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Abstract

Biometric recognition technology based on eye-movement dynamics has been in develop-

ment for more than ten years. Different visual tasks, feature extraction and feature recogni-

tion methods are proposed to improve the performance of eye movement biometric system.

However, the correct identification and verification rates, especially in long-term experi-

ments, as well as the effects of visual tasks and eye trackers’ temporal and spatial resolution

are still the foremost considerations in eye movement biometrics. With a focus on these

issues, we proposed a new visual searching task for eye movement data collection and a

new class of eye movement features for biometric recognition. In order to demonstrate the

improvement of this visual searching task being used in eye movement biometrics, three

other eye movement feature extraction methods were also tested on our eye movement

datasets. Compared with the original results, all three methods yielded better results as

expected. In addition, the biometric performance of these four feature extraction methods

was also compared using the equal error rate (EER) and Rank-1 identification rate (Rank-1

IR), and the texture features introduced in this paper were ultimately shown to offer some

advantages with regard to long-term stability and robustness over time and spatial precision.

Finally, the results of different combinations of these methods with a score-level fusion

method indicated that multi-biometric methods perform better in most cases.

Introduction

Biometrics is the technology of identifying a person based on the physical or behavioral char-

acteristics of the individual [1]. The physical characteristics, including fingerprints [2], iris [3],

eye retina [4], face [5], hand geometry [6], palm-print [7], etc., are associated with the local

shape of the body. The feature values of these characteristics are precise and stable for a long

time or a lifetime. Therefore, the identification approaches based on these characteristics pro-

vide a higher identification rate and have a wider range of applications, such as for security

agencies, authentication systems and common-use appliances. Nevertheless, the stability of

these features also makes them easier to be forged using modern technological advances [8, 9].

Furthermore, these characteristics cannot ensure that the identified object is a living person.
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This means that criminals merely need part of the body of the property owner to gain access,

leading to a higher probability of damage to the owner. Considering these disadvantages of

physical biometrics, it is necessary to develop a second class of biological characteristics based

on human behavior, including hand-writing [10], keystroke [11], voice [12], gait [13], etc.

These behavioral characteristics include both the behavioral (brain-based) and physical (mus-

cle-based) aspects of a person. Due to the difficulty involved in simulating a person’s brain

given the condition of current technologies, it is not easy to imitate this kind of information.

On the other hand, it can ensure the identified object is a living person rather than a part of

“body”. However, the feature values of this class of characteristics are likely to fluctuate within

a certain range rather than be at a precise value, resulting in a relatively lower identification

rate. One solution to this problem is to develop a multi-biometric identification technology

[14] which can combine these two classes of biometric methods and avoid their disadvantages.

As one of the most important human behaviors, eye movement did not become a behav-

ioral biometric candidate until 2004, although it had played an important role in visual percep-

tion research[15–17]. Eye movements, depending largely on neurological control and the

extraocular muscle properties of an individual [18], are important human behaviors in in-

teracting with the outside world. There are some advantages behind using eye movement

parameters as biometrics. First, the property of a behavioral biometric that combines both

physiological and neurological characteristics of an individual makes these parameters impos-

sible to forge. Second, eye movement data collection are more reliable and convenient due to

the rapid development of eye tracking technology [19]. Moreover, interaction with portable

devices (e.g., Google Glass, laptop, tablets and virtual reality devices) that incorporate eye-

based gaze-detection functionalities will be a normal feature in the near future, which will

make this biometric approach much more ubiquitous. Third, compared with other behavioral

biometrics, eye movement biometrics can be easily combined with other biometric methods—

e.g., those using the iris, retina and face—which are also extracted from the face region. Lastly,

the capability of unobtrusive data collection makes it a whole process of identification rather

than authentication at the outset.

Related works

Some important works, which have played an important role in eye movement biometric

development, are briefly introduced and discussed in the following section.

The viability of eye movement as a biometric indicator was first reported by Kasprowski

and Ober [20] in 2004. As the pioneering paper in eye movement biometrics, this work exten-

sively discussed the issue of stimulation selection. As a result, a ‘jumping point’ stimulation

was used in the experiment, and first 15 cepstral coefficients were used as identification fea-

tures. The best result for a database of 9 subjects was achieved using the K-nearest neighbor

algorithm, yielding an average false acceptance rate 1.48% and an average false rejection rate of

22.59%.

Kinnunen et al. [21] proposed a new person-authentication system using eye movement

signals in 2010. It is a task-independent method that can be used in different eye movement

biometric experiments regardless of the stimulation being used. The local velocity directions

of the gazes, being used as the classification features, were transformed into a discrete probabil-

ity mass function and were modeled by the GMM-UBM method. An accuracy of approxi-

mately 30% EER was achieved, which demonstrates that there is individual information in the

eye movements that can be modeled.

An eye movement verification and identification competition has been held three times

since 2012. The first competition [22] held in 2012 provided two types of datasets: uncalibrated
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and calibrated. Most of the competitors treated the eye movement data as a sequence of num-

bers and used general signal processing and data mining algorithms for feature extraction. The

experiment results showed that there might be some unique noise, introduced by a plethora of

individual subject-related parameters, in the uncalibrated datasets. As a result, a much higher

identification accuracy was achieved with the uncalibrated datasets. Accordingly, equipment

calibration is an essential part of eye movement identification. The second competition [23]

held in 2014 provided some common basis for eye movement biometrics. The experiment’s

results showed that there was no correlation between recognition rate and a sample’s length,

the familiarity of an image or the observed image itself. However, significant correlation was

found between the rate and subject identification, which may be an influence on better data

quality. The competition’s results also showed that the time interval between samples’ record-

ings had a significant impact on identification rates and that much work needed to be done to

make eye movement biometrics easy, fast and reliable. The third competition [24] held in 2015

provided four different datasets to allow the competitors to test their algorithm for different

parameters: namely, different visual stimuli and different time intervals between the record-

ings. The best result, achieved by Anjith George and Prof. Aurobinda Routray, was an overall

Rank-1 IR of 95.8%, which was reduced to 70.1% in case of multiple unlabeled recordings per

subject. The competition results showed that template aging had a greater effect on recognition

accuracy than visual stimulus type. Compared with the identification rates based on the ‘short

term’ dataset, a performance loss of 0.4% to 29.4% (M = 13.6%, STD = 10.1%) was observed

for the rates based on ‘long term’ datasets. For the top-3 methods, this loss ranged from 9.5%

to 29.4% (M = 20.2%, STD = 10.0%). The identification rates based on TEX stimuli were

slightly higher than the rates based on RAN stimuli, and the absolute differences ranged from

0% to 18.9% (M = 4.9%, STD = 4.9%).

