order and angle for each UAV to visit a series of targets. In this

paper, the VS-DP-VRP model is established with the minimum time used by UAVs to visit all

Fig 4. Ground speed vector at point X (100,330).

https://doi.org/10.1371/journal.pone.0194690.g004
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targets and return to the starting point as the objective function:

J ¼ max

(
XNT

j¼0

XNT

k¼0

Xi
ðTj;bgj;Tk;bgkÞ

ti
ðTj;bgj;Tk;bgkÞ

; i ¼ 1; . . . ;NU

)

; ð13Þ

Xi
ðTj;bgj;Tk ;bgkÞ

2 f0; 1g; 8i 2 f1; � � � ;NUg;8j; k 2 f0; � � � ;NTg; 8gj; gk 2 f0; � � � ;Ng � 1g; ð14Þ

where Xi
ðTj;bgj;Tk;bgkÞ

is the decision variable. If UAV Ui depart from target Tj at ground speed

heading angle βgj and reach target Tk at ground speed heading angle βgk, Xi
ðTj;bgj;Tk;bgkÞ

¼ 1; oth-

erwise, Xi
ðTj;bgj;Tk;bgkÞ

¼ 0;

The constraints of the model are as follows:

1. Visit constraint for targets: All targets can be visited only once;

XNU

i¼1

XNT

k¼1

XNg � 1

gk¼0

XNg � 1

gj¼0

Xi
ðTj;bgj;Tk;bgkÞ

¼ 1;8j 2 f0; . . . ;NUg: ð15Þ

2. UAV path constraints: Each UAV departs from the starting point, and then returns to the

starting point after visiting a number of targets;

XNT

k¼1

XNg � 1

gk¼0

XNU

i¼1

Xi
ðT0 ;bg0 ;Tk ;bgkÞ

¼
XNT

k¼1

XNg � 1

gk¼0

XNU

i¼1

Xi
ðTk;bgk;T0 ;bg0Þ

¼ NU ; ð16Þ

XNU

i¼1

XNT

j¼0

XNg � 1

gj¼0

XNT

k¼0

XNg � 1

gk¼0

Xi
ðTj;bgj;Tk;bgkÞ

¼ NT þ NU : ð17Þ

GA-based optimization algorithm

By designing the crossover and mutation operator, the GA is used to solve the VS-DP-VRP

model.

Encoding

A chromosome represents a feasible solution to the problem. In this paper, a chromosome

encodes by three parts: the targets, the ground speed heading angles and the UAVs, where tar-

gets belong to set T, ground speed heading angles belong to set H and UAVs belong to set U.

The chromosome shown in Fig 5 represents a feasible solution for two UAVs to visit three

targets. This feasible solution means U1 departed from the starting point and then returned to

Fig 5. Encoding of chromosome.

https://doi.org/10.1371/journal.pone.0194690.g005
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the starting point after visiting T3 with βg = 300˚, while U2 departed from the starting point to

visit T1 with βg = 100˚, and then returned to the starting point after visiting T2 with βg = 200˚.

Crossover

The population diversity can be increased by a crossover operation. For the VS-DP-VRP

model, a new crossover operator is designed in this paper, and its pseudocode is shown in

Fig 6.

Fig 7 shows the crossover process of the parent chromosomes Parent A and Parent B. The

third gene in Parent A is exchanged with the first gene in Parent B to generate two new chro-

mosomes, namely ProtoChild A and ProtoChild B. Since all UAVs encoding in ProtoChild B
are U2. In the next step, the second gene, which is selected randomly, in ProtoChild B is

changed with the third gene in ProtoChild A to complete the cross operation to generate Off-
Spring A and OffSpring B.

Mutation

Mutation can prevent the GA from local optimum. In this paper, three kinds of mutation oper-

ators are designed; namely, the mutation of targets, ground speed heading angle mutation, as

well as mutation in UAV allocation. Since the above three mutations do not have a correlation,

the roulette method has been used to determine whether the above mutations occurred. More-

over, we allow all three mutations to be applied on each chromosome concurrently. The pseu-

docode of the three kinds of mutation operators is shown in Figs 8–10.

Fig 6. The pseudocode of crossover operator.

https://doi.org/10.1371/journal.pone.0194690.g006
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Fig 11 shows the procedure of selecting the third gene in chromosome P for the UAV muta-

tion operator. Firstly, change the UAV U2 in this gene into a random UAV U1 to generate

Pro-Chromosome P. Since all UAVs encoding in Pro-Chromosome P are U1, then the second

gene, which is selected randomly, in Pro-Chromosome P is changed to U2, which is different

from the original number U1, thereby the mutated chromosome Pʹ is generated.

