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Abstract

The functionality of a protein depends on its correct folding, but newly synthesized proteins

are susceptible to aberrant folding and aggregation. Heat shock proteins (HSPs) function as

molecular chaperones that aid in protein folding and the degradation of misfolded proteins.

Trinucleotide (CAG) repeat expansion in the Huntingtin gene (HTT) results in the expression

of misfolded Huntingtin protein (Htt), which contributes to the development of Huntington’s

disease. We previously found that the degradation of mutated Htt with polyQ expansion

(Htt103QP) depends on both ubiquitin proteasome system and autophagy. However, the

role of heat shock proteins in the clearance of mutated Htt remains poorly understood. Here,

we report that cytosolic Hsp70 (Ssa family), its nucleotide exchange factors (Sse1 and

Fes1), and a Hsp40 co-chaperone (Ydj1) are required for inclusion body formation of

Htt103QP proteins and their clearance via autophagy. Extended induction of Htt103QP-

GFP leads to the formation of a single inclusion body in wild-type yeast cells, but mutant

cells lacking these HSPs exhibit increased number of Htt103QP aggregates. Most notably,

we detected more aggregated forms of Htt103QP in sse1Δ mutant cells using an agarose

gel assay. Increased protein aggregates are also observed in these HSP mutants even in

the absence Htt103QP overexpression. Importantly, these HSPs are required for autop-

hagy-mediated Htt103QP clearance, but are less critical for proteasome-dependent degra-

dation. These findings suggest a chaperone network that facilitates inclusion body formation

of misfolded proteins and the subsequent autophagic clearance.

Introduction

Misfolded proteins are prone to aggregate and protein aggregates can cause various deleterious

effects within cells. Protein aggregation is linked to several neurodegenerative disorders,

including Huntington, Alzheimer, Parkinson and prion diseases [1, 2]. Protein aggregation
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also contributes to the development of diabetes and cancer [3, 4]. Cells have evolved protein

quality control mechanisms to combat the potential toxic effects of aggregated proteins. First,

misfolded proteins can be refolded into functional proteins. Second, misfolded proteins can be

ubiquitinated and targeted for degradation by proteasomes. In addition, aggregated proteins

can be cleared through the autophagy pathway. Often the first line of defense against the gen-

eration of unfolded/misfolded proteins depends on heat shock proteins (HSPs), which are

abundant molecular chaperones involved in protein folding, refolding, disaggregation and

degradation [5]. Thus, it is of interest to understand the roles of chaperones in the response to

the expression of aggregation-prone proteins.

Hsp70 chaperones are highly abundant ATPases that bind to hydrophobic regions of sub-

strates to facilitate protein folding [6]. When Hsp70 is bound to ATP, the substrate binding

affinity is low, but upon ATP catalysis, ADP-bound Hsp70 shows a high substrate binding

affinity [7]. Nucleotide-exchange factors (NEFs) are necessary for the exchange of ADP with

ATP, and yeast cells have three distinct types of NEFs, including Hsp110 (Sse1 and Sse2),

HspBP1 (Fes1), and a bag domain-containing protein (Snl1). Sse1 is the most abundant Hsp70

NEF, followed by Fes1 at approximately one-fifth the level of Sse1, whereas very low levels of

Sse2 and Snl1 are detected [8]. In accordance with their expression levels, most of the Hsp70

NEF functions are associated with Sse1 and Fes1 [9]. Another layer of the chaperone network

is the Hsp40 co-chaperones, which enhance the intrinsically low ATPase activity of Hsp70s

[10]. Hsp40 co-chaperones also contribute to the substrate specificity of Hsp70s [11]. There-

fore, Hsp40s, Hsp70s and NEFs comprise an ATP-dependent chaperone network that main-

tains proteostasis by facilitating the refolding or degradation of misfolded proteins.