Komogortsev et al. [25] have done a great deal of research on the subject of eye movement

biometrics. Complex eye movement pattern biometrics (CEM-B) was first proposed in 2011

[26] and expanded in 2013 [27, 28]. A number of scanpath-based biometric features were

extracted from the eye movement records, including fixation count, average fixation duration,

average saccade amplitudes, average saccade velocities etc. An EER of 16.5% and Rank-1 iden-

tification rate of 82.6% was obtained in a text-reading experiment on account of 32 subjects.

The effects of eye tracking specification and stimulus presentation on the biometric viability of

this model were also evaluated. The experiment’s results indicated that the eye tracking equip-

ment should be capable of at least 0.5˚ spatial accuracy and 250 Hz temporal resolution for bio-

metric purposes, whereas stimulus had little effect on the eye movement biometrics. In 2014,

they presented a new eye movement biometric model [29, 30] based on a fixation density map

(FDM), which is a probabilistic representation of spatial and temporal features related to eye

fixations. The best equal error rate of 10.8% and Rank-1 identification rate of 51% were

achieved in a dynamic visual stimulus experiment on account of 200 participants. In addition,

this model also showed greater robustness than comparable methods in sampling frequencies.

Besides, Akram and Marc [31] had also proposed a similar method based on fixation features,

saccadic features, pupillary respond features and spatial reading features during reading, and

the results they had achieved were an overall accuracy of 95.31% and an average EER of 2.03%.

An eye movement biometric identification method based on low frequency eye movement

data was proposed by Andrey and Elena [32, 33] in 2016. A. Rey interwoven lines test was used

as stimulus in their experiment, because the eye movement features were computed for the

fragments with saccades. Their results had shown that the lowest error rate obtained for the

paired comparison algorithm was 15.44% even with the low-frequency eye movement data of

30Hz. Thus, this paper provides a more practical eye movement biometric algorithm com-

pared with those of previous studies.

Biometric recognition via eye movement features

PLOS ONE | https://doi.org/10.1371/journal.pone.0194475 April 4, 2018 3 / 24

https://doi.org/10.1371/journal.pone.0194475


Motivation and hypothesis

Although biometric technologies based on eye movement have greatly improved over the last

decade, a lot of work still needs to be done to make it more practical. There are three main

parts in an eye movement biometric model as follows: data collection, feature extraction and

the methods used for feature verification and identification.

The eye tracking equipment and visual stimulus are two important factors in eye movement

data collection. The temporal resolution and spatial accuracy of eye tracking equipment deter-

mine the quality of eye movement signals. As a result, high-precision eye tracking equipment

will contribute to eye movement biometrics. However, due to the restrictions of some special-

usage scenarios, high-precision eye movement data cannot always be guaranteed. Therefore,

temporal and spatial robustness, which will be analyzed in detail in this paper, are also very

important for eye movement biometrics. The visual stimulus is critical for eye movement bio-

metrics because it determines the richness of individual characteristics carried by eye move-

ment trajectories. As a pioneer in the eye movement biometric field, Kasprowski and Ober

[20] had performed a detailed analysis on the stimulation selection and has suggested present-

ing different stimulations each time while also making them as similar as possible in order to

both extract the same eye movement characteristics and avoid a learning effect. Based on pre-

vious research, the visual task generally falls into two categories: eye-movement restricted

visual tasks (e.g., “jumping point” [20], moving balls [34]) and free will visual tasks (e.g., video

clips [21], text [26], face image [35]). The eye movement characteristics of eye-movement

restricted stimulus mainly represent the properties of the oculomotor plant, because the cogni-

tive strategies from the brain are restricted by the stimulus. In a common free-will visual task,

the participant’s reaction time will decrease upon increasing the times for which the partici-

pant is watching the same stimulus, which is known as the “learning effect” [36]. On the other

hand, the recognition time should be as short as possible for a practical biometric identifica-

tion method. Thus, the presentation time of the visual stimulus should not be too long. How-

ever, in order to get enough multidimensional and idiosyncratic eye movement information,

the visual stimulus should not be too simple. Considering all these factors, a well-designed

visual search task, which has the same pattern and sufficiently complex content, was applied in

eye movement biometric recognition in this paper.

With regard to the feature extraction component, three kinds of features are commonly

used in eye-movement biometrics: time series analyses features [37] (e.g., frequency features

[20]), fixation- and saccade-related features [26–28] and graph based features (e.g., fixation

points on a plane [38] as well as fixation density maps [29]). Different features, representing

different characteristics of one’s eye movement, may lead to an eye movement biometric

method that differentially performs over a long time interval, suffers from low temporal reso-

lution or has low spatial accuracy—such a finding has not yet been reported. In this paper, we

utilized the texture features of eye movement trajectories, extracted with a multi-channel

Gabor Wavelet Transform (GWT) method, for biometric recognition, which is a new kind of

graph-based eye movement feature. The eye movement trajectory, plotted with raw gaze data,

is a representation of the subjects’ information processing results of the specific visual stimulus

and can reflect the physiological characteristics of the subject’s oculomotor plant and neuro-

cognitive process to some extent. As a result, there may be some unique characters in the eye

movement trajectories. The multichannel Gabor wavelet transform is selected for texture fea-

ture extraction due to its spatial locality and orientation-selectivity properties, which are simi-

lar to the human visual system [39–42]. Multichannel Gabor wavelets have been widely used

in biometric feature recognition, such as face recognition [40, 43, 44] and handwriting identifi-

cation [45, 46]. An eye movement trajectory is very similar to handwriting in terms of texture
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features insofar as both have different directional and frequency characteristics for different

individuals. Thus, the texture features’ application in eye movement biometrics were explored

in this paper, and their performance was compared to three other eye movement features

(Local Velocity Direction (LVD) [21], Fixation Density Map (FDM) [29], Complex Eye Move-

ment (CEM) pattern biometric [27]) in various respects.