The pseudocode of the GA-based optimization algorithm is shown in Fig 12.

Illustrative example

In the case of Ref. [9], the shortest path in which a UAV visited three targets, i.e., T1 (50, 300),

T2 (150, 350), and T3 (100, 150), was 1483 m. The optimal task allocation and flight route of

which are shown in Fig 13.

As the impact of wind was not taken into consideration, it could be regarded as a windless

environment in which the ground speed of UAV was equivalent to its airspeed. When the air-

speed was 10 m/s, the flight time of the UAV in the path of T0T1

_

, T1T2

_

, and T2T3

_

can be calcu-

lated according to formula (12). However, the ground speed of the UAV may not be the same

as the airspeed due to the impact of wind. Under four different steady winds of south wind,

west wind, north wind, and east wind, with the same wind speed of 5 m/s, the flight time along

the above path can be calculated according to formula (12), as shown in Table 2. Therefore, it

Fig 7. Crossover process of two chromosomes.

https://doi.org/10.1371/journal.pone.0194690.g007

Fig 8. The pseudocode of target mutation operator.

https://doi.org/10.1371/journal.pone.0194690.g008
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can be concluded that the flight time of a UAV along the same planned route varies under dif-

ferent winds.

Furthermore, there are six different orders for a UAV to reach the three above-mentioned

targets, the optimal task allocation results and the shortest flight distance are provided in

Fig 9. The pseudocode of angle mutation operator.

https://doi.org/10.1371/journal.pone.0194690.g009

Fig 10. The pseudocode of UAV mutation operator.

https://doi.org/10.1371/journal.pone.0194690.g010
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Fig 11. Process of UAV mutation for chromosome.

https://doi.org/10.1371/journal.pone.0194690.g011

Fig 12. The pseudocode of the GA-based optimization algorithm.

https://doi.org/10.1371/journal.pone.0194690.g012
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Ref. [9]. In the light of the above analysis, the flight time of UAV in six different paths under

windless and four other different winds (east wind, south wind, west wind, and north wind,

with a wind speed of 5 m/s) can also be calculated, as shown in Table 3. In the windless, west

wind, east wind, and north wind, the shortest flight time for a UAV to reach the three targets

are, respectively, 148.3, 173.3, 182.0, and 118.4 s, the task allocations scheme of which are all

P2, while in the south wind environment, the shortest flight time for a UAV to reach the three

targets is 165.6 s with a task allocation scheme P6. Obviously, task allocation of a UAV’s short-

est flight time varies under different winds.

In fact, the task allocation schemes provided in Table 3 are the different choices for a UAV

to reach the three above-mentioned targets with shortest flight time in the windless environ-

ment. However, the assigning of task and path planning of a UAV in the wind is not merely a

choice among these six schemes in the windless environment, but rather a re-optimization in

consideration of the impact of wind on the flight time. According to the VS-DP-VRP model

Fig 13. Optimal flight path for visiting three targets in a windless environment.

https://doi.org/10.1371/journal.pone.0194690.g013

Table 2. UAV flight times along a fixed path under different winds.

Wind Path T0T1

_

Path T1T2

_

Path T2T3

_
Total time (s)

Windless 32.3190 11.2486 104.7440 148.3

West wind 51.0336 16.4476 105.8227 173.3

South wind 48.0447 13.9062 203.1994 265.2

East wind 28.3836 13.0658 140.5128 182.0

North wind 33.6465 12.6184 72.1318 118.4

https://doi.org/10.1371/journal.pone.0194690.t002

Integrated optimization of unmanned aerial vehicle task allocation and path planning under steady wind

PLOS ONE | https://doi.org/10.1371/journal.pone.0194690 March 21, 2018 14 / 24

https://doi.org/10.1371/journal.pone.0194690.g013
https://doi.org/10.1371/journal.pone.0194690.t002
https://doi.org/10.1371/journal.pone.0194690


Table 3. UAV flight time in different visiting orders and different winds.