Although the chaperone network is highly efficient, misfolded proteins still aggregate due

to various causes, such as genetic mutations and environmental and oxidative stresses. Disag-

gregation complexes are needed to resolve these aggregates. In yeast cells, the AAA+ ATPase

Hsp104 is a powerful disaggregase that is recruited to protein aggregates with the assistance of

Hsp70 and Hsp40 to facilitate disaggregation [12]. Recent studies have also implicated Hsp110

(Sse1) in facilitating protein disaggregation in both yeast and mammalian cells [13–15].

Depending on their misfolded state, disaggregated proteins are destined for either refolding or

degradation [12]. Thus, disaggregase machineries are critical in protecting cells from the

harmful effects of protein aggregation.

Accumulation of protein aggregates is a hallmark of several neurodegenerative diseases [16,

17]. Huntington’s disease (HD) is a dominant neurodegenerative disorder caused by a trinu-

cleotide (CAG) repeat expansion in exon I of the HTT gene, which results in terminal misfold-

ing and aggregation of Htt proteins. HD is often a late-onset disease which is likely attributed

to decreased activity of protein quality control systems, including the ubiquitin proteasome

system (UPS) [18–21]. In neuronal cells, less efficient UPS activity is linked to neurodegenera-

tive diseases including HD [22]. Budding yeast has been used as a model organism to study the

cellular response to the expression of misfolded human disease proteins. In yeast cells, overex-

pression of mutated Huntingtin with 103 polyQ expansion and the proline-rich domain

(Htt103QP) results in aggregation, making it an ideal substrate to study the process of protein

aggregation and clearance [23, 24]. Interestingly, overexpression of Htt103QP is not toxic to

yeast cells because it is sequestered and deposited into cytoprotective inclusion bodies (IB)

which can be cleared via autophagy [25–27]. However, the role of chaperone proteins in the

clearance of mutated Huntingtin remains largely unexplored.

In this study, we identified a chaperone network that is required for Htt103QP IB formation

and the subsequent autophagic degradation in yeast cells. The cytosolic Hsp70 Ssa chaperones,

the Hsp70 NEFs Sse1 and Fes1, and Hsp40 co-chaperone Ydj1 are required for Htt103QP IB

formation. Interestingly, in cells lacking Sse1 and Fes1, Htt103QP aggregation is accelerated.

Heat-shock proteins and the autophagy of misfolded proteins
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In addition, the aggregation of other proteins is also more pronounced as evidenced by the for-

mation of Hsp104-GFP foci in the absence of Htt103QP expression. Surprisingly, sse1Δ, fes1Δ
and ydj1-151 mutants exhibit no significant delay in proteasome-dependent degradation of

Htt103QP. However, we found that the recognition of Htt103QP aggregates by the autophagy

machinery was much less efficient in sse1Δ, fes1Δ and ydj1-151 mutants, as Htt103QP co-local-

ization with the autophagosomal marker Atg8 was significantly reduced. As a result, the rate of

autophagic degradation of Htt103QP was substantially decreased in these mutants. Therefore,

our data support the conclusion that the absence of a particular group of HSPs results in

abnormal aggregation of misfolded proteins, which compromises their clearance through the

autophagy pathway.

Results

Sse1 and Fes1 are required for mutant Huntingtin inclusion body

formation

Inclusion body (IB) formation is an active cytoprotective process that sequesters misfolded

protein species [25–28]. In budding yeast Saccharomyces cerevisiae, overexpression of mutant

Huntingtin with 103 polyQ repeat and the proline-rich domain (Htt103QP) from a galactose

promoter (PGALFlag-Htt103QP-GFP) leads to IB formation [23, 24]. However, many of the

components necessary for IB formation have yet to be discovered. From a genome-wide

genetic screen, we identified dsk2Δmutant that showed compromised IB formation and was

sensitive to Htt103QP expression [26]. From this screen, we also found that sse1Δ mutant

exhibited slow growth on galactose plates, but this slow growth phenotype was independent of

Htt103QP overexpression, as the mutant cells grew slowly on both galactose and glucose plates

(Fig 1A). A previous study found that Sse1 associates with Htt103QP aggregates formed in

yeast cells [25], therefore, we examined Htt103QP IB formation in sse1Δ mutant. For this

experiment, cells were incubated in galactose medium for 16 hrs to induce Htt103QP-GFP

overexpression. The majority of wild-type (WT) cells exhibited one single large inclusion body

marked by GFP, but sse1Δ cells had multiple Htt103QP aggregates, which were often smaller

and morphologically different from the inclusions in WT cells (Fig 1B). Moreover, the GFP

intensity of the aggregates in sse1Δ cells was considerably less than those in WT cells (Fig 1C).