The feature verification and identification methods, which have been well studied in other

biometric studies, will not be analyzed in detail in this paper.

Methodology

There are three main parts, including data collection, feature extraction and feature verifica-

tion and identification, in this methodology section. And the protocol (http://dx.doi.org/10.

17504/protocols.io.muqc6vw) is also provided, in order to give a clear view of the experiment.

This study was approved by the Ethics Committee of Beijing Institute of Radiation Medicine,

and all volunteers provided written informed consent to participate in this experiment.

Data collection

Apparatus and software. The eye movement datasets were recorded using a Tobii TX300

eye tracking system running at 300Hz, with vendor-reported spatial accuracy of 0.5˚. The sti-

muli were presented using Tobii Studio software on a 23@, 1920×1080 widescreen monitor at a

distance of approximately 600 mm from the subjects. The average validity of 32 participants’

eye movement data was 96.54%±2.36%.

Participants. The eye movement datasets employed in this work were collected from a

total of 58 subjects (24 males, 34 females) aged 21–33 with an average age of 24.97±2.12. Most

of them were the first time to do the visual search task. Before the formal test, they were trained

with three groups of the visual search task containing 30 questions in total.

Visual stimulus. In our eye movement experiment, a novel visual search task (Fig 1, all

Chinese characters are converted into English) was designed to improve the accuracy of eye

movement biometric recognition. It was a kind of free-will visual search task with a specific

mission for the subjects to fulfill. During the experiment, the participants just need to think

about how to find the right answer as accurately and quickly as possible rather than to browse

without any purpose. The visual search task is a series of number search questions that can be

carried out with web pages or pictures. Each question consists of a 7-digit target number and

some comparison numbers whose lengths range from 2 to 5. The subjects should compare

the target number with the comparison numbers in a right-aligned form to find the longest

matched number whose length is the correct answer. That is, there are more than one com-

parison numbers that are matched with the target number, but only the length of the longest

comparison number is the correct answer. As you see in Fig 1, there are four Comparison

Numbers (‘02436’, ‘2436’, ‘436’, and ‘36’) are matched with the Target Number (‘3402436’),

and the Correct Answer is ‘Five’ Which is the length of ‘02436’. Therefore, this visual searching

task has 5 different kinds of questions that are balanced during an eye movement data collec-

tion experiment. In our experiment, the visual stimuli were presented with Tobii Studio soft-

ware, and the participants needed to find the correct answer and click on it with the left mouse

button.

Procedure. Our experiment mainly included two parts: practice and data collection.

Before eye movement data collection commenced, every participant practiced on at least 40

questions, which were divided into four groups, to become familiar with the rules of the test.

In addition, the learning effect could be reduced when the participants are more familiar with

the test.
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At the beginning of the data collection part, calibration occurred for every participant in

order to get accurate and stable eye movement signals. Each participant’s calibration data was

used throughout the experiment. In order to study the effect of long time interval on eye move-

ment biometric identification, the data collection experiment was divided into two trials, and

there was a greater than two-week time interval (17.67±3.13d) between them. To collect as

much data as possible, there were up to 160 questions in each trial. And these questions were

divided into four tests, each consisting of 40 questions.Any participant could take a two min-

utes’ rest between these tests when they got tired. The questions in these tests were separated

by a plus sign, which was designed for the participant to reposition their fixation point. At last

320 eye movement trajectories for each participant (18560 in total) were collected.

Feature extraction

Eye movement trajectories. Compared with fixation data, raw gaze data, recorded in the

form of GazePointX(t), GazePointY(t) in pixels relative to the screen for each timestamp t con-

tains more personal information. As a result, the eye movement trajectories were plotted with

raw gaze data rather than fixation data. The image size of eye movement trajectory was set to

several fixed values (64×64, 128×128, 256×256 px) to test its effect on eye movement biometric

identification. Fig 2 illustrates four eye movement trajectories of three different participants.

Texture feature extraction. The texture features were extracted from eye movement tra-

jectories with a multi-channel Gabor Wavelet transform as shown in Fig 3. Mathematically,

Fig 1. Visual search task. Four comparison numbers (‘02436’, ‘2436’, ‘436’, ‘36’) are matched with the target number

(‘3402436’), and the right answer is ‘Five’ which is the length of ‘02436’.

https://doi.org/10.1371/journal.pone.0194475.g001
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the two-dimensional Gabor wavelet is a Gaussian kernel function modulated by a complex

sinusoidal plane wave, defined as Eq 1 [47]:

Gðx; yÞ ¼
f 2

pgZ
expð�

x02 þ g2y02

2s2
Þexpðj2pfx0 þ �Þ

x0 ¼ xcosyþ ysiny

y0 ¼ � xsinyþ ycosy

ð1Þ

where f and θ define the radial orientation and frequency of the Gabor kernels, σ is the stan-

dard deviation of the Gaussian envelops which represents the spatial resolutions of Gabor ker-

nels. In this paper, we use σ = 1/f, γ = 1, η = 2, ϕ = 0.