Scheme Visiting order and ground

speed heading angle

Minimum path

length (m)

Flight time in Ref. [9]

(windless) (s)

Flight time in

west wind (s)

Flight time in

south wind (s)

Flight time in

east wind (s)

Flight time in

north wind (s)

P1 T1(110˚)!T2(50˚)!T3

(90˚)

1667 166.7 356.6 251.7 308.6 293.9

P2 T1(40˚)!T3(20˚)!T2

(110˚)

1483 148.3 173.3 265.2 182.0 118.4

P3 T2 (250˚)!T1(20˚)!T3

(30˚)

2553 255.3 424.0 245.0 460.4 447.5

P4 T2(280˚)!T3(200˚)!T1

(210˚)

2512 251.2 349.9 233.4 546.8 503.5

P5 T3(40˚)!T2 (110˚)!T1

(110˚)

1583 158.3 294.7 260.0 395.6 268.2

P6 T3(40˚)!T1(310˚)!T2

(180˚)

1720 172.0 365.9 165.6 520.3 463.8

https://doi.org/10.1371/journal.pone.0194690.t003

Fig 14. Flight path using minimum time for U1 to visit three targets under four different winds.

https://doi.org/10.1371/journal.pone.0194690.g014
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built for this study, the shortest flight time and its corresponding optimal task allocation results

of a UAV under four different winds (east, south, west, and north, with a wind speed of 5 m/s)

can be calculated based on the GA-based optimization algorithm, as shown in Fig 14. For

instance, in south wind with a wind speed of 5 m/s, the shortest flight time is 154.4 s and the

optimal task allocation result is T3(20˚), T2(270˚), and T1(310˚). Although this scheme is not

included in Table 3, it is better than the overall schemes in Table 3.

Experiments

For the integrated optimization of UAV task allocation and path planning under steady wind,

simulation experiments of multi-UAVs visiting multi-targets are carried out, aiming at analyz-

ing the shortest time for all of the UAVs to finish the task of visiting the targets and return to

the starting point. All of the experiments are run on MATLAB on a 3.4-GHz CPU with 4 G

memory; the detailed parameters of the experiments are shown in Table 4. Since the fixed-

wing UAVs took off from the airport at the starting point, taxiing of UAVs would be restricted

by the airport runway, as a result of which the ground speed heading angle in the experiment

must be 90˚ when UAVs depart and return; otherwise, the UAVs cannot land on the runway.

In order to determine the optimal allocation of the crossover probability and mutation

probability in the algorithm, all of the possible parameter combinations are tested. Among

them, the crossover probability ranges from 0.5 to 0.9, the mutation probability ranges from

0.1 to 0.5, and the population sizes for these ranges are 200, 400, 600, and 800. In this experi-

ment, two UAVs are in the east wind with a wind speed of 5 m/s, and the generation of the

algorithm was 200. Since there are some random uncertainties in the process of calculating the

optimal solution, the result of each experiment might be different. Therefore, all the experi-

mental results are the average of 20 experiments under the same experimental parameters.

With different population size, crossover probability, and mutation probability, the result

for the shortest time solved by the algorithm is shown in Fig 15. As the population size

increased, the shortest time with the same crossover probability and mutation probability

gradually decreased. Under a fixed population size, if the population size is small, the average

of the shortest time after iterating the same number of times is different under different cross-

over and mutation probability, and if the population size is large, the average of the shortest

time differed slightly after iterating the same number of times under different crossover and

mutation parameter configurations and it is close to the optimal solution of the problem. As a

result, the crossover and mutation probability has some relationship with the population size

on the results on the algorithm.

In the same scenario, 20 experiments are performed for each crossover probability, muta-

tion probability and population size. When the mutation probability and the population size

are fixed and the crossover probability is 0.5, 0.6, 0.7, 0.8, and 0.9, there are totally 100

Table 4. Parameter settings.

Parameter Value

Airspeed Vg 10 m/s

Minimum turning radius rmin 200 m

Discretization of ground speed heading angle, Ng 36

Starting point coordinates of S (0,0)

Ground speed heading angle βg0 at starting point 90˚

Targets with coordinates T1(50,300)

T2(150,350)

T3(100,150)

https://doi.org/10.1371/journal.pone.0194690.t004
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experimental results, the average of which is defined as the average minimum time under the

given configuration. Fig 16(A) shows the average minimum time with the variation of popula-

tion size at different mutation probabilities. It can be concluded that the result becomes better

with increasing mutation probability under different scales, which is more obvious when the

population size is smaller. While the population reached a certain scale, the solutions became

less sensitive to the mutation probability. With the same experimental method, the average

minimum time with the change of population size at different crossover probability can also

be obtained. The average minimum time in Fig 16(B) are also relatively sensitive to the popula-

tion size, and better results can be obtained as the population size increases. However, the

crossover probability has little effect on the solutions under larger populations.