There are only two parameters (f, θ) need to be designed in a Gabor filter. If the pixel is set

as the base unit, the sampling frequency of eye movement trajectory image is 1 Hz. According

to the sampling theorem, the highest frequency information contain in the eye movement tra-

jectory image is 0.5 Hz It [48] was shown that for any image of size N×N the important fre-

quency components are limited to f� 4/N Hz. The biggest eye movement trajectory image

used in this paper is 256×256 px. Generally, the frequencies are power of 1

2
and the orientations

are
pðj� 1Þ

4
, j = 1,2,. . .,4, whereas the numbers of frequencies and orientations were doubled in

this paper to extract more texture information. As a result, the proposed algorithm in this

paper employs 88 Gabor wavelets in eleven scales (f ¼ 1

2
ffiffi
2
p i� 1, i = 1,2,. . .,11) and eight orienta-

tions (y ¼
pðj� 1Þ

8
, j = 1,2,. . .,8). This gives a total of 88 texture images for each eye movement

trajectory image. The texture features are the mean and the standard deviation calculated from

each texture image’s gray value. Therefore, 176 (88×2) features are calculated for each eye

movement trajectory image.

Fig 2. Eye movement trajectories of three different participants.

https://doi.org/10.1371/journal.pone.0194475.g002

Fig 3. Gabor wavelets and the texture feature extraction process. (a). Gabor wavelets in 11 scales and 8 orientations.

(b). ①: Gabor wavelet transform, ②: Calculation of the mean and the variance of texture image’s gray value.

https://doi.org/10.1371/journal.pone.0194475.g003
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Feature verification and identification. After extracting features of the eye movement

trajectories, we could use any classifiers to solve this pattern recognition problem theoretically,

such as weighted Euclidean distance (WED), K nearest-neighbor classifiers (KNN) and sup-

port vector machines (SVMs) [49–51], etc. Compared with the other classifiers, SVMs per-

formed better in our preliminary test. As a result, we simply used SVM to identify an eye

movement sample in this paper.

Because SVM classifiers are very sensitive to higher-dimension feature vectors, a dimension

reduction operation was carried out before the pattern recognition process. Because the train-

ing datasets used in this paper are labeled continuous data and some of them are linearly

dependent, we just used the linear supervised algorithm for feature dimensionality reduction.

First the intrinsic dimension of the 176 texture features is 18 was estimated based on the ‘maxi-

mum likelihood’ (ML) algorithm, then dimensionality reduction was accomplished with the

‘linear discriminant analysis’ (LDA) algorithm [52].

For the binary pattern recognition problems, the SVM algorithm seeks to find an optimal

separating hyper-plane that defines the largest distance to the nearest point of these two cate-

gories [53]. Multi-class pattern recognition problems usually can be solved by constructing

decision functions based on combining many binary classification functions [50]. There are

two kinds of combination algorithms: namely, one against the rest and one against one. K clas-

sifiers are constructed for one-against-the-rest algorithms. The kth classifier is a hyperplane

constructed from class k and the other k-1 class training samples. Then, a majority vote across

these K classifiers will be applied to classify a test sample. There are k(k-1)/2 classifiers in total

for one against one algorithm, each constructed from two of the K class training samples. Simi-

larly, a majority vote scheme will be applied. In this paper, we select one against one algorithm

to solve the identification problem.

In the verification scenario, k-1 classifiers were constructed for each participant. Each clas-

sifier was a hyperplane constructed from the feature sample of the specific participant and one

other participant. For an unclassified test feature, whether it belonged to this specific partici-

pant was determined by the votes of these k-1 classifiers. In the identification scenario, k(k-1)/

2 classifiers were constructed for k participants. For an unclassified test feature, the probability

it belonged to a certain participant was determined by the votes of these k(k-1)/2 classifiers.

Results

In the results section, two kinds of datasets were used to demonstrate the biometric results

of our method, namely, the short-term dataset (STset) and the long-term interval dataset

(LTset). The short-term dataset was obtained by randomly splitting the trial1 data samples

into training and testing sets at a specific proportion (70%-30%). The long-term dataset was

obtained by using trial1 data samples as a training set and trial2 data samples as a testing set,

which were larger sets compared with the STsets. For each participant, 6 test probes and 20

training probes—the mean value of a certain number of feature vectors—were generated from

the test and training sets, respectively, using a non-replacement sampling method. As a result,

there are (58×6)×58 match scores in total for each of these four eye movement biometric meth-

ods. The following results were all averaged over 10 times partition randomly.

Visual search task evaluation

The participants’ reaction time has an important influence on the feature values of some eye

movement biometric methods (e.g., GFT, FDM and CEM) insofar as these features are closely

related to the numbers of fixations and saccades. As shown in Fig 4A, the participants’ reaction

times do not fluctuate widely over short intervals or a period of time, indicating that the
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participants’ proficiencies in this visual search task remain stable after some exercises. This evi-

dence also verifies that our hypothesis about the learning effect of our visual search task was

correct, which can greatly contribute to eye movement biometric recognition. In addition, the

participants’ accuracy rates (AR) (Fig 4B), which can be used as an objective measure of task

performance, were calculated and evaluated in order to eliminate the eye movement trajecto-

ries of non-effortful participants. Although some participants’ ARs in certain tests were fairly

low compared with other ARs, they were still much higher than the random AR (1/5 = 20%),

indicating that these participants’ eye movement data were still valid under a less strict

criterion.

Parameter optimization results

There were two important parameters in our GWT method: namely, the number of eye move-

ment trajectory samples per probe (NoET: 2 4 8 16) and the image pixels of one eye movement

trajectory sample (pixET: 64×64, 128×128, 256×256 px) plotted with MATLAB programs.

Although the characteristic values extracted from these trajectories were not all the same

but belonged to the same distribution model associated with a particular participant. To

increase the identification rate, the feature vectors used in the recognition procedure were

the average values of more than one texture feature vector of eye movement trajectories.

Because the variance of the sample mean is inversely proportional to the sample number n

(Var ð�XÞ ¼ s2

n ), the vector values will be more stable with the increase of the number of samples

contained in one probe. Thus, the biometric method’s performance will be improved with a

greater NoET. However, a greater NoET will also increase the time spent on one probe data

collection. The pixET has a great influence on how much detailed information a probe image

can carry, which will be extracted by Gabor wavelets and used for biometric identification.