Therefore, it can be concluded that the crossover and mutation probabilities have a positive

relationship with the effect of the algorithm results; that is, the larger the value of the crossover

or mutation probability, the smaller the value of average minimum time. When the population

Fig 15. Minimum time in east wind field with wind speed of 5 m/s obtained by using different population sizes and crossover and mutation probabilities

“Table in S1 Table”.

https://doi.org/10.1371/journal.pone.0194690.g015
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size exceeds a certain scale, the crossover and mutation probabilities still has a positive effect

on the algorithm, but the influence is obviously reduced.

In order to intuitively reflect the difference of the algorithm results in different populations

and for different crossover and mutation probabilities, the three configurations of crossover

and mutation probabilities are selected for population sizes of 400 and 800. 20 experiments are

carried out under the same experimental configurations, and the results of the average mini-

mum time, which varies with generation, is shown in Fig 17. When the population size is 400,

the results of the three configurations are significantly different, and when the crossover prob-

ability is 0.9 and the mutation probability is 0.5, the algorithm has its best performance. When

the population size increased to 800, the results among the three configurations are not signifi-

cant difference, especially when the generation exceeds 90. It should also be noted that smaller

Fig 16. Effect of crossover and mutation probabilities on the results of the algorithm under different population sizes “Table in S2 Table”.

https://doi.org/10.1371/journal.pone.0194690.g016

Fig 17. Algorithm solving process when given two population sizes and three kinds of crossover and mutation probability configurations “Table in S3 Table”.

https://doi.org/10.1371/journal.pone.0194690.g017
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population size can reduce the time cost of the algorithm’s operation at the same generation.

After a comprehensive consideration of the above experimental process and results, in follow-

ing experiments the crossover probability will be set to 0.9, the mutation probability to 0.5, the

population size to 400, and the generation to 200.

On this basis, the method described in Ref. [9] and that outlined in this study are both

adapted to analyze the minimum time during which two UAVs finished their task of visiting

Table 5. Results of task allocation and path planning under four different winds.

Wind

(Vw =

5m/s)

Ref. [9] VS-DP-VRP Percentage of time saved by

our method compared to

Ref. [9] (%)
Visiting order and

ground speed heading

angle

Flight time

(s)

Minimum time to

complete the task (s)

Visiting order and

ground speed heading

angle

Flight time

(s)

Minimum time to

complete the task (s)

West

wind

(U1,T2,90˚)

(U2,T3,130˚)!

(U2,T1,90˚)

228.3807

315.5454

315.5454 (U1,T3,220˚)

(U2,T1,40˚)!

(U2,T2,20˚)

222.0900

201.5115

222.0900 29.68

South

wind

(U1,T2,90˚)

(U2,T3,130˚)!

(U2,T1,90˚)

287.4010

440.0221

440.0221 (U1,T1,80˚)!

(U1,T3,50˚)

(U2,T2,320˚)

229.8906

321.0472

321.0472 27.04

East

wind

(U1,T3,210˚)

(U2,T1,100˚)!

(U2,T2,60˚)

318.0227

346.3122

346.3122 (U1,T3,330˚)

(U2,T1,40˚)!

(U2,T2,20˚)

211.6616

179.1433

211.6616 42.57

North

wind

(U1,T1,90˚)

(U2,T3,70˚)!

(U2,T2,70˚)

233.2217

328.9634

328.9634 (U1,T3,30˚)

(U2,T1,40˚)!

(U2,T2,20˚)

178.6115

177.7637

178.6115 40.93

https://doi.org/10.1371/journal.pone.0194690.t005

Table 6. Results of task allocation and path planning in East wind at different wind speeds.

East

wind

Ref. [9] VS-DP-VRP Percentage of time saved by

our method compared to

Ref. [9] (%)
Visiting order and

ground speed heading

angle

Flight time

(s)

Minimum time to

complete the task (s)

Visiting order and

ground speed heading

angle

Flight time

(s)

Mnimum time to

complete the task (s)

Vw =

1m/s
(U1,T3,210˚)

(U2,T1,100˚)!

(U2,T2,60˚)

269.0593

306.3960

306.3960 (U1,T3,0˚)

(U2,T1,40˚)!

(U2,T2,20˚)

240.5580

160.3431

240.5580 21.49

Vw =

2m/s
(U1,T3,210˚)

(U2,T1,100˚)!

(U2,T2,60˚)

289.3673

308.9027

308.9027 (U1,T1,40˚)

(U2,T2,100˚)!

(U2,T3,0˚)

154.4964

236.5182

236.5182 23.43

Vw =

3m/s
(U1,T3,210˚)

(U2,T1,100˚)!