The bigger the pixET, the more detailed texture information a probe image can carry. In

addition, it may have a great influence on the identification rate. As a result, an appropriate

combination of these two parameters should be calculated to get a better result in practical

applications.

The EER results (Fig 5) of our GWT method show that the EERs were negatively associated

with NoET and pixET in Fig 5A. The EERs were also negatively associated with NoET in Fig

5B but negatively associated with pixET in a certain scope. These results show that the feature

vectors become more stable and distinguishable with more eye movement data drawn from

one probe image. However, more detailed information was not necessarily better for the LTset

Fig 4. Fifty-eight Participants’ Average Reaction Time (a) and Accuracy Rates (b) in 8 Tests.

https://doi.org/10.1371/journal.pone.0194475.g004
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data, because some detailed information that was helpful for biometric verification in the

STset data was unsustainable, so it could not contribute to biometric verification rates in the

LTset data as much as it did in STset. To generate better results in practical applications, pixET

should be set to 128×128 and the NoET should be as bigger as possible. However, considering

the time requirements and result improvements for a much bigger NoET, the NoET will set to

9 as a trade-off result.

Verification scenario

The false positive rate (FPR) is defined as the proportion for which an impostor subject is

incorrectly accepted by a biometric system. The false negative rate (FNR) is the proportion for

which a genuine subject is incorrectly rejected by a biometric system. Finally, the equal error

rate (EER) is the proportion at which FPR and FNR are equal. The detection error tradeoff

(DET) curve plots FNR on the y-axis against the corresponding FPR on the x-axis. The EER

and DET curves are usually used to evaluate the performance of a verification system, which is

generally described as a 1-to-1 matching system, because it tries to match the biometrics pre-

sented by an individual against the specific biometrics already enrolled.

The detection error tradeoff (DET) curves (Fig 6) plot the results of our GWT method with

the parameter pixET set to 128×128, and the corresponding EERs are listed in Table 1. An

EER of 0.89%, which is a relatively high value in similar eye movement biometric papers, was

Fig 5. The GWT method’s EERs calculated with different parameter. (a). EER results based on STset, (b). EER

results based on LTset.

https://doi.org/10.1371/journal.pone.0194475.g005

Fig 6. DET Curves of the GWT method. (a). Results based on STset, (b). Results based on LTset.

https://doi.org/10.1371/journal.pone.0194475.g006
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achieved on STset with the selected parameters that NoET equals 9 and pixET equals 128×128.

However, all the EERs are increased on LTset with percentage of 74.25%, 132.23%, 370.16%

and 1074.93% which demonstrate that the time interval has a significant influence on our eye

movement biometric results as well.

Identification scenario

Unlike the verification systems, an identification system is generally described as a 1 to n

matching system, where n is the total number in the database. The Rank-1 IR and CMC curve

are usually used as the performance evaluation indexes of identification systems. Rank-k iden-

tification rate (IR) is the proportion of instances in which the genuine subject’s match score is

found within the top k matches. A cumulative match characteristic (CMC) curve plots rank-k

IR on the y-axis against rank k on the x-axis.

Fig 7 shows the cumulative match characteristic (CMC) curves of our GWT method based

on different datasets (a. STset, b. LTset) with the parameter pixET set to 128×128, and the cor-

responding rank1-IRs are listed in Table 1. There is a negative correlation between Rank-1 IR

and EER—i.e., biometric methods that have smaller EERs always get higher Rank-1 IRs. The

Rank-1 IRs of our GWT method were also very good, considering that a random Rank-1 IR is

1.72% (1/58). Compared with the STset Rank-1 IRs, the Rank-1 IR losses of LTset were also

very large at 42.50%, 40.65%, 30.96% and 31.44%.

Results of other biometric methods. In this section, three other eye movement biometric

methods were tested on our datasets. These methods were selected based on their feature

extraction methods and suitability for our datasets. The LVD method and FDM method utilize

graph-based features for eye movement biometric identification, and the CEM method utilizes

fixation- and saccade-based features for eye movement biometric identification. The time

series analysis features are commonly used in eye-movement restricted tasks, which were not

evaluated in this section. The results were calculated with a different probe size (NoET) and

different time interval datasets (STset and LTset).

Table 1. EERs and Rank-1 IRs of GWT method.

NoET

Dataset

EER (%) Rank-1 IR (%)

2 4 8 16 2 4 8 16

STset 11.49 6.06 2.44 0.89 49.02 71.75 88.16 96.44

LTset 20.03 14.08 11.48 10.41 28.19 42.59 55.57 66.12

https://doi.org/10.1371/journal.pone.0194475.t001

Fig 7. CMC curves of the GWT method. (a). Results based on STset, (b). Results based on LTset.

https://doi.org/10.1371/journal.pone.0194475.g007
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Results of the local velocity direction feature method (LVD method). This eye move-

ment biometric method was proposed by Kinnunen et al. [21] in 2010. As a task-independent

person authentication method, it could easily be applied to our datasets. In the original paper,

optimization analysis was made to these parameters, which had an important influence on the

biometric results, including the feature parameters and the GMM-UBM (Gaussian mixture

model universal background model) training parameters. The optimization analysis of this

method is not among our major problems in this paper, and we simply adopted their prefer-

ences: the histogram bins of local velocity direction were set to 27, the number of Gaussians of

the GMM-UBM was set to 16, and the relevance factor r used in creating the user-dependent

adapted Gaussian mixture models was set to 16. As one of the feature parameters, the window

length, corresponding to NoET in our method, was considered in the results evaluation. The

best result achieved in the original paper was an EER of 30% for a count of 17 participants.

Fig 8, Fig 9 and Table 2 show the results of the LVD method being applied to our datasets.

The performance of this biometric method was also improved upon the increase of NoET.