(U2,T2,60˚)

312.0202

315.5552

315.5552 (U1,T3,340˚)

(U2,T1,40˚)!

(U2,T2,20˚)

221.6228

164.5546

221.6228 29.77

Vw =

4m/s
(U1,T3,210˚)

(U2,T1,100˚)!

(U2,T2,60˚)

312.2888

327.3572

327.3572 (U1,T3,340˚)

(U2,T1,40˚)!

(U2,T2,20˚)

215.5220

170.1632

215.5220 34.16

Vw =

5m/s
(U1,T3,210˚)

(U2,T1,100˚)!

(U2,T2,60˚)

318.0227

346.3123

346.3123 (U1,T3,330˚)

(U2,T1,40˚)!

(U2,T2,20˚)

211.6616

179.1433

211.6616 38.88

Vw =

6m/s
(U1,T3,210˚)

(U2,T1,100˚)!

(U2,T2,60˚)

331.5437

376.5092

376.5092 (U1,T3,320˚)

(U2,T1,40˚)!

(U2,T2,20˚)

210.4490

193.2649

210.4490 44.11

Vw =

7m/s
(U1,T3,210˚)

(U2,T1,100˚)!

(U2,T2,60˚)

358.3690

427.3303

427.3303 (U1,T3,310˚)

(U2,T1,40˚)!

(U2,T2,20˚)

212.2751

216.4469

216.4469 49.35

Vw =

8m/s
(U1,T3,210˚)

(U2,T1,100˚)!

(U2,T2,60˚)

414.3254

517.9991

517.9991 (U1,T2,10˚)

(U2,T1,40˚)!

(U2,T3,290˚)

222.2152

239.7644

239.7644 53.71

https://doi.org/10.1371/journal.pone.0194690.t006
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the targets and returning to the starting point under four different winds (south wind, west

wind, north wind, and east wind, with a constant wind speed of 5 m/s), and the results are

shown in Table 5.

It can be concluded that, the actual flight time of UAV will be changed greatly along the

path which is planned without consideration of the influence of wind. For the method pro-

posed in this paper, the allocation of tasks and the planning of the route are integrated and

optimized under the influence of the wind, the result of which is the best possible solution in

the wind. Compared to the results in Ref. [9], the actual flight time will be reduced by 35.06%

in the wind.

Furthermore, experiments are performed with different wind speeds ranges from 1 to 8 m/s

in the east wind, the results of which are shown in Table 6. Similarly, the actual flight time in

the wind will be reduced by 36.86%. The flight routes when the wind speed is 2, 4, 6 and 8 m/s

are shown in Fig 18.

Fig 18. Minimum time paths for two UAVs to visit three targets in east wind with different wind speeds.

https://doi.org/10.1371/journal.pone.0194690.g018
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Conclusions and future works

Wind is a vitally important external factor in the actual flight of UAV. Different wind speeds

and wind directions cause changes in heading angle and ground speed of UAV in actual flight.

In this paper, in order to integrated optimize the task allocation and path planning of fixed-

wing UAV, the steady wind environment was introduced into the optimization model, and the

VS-DP-VRP model was established considering the dynamic constraints of UAV. The optimi-

zation objective of this model is to minimize the time required by UAVs to complete all of the

tasks. Thus, the distance between any two targets was described by a Dubins path, and a

method was proposed that combines the wind speed with the airspeed of UAV to calculate its

ground speed. Considering that the VS-DP-VRP is still a NP-hard problem, the GA was cho-

sen to solve this problem. The crossover operator in the GA and three kinds of mutation oper-

ators—namely, the mutation of targets, ground speed heading angle number mutation, and

mutation in UAV allocation—were redesigned based on the characteristics of this problem. In

addition, the feasibility and validity of the method were analyzed by an illustrative example,

and the sensitivity of the influence caused by parameters such as population size, crossover

probability, and mutation probability on the algorithm was analyzed. Moreover, the problem

of multiple UAVs visiting multiple targets were comparatively analyzed, the results of which

show that the proposed model and its algorithm can effectively provide a UAV task allocation

and path planning scheme under steady wind. The wind direction and wind speed can be

regarded as a steady wind as they are generally the same within a certain area. Yet changes in

wind speed and wind direction cannot be ignored when the area is further expanded. In the

future research, we will further consider the cases where wind speed and wind direction are

constantly changing. Combined with UAV flight control strategy in variable wind, the inte-

grated optimization of UAV task allocation and path planning under the influence of wind

will be further explored.
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