However, when NoET increased to 16, its performance did not improve as significantly as it

did when NoET increased to 9. It can be assumed that biometric performance can be improved

with an increase of the NoET only before it reaches the limiting value, and improved speed

decreases with the increase of NoET.

Results of the fixation density map method (FDM method). This eye movement bio-

metric method was proposed by Komogortsev et al. [29, 30] in 2014. This method uses a fixa-

tion density map (FDM) as the feature vector of the eye movement during an inspection of

Fig 8. DET Curves for the LVD method. (a). Results based on STset, (b). Results based on LTset.

https://doi.org/10.1371/journal.pone.0194475.g008

Fig 9. CMC curves for the LVD method. (a). Results based on STset, (b). Results based on LTset.

https://doi.org/10.1371/journal.pone.0194475.g009
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dynamic visual stimulus. In the original paper, four different similarity measures (similarity

metric (SIM), Pearson’s correlation coefficient (PCC), Kullback-Leibler divergence (KLD))

were used for fixation density map comparisons, and three information fusion methods (sim-

ple mean (SM), weighted mean (WM), likelihood ratio (LR)) were used for matching score

combinations. The best result was an equal error rate of 10.8% and Rank-1 identification rate

of 51% on a large dataset recorded from 200 individuals.

Fig 10 shows the evaluation results of these four similarity measures of FDM method tested

on STsets. In the results presentation and comparison scenario, we simply used the SIM for

fixation density map comparisons due to its good performance on our datasets. There was no

information fusion problem for the FDM method’s being applied to our datasets, because the

fixation density maps of any questions in our datasets were assigned the same weight in match-

ing score combinations. Fig 11, Fig 12 and Table 3 show the results of the FDM method that

was applied to our datasets.

Results of the complex eye movement pattern biometric method (CEM method). This

eye movement biometric method was proposed by Holland and Komogortsev [27, 28] in

2013. For this method, primitive eye movement features based on fixations and saccades are

Table 2. EERs and Rank-1 IRs for the LVD method.

NoET

Dataset

EER (%) Rank-1 IR (%)

2 4 8 16 2 4 8 16

STset 11.42 6.91 4.73 3.53 57.78 75.11 88.79 96.37

LTset 30.86 29.45 24.94 23.18 24.9713 30.17 36.49 41.03

https://doi.org/10.1371/journal.pone.0194475.t002

Fig 10. EER Results corresponding to different similarity measures.

https://doi.org/10.1371/journal.pone.0194475.g010
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extracted for eye movement biometric identification. Some details of this method have been

elaborated upon in the ‘related work’ section. The best result [27] was an equal error rate of

31% and Rank-1 identification rate of 53% on datasets collected with a simple pattern task

drawn from 200 subjects. In another paper, the best result [28] was an equal error rate of

16.5% and Rank-1 identification rate of 82.6% based on 32 subjects.

In this paper, we followed the instructions in the original paper to apply the CEM method

to our datasets. The weight vectors of the CEM method were first calculated with an indepen-

dent test and training data separation. In the STset case, the Trial1 datasets were also randomly

separated into test and training datasets with a specific proportion (70%-30%). In the LTset

case, the Trial1 and Trial2 datasets were used as training and test dataset, respectively. Then,

the weight vectors for these two cases were calculated. Fig 13, Fig 14 and Table 4 show the

results of the CEM method as applied to our datasets. The results were better than when

Fig 11. DET curves for the FDM method. (a). Results based on STset, (b). Results based on LTset.

https://doi.org/10.1371/journal.pone.0194475.g011

Fig 12. CMC curves for the FDM method. (a). Results based on STset, (b). Results based on LTset.

https://doi.org/10.1371/journal.pone.0194475.g012

Table 3. EERs and Rank-1 IRs for the FDM method.

NoET

Dataset

EER (%) Rank-1 IR (%)

2 4 8 16 2 4 8 16

STset 23.04 13.86 6.14 1.89 33.30 58.44 84.45 97.35

LTset 28.73 21.33 15.31 11.44 22.58 37.27 53.01 67.06

https://doi.org/10.1371/journal.pone.0194475.t003
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compared to the results in the original paper, although they were inferior to the LVD and

FDM results.

Discussion and future research

The contribution of eye movement trajectories’ gray image to biometric

recognition

The texture features were extracted from the eye movement trajectories’ gray image (GI). Any

device- and person-related noise in the gray image contributes to the biometric recognition

results for GWT method. Moreover, the contribution should be evaluated to confirm that the

texture features rather than the ‘noise’ is a kind of biological feature. The mean and standard

deviation values (GI features) were extracted from the eye movement trajectories’ gray image

Fig 13. DET Curves for the CEM method. (a). Results based on STset, (b). Results based on LTset.

https://doi.org/10.1371/journal.pone.0194475.g013

Fig 14. CMC curves for the CEM method. (a). Results based on STset, (b). Results based on LTset.

https://doi.org/10.1371/journal.pone.0194475.g014

Table 4. EERs and Rank-1 IRs for the CEM method.

NoET

Dataset

EER (%) Rank-1 IR (%)

2 4 8 16 2 4 8 16

STset 18.01 13.59 8.16 5.74 37.44 50.89 68.62 80.05

LTset 26.86 22.73 21.63 21.41 17.2414 22.44 26.17 27.87

https://doi.org/10.1371/journal.pone.0194475.t004
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just as were the GWT features. The SVM classifiers were also used for pattern recognition. Fig

15, Fig 16 and Table 5 illustrate that the GI features had little effect on eye movement biometric

recognition, which confirms that texture features are a class of eye movement biometric

features.

Stimulus’s effects on eye movement biometric viability

Stimulus effects on eye movement biometric viability were evaluated by Holland and Komo-

gortsev in 2013 [27]. The results demonstrate that the stimulus had little effect on biometric

viability. However, such a conclusion was drawn from just one class of eye movement features,

which might not be applicable to other types of features. Considering the time required for eye

movement data collection, this paper’s results reflect the biometric results achieved with NoET

set to 9 instead of the best results achieved with NoET set to 16. Table 6 shows the comparison

results of these three eye movement biometric methods based on different stimuli. It turned

out that the performance of the LVD method was significantly improved. According to the

results of the original paper [29], the number of subjects does not influence EER to the extent

that it does Rank-1 IR. Therefore, it can be said that the performance of the FDM method is

also improved to some degree. Considering the influence played by the number of partici-

pants, the biometric results of the CEM method on different stimuli were also significantly

improved. In conclusion, the visual searching task proposed in this paper can improve the per-

formance of some eye movement biometric methods compared with ordinary visual tasks.

Fig 15. DET Curves for the GI methods. (a). Results based on STset, (b). Results based on LTset.

https://doi.org/10.1371/journal.pone.0194475.g015

Fig 16. CMC curves for the GI method. (a). Results based on STset, (b). Results based on LTset.

https://doi.org/10.1371/journal.pone.0194475.g016
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Aging effects on different feature extraction methods for eye movement

biometric recognition

Table 7 shows the results of different methods, which were also achieved with NoET set to 9.

There are some reports [24] about the effect of template aging on the resulting recognition

accuracy. In this paper, the template aging effects on different methods were also evaluated

with the difference values of STset results and LTset results. In Table 7, the best are bolded,

and the worst results are underlined. To summarize, the GWT method performed best in most

cases except the identification scenario on STset. Although we cannot draw a conclusion that

the texture features performs best in eye movement biometric recognition, it is enough to

prove that the texture features are one of the most promising eye movement biometric fea-

tures. The DIF values indicate that aging effects have a great impact on all four of these eye

movement biometric methods, especially LVD, which is the inherent weakness for all behavior

biometric features (e.g., handwriting, keystroke dynamics, gait and voice). However, the GWT

method performed best with regard to long-term stability compared with other eye movement

biometric features. That is, because it utilizes both macro and specific features, which can be

obtained with Gabor wavelet transform of different frequencies, for eye movement biometric

recognition.

Temporal robustness and spatial robustness tests

The temporal robustness and spatial robustness of the CEM method were tested by Holland

and Komogortsev [27], which are not tested in this paper. Their results suggested that eye

tracking equipment should capable of at least 0.5˚ spatial accuracy and 250 Hz temporal reso-

lution for biometric purposes. In this paper, four temporal resolution datasets (300, 150, 75, 30

Table 5. EERs and Rank-1 IRs for the GI method.

NoET

Dataset

EER (%) Rank-1 IR (%)

2 4 8 16 2 4 8 16

STset 37.93 35.20 30.60 26.61 4.25 4.74 6.43 9.51

LTset 40.83 38.76 36.17 34.85 3.62 4.51 5.86 7.44

https://doi.org/10.1371/journal.pone.0194475.t005

Table 6. Results comparison with same method but a different stimulus.

Methods Original Paper’s Results This Paper’s Results

LVD 30% EER on 17 Subs 4.7% EER on 58 Sub

FDM 10.8% EER and 51% Rank-1 IR on 200 Subs 6.1% EER and 84.5% Rank-1 IR on 58 Subs

CEM 31% EER and 53% Rank-1 IR on 200 Subs

16.5% EER and 82% Rank-1 IR on 32 Subs

8.2% EER and 68.6% Rank-1 IR on 58 Subs

https://doi.org/10.1371/journal.pone.0194475.t006

Table 7. Results comparing different methods (DIF being the difference value between the results of STset and LTset).

Methods EER Rank-1 IR

STset LTset DIF STset LTset DIF

GWT 2.44% 11.48% 9.04% 89.16% 65.70% 23.46%

LVD 4.73% 24.94% 20.21% 91.61% 42.86% 48.75%

FDM 6.15% 15.32% 9.17% 95.57% 63.57% 32.00%

CEM 8.17% 21.64% 13.47% 68.62% 26.18% 42.44%

https://doi.org/10.1371/journal.pone.0194475.t007
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Hz), which were generated by down-sampling the gaze data, were evaluated. Fig 17 shows the

results of the other three methods on different temporal resolutions. Unlike the CEM method,

the GWT method and the FDM method are very robust in temporal resolutions. However, the

LVD method’s robustness in temporal resolutions differs a lot on different time intervals. For

STset, performance worsens as the sampling frequency decreases in size; for LTset, however,

performance improves.

Three spatial accuracy datasets (1˚, 2˚, 3˚), which were generated by adding normally dis-

tributed random noise to the gaze data, were evaluated in this paper. Fig 18 shows the results

of these three different methods on different spatial accuracy datasets. We can draw the con-

clusion that the GWT and FDM methods are more stable than the LVD and CEM methods in

spatial accuracy.

These results demonstrate that the GWT method proposed in this paper performs just as

well as the FDM method does in low temporal and spatial accuracy, and they are both very

robust methods. However, both the CEM and LVD methods are very sensitive to temporal

and spatial accuracy. That is, because both the filters of fixations and saccades and the local

velocity directions need properly high temporal and spatial accuracy. In other words, the bio-

metric methods’ temporal and spatial robustness depends on their feature extraction methods.

In addition, the performance improvement of the LVD method on down-sampled LTset

shows that less detailed information contained in biometric features contributes to the behav-

ioral biometric method’s long-term stability. The distance between the curves of the same

Fig 17. Biometric results of different methods on different temporal resolutions.

https://doi.org/10.1371/journal.pone.0194475.g017

Fig 18. Biometric results of different methods on different spatial accuracies.

https://doi.org/10.1371/journal.pone.0194475.g018
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color is also an indicator of long-term stability. Obviously, the long-term stability of the LVD

method is significantly improved on down-sampled eye movement data.

A comparative analysis of score-level fusion results of the four eye

movement biometric methods

In general, the biometric features extracted using different methods represent a simplification

of personal features contained in the eye movements of different aspects. Theoretically, a

fusion method that combines different features will perform better than the best of all these

individual method. There are three kinds of fusion methods: namely, feature-level fusion[54],

score-level fusion[55] and decision-level fusion. In general, the improvement of these three

methods is decreasing. However, the eye movement features extracted with these four algo-

rithms in this paper vary greatly, and therefore they can’t be classified by the same classifica-

tion method. In this paper, a score-level fusion method was selected. There two steps for a

score-level fusion method, i.e., feature standardization and feature fusion. In this paper, Eq 2

was used for feature standardization, and a sum algorithm was used for feature fusion, which

is a very simple fusion method for multi-biometric recognition.

s0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tanhð
0:01ðs � mÞ

s
Þ þ 1

r

ð2Þ

The results in Table 8 show that the biometric performance of fusion methods get better in

most cases. The abnormal results, which are bolded in Table 8, often occurs in fusion cases of

different classes of features, i.e., graph-based features (GWT and FDM) and fixation- and sac-

cade-based features (LVD and CEM). Moreover, the fusion results of the same class of features

often show greater improvement than different classes of features, especially when one of them

has relatively lower recognition rates. The best results, which were achieved with a score-level

fusion of all four of these methods, were 0.66% EER and 99.79% rank-1 IR on STset data and

7.16% EER and 81.20% rank-1 IR on LTset data. Fig 19 and Fig 20 shows the DET and CMC

curves of the score-level fusion results of all of these four eye movement biometric methods.

Table 8. Score-level fusion results of different eye movement biometric methods.

Fusion Number Fusion Components EER (%) Rank-1 IR (%)

ST DT ST DT

1 GWT 2.44 11.48 88.16 55.57

LVD 4.73 24.94 88.79 36.49

FDM 6.14 15.31 84.45 53.01

CEM 8.16 21.63 68.62 26.17

2 GWT+LVD 1.82 12.93 97.32 53.67

GWT+FDM 1.56 8.87 96.46 73.44

GWT+CEM 3.35 11.60 88.36 47.29

LVD+FDM 1.74 15.40 98.56 58.07

LVD+CEM 2.44 16.49 95.89 53.67

FDM+CEM 3.40 14.05 91.58 47.12

3 GFT+LVD+FDM 0.78 9.56 99.71 70.74

GWT+LVD+CEM 1.18 10.12 98.96 62.84

GWT+FDM+CEM 1.65 9.33 97.58 69.77

LVD+FDM+CEM 1.10 11.78 99.33 66.81

4 GWT+LVD+FDM+CEM 0.66 7.16 99.79 81.20

https://doi.org/10.1371/journal.pone.0194475.t008
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Future research

The visual search task proposed in this paper did improve the performance of the eye move-

ment biometric methods. However, long-term stability remains as the main problem of all

these methods, although score-level fusion of these biometric methods can address this prob-

lem to a certain degree. Compared with physiological characteristics, behavioral characteristics

are more likely to be affected by template aging; such characteristics include many factors,

such as fatigue, learning effects and some uncontrollable random factors, which illustrates a

kind of inherent disadvantage of behavioral characteristics. To solve this problem, we can try

to upgrade the eye movement task, improve the feature extraction methods or try some other

biometric fusion methods in the future.

In the comparison results, the new eye movement feature extraction method exhibits some

advantages in long-term stability and robustness in temporal and spatial precision. However,

the other methods’ parameters were not optimized, and the classification approach to these

methods was not taken into account. On the other hand, the feature extraction method pro-

posed in this paper, which is also a kind of task-independent method, has not been tested on

other eye movement tasks. These issues require detailed analysis in the future.

The eye movement biometric has been developed for more than ten years. However, most

of these research studies were carried out in a laboratory environment with one set of eye

tracking equipment. To make it more practical, the effects of eye tracking equipment with dif-

ferent temporal resolutions and spatial accuracies also need to be considered. That is, the eye

movement training datasets and eye movement test datasets should be collected with different

eye tracking equipment.

Fig 19. DET curves for the score fusion method of these four features.

https://doi.org/10.1371/journal.pone.0194475.g019
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Finally, and crucially, on the issue of all behavioral biometric recognition, it is very impor-

tant to develop a task-independent biometric method. Some methods may perform very well

on the same task dataset (i.e., speaking the same words, writing the same characters, typing the

same paragraph and walking on the flat floor), but they cannot be applied to different task

datasets, which is a significant restriction for real-world deployment. Although there are some

task-independent feature extraction methods for eye movement biometric recognition, none

of these are task-independent features. This is an important problem in eye movement biomet-

ric recognition, which needs to be solved in future research.

Conclusion

Our research includes designing a new stimulus material and introducing a new class of eye

movement features for biometric recognition. The new stimulus, which is a kind of cognitive

task, has some clear advantages in eye movement biometrics. Because the participants can

complete the task on their own volitions, the eye-movement traces represent not only the

physiological characteristics but also the neurological characteristics of the participants. On

the other hand, each question in the task has the same form and consists of randomly gener-

ated numbers, which can be easily obtained by a program and cause relatively light learning

effects for participants. Because the stimulus can be easily generated with a program, it is more

suitable for practical application, in which case a person will be identified many times. The bio-

metric performance of some existing methods was significantly improved with this new stimu-

lus. The features extracted using the GWT method rely on different scales and orientations

regarding the texture information of eye movement trajectories. An optimization analysis with

Fig 20. CMC curves for the score fusion method of these four features.

https://doi.org/10.1371/journal.pone.0194475.g020
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these parameters has shown some advantages in long-term stability and robustness in time

and spatial precision. Moreover, as a task-independent feature-extraction algorithm, it may

have a wider range of application and can be combined with other eye movement feature-

extraction techniques to increase the overall accuracy of the identification system. The experi-

ment’s results also introduced some principles to improve the eye movement biometric meth-

ods’ long-term stability and temporal and spatial accuracy robustness in the future.
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