We found that majority of WT cells (79%) had only one IB, whereas 88% of sse1Δmutant cells

exhibited three or more aggregates, with an average around eight aggregates in a sse1Δ cell (Fig

1E and 1F). Therefore, sse1Δ mutant cells show an increased number of aggregates and exhibit

a clear IB formation defect.

Sse1 is one of the four cytosolic Hsp70 nucleotide exchange factors (NEF) in yeast cells,

with the other three being Sse2, Fes1 and Snl1 [9]. Therefore, we examined if the others were

also required for Htt103QP IB formation. sse2Δ and snl1Δ mutant cells exhibited normal IB

formation after Htt103QP induction, but fes1Δ mutant showed a clear IB formation defect as

indicated by the increased number of GFP foci, albeit less pronounced than sse1Δ cells (Fig

1D). Approximately 35% of fes1Δ mutant cells were still able to form a single large IB like WT

cells, but other cells contained additional smaller aggregates (Fig 1D and 1E). This is consistent

with the average number of aggregates in fes1Δ cells being more than WT but less than sse1Δ
cells (Fig 1F). Since both sse1Δ and fes1Δ mutants exhibited IB formation defect, we speculated

that a double mutant might exacerbate the phenotype. Interestingly, the sse1Δ fes1Δ double

mutants did not show exacerbated phenotype, but instead exhibited a phenotype more similar

to fes1Δ cells (Fig 1D, 1E and 1F). This might be attributed to the dramatic increase in heat

shock response in sse1Δ fes1Δ double mutants [9], as enhanced expression of other HSPs may

suppress the severity of the sse1Δ fes1Δ phenotype. Taken together, these results indicate that

Heat-shock proteins and the autophagy of misfolded proteins
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cytosolic Hsp70 NEF Sse1, and Fes1 to a lesser extent, participates in IB formation in yeast

cells overexpressing Htt103QP.

Deletion of either SSE1 or FES1 results in accelerated Htt103QP

aggregation

Sse1 has previously been implicated in preventing protein aggregation by assisting in protein

folding and facilitating protein disaggregation [15, 29, 30]. In this context, we tested whether

sse1Δ and fes1Δ mutants changed the rate of aggregation after Htt103QP overexpression. Cells

with PGALFlag-Htt103QP-GFP were grown to mid-log phase in non-inducible raffinose con-

taining medium, and then galactose was added into the medium to induce Htt103QP overex-

pression. Cells were collected over time to visualize the appearance of GFP foci, which indicate

Htt103QP aggregate formation. We found that both sse1Δ and fes1Δ mutants exhibited

Fig 1. Cytosolic Hsp70 nucleotide exchange factors Sse1 and Fes1 are required for Htt103QP inclusion body (IB) formation. (A) Htt103QP overexpression

and the growth of WT and sse1Δ cells. Cells containing PGALFlag-Htt103QP-GFP were grown to saturation, 10-fold diluted, and spotted onto glucose (YPD) or

galactose (YEPG) (yeast extract peptone and galactose) plates. The plates were incubated at 30˚C for 2 days. (B) Confocal DIC and fluorescent images showing

Htt103QP IB formation. WT and sse1Δ cells with PGALFlag-Htt103QP-GFP were incubated at 30˚C in YEPG medium for 16 hrs to induce Htt103QP-GFP

expression. The cells were fixed by paraformaldehyde for 5 min and then resuspended in PBS buffer for confocal microscopy. Scale bar = 5μm. (C) 2.5-D analysis

showing the intensity of fluorescent GFP peaks of the images from (B). Software used was Zen Blue from Zeiss. (D) Htt103QP IB formation in yeast mutants

lacking Hsp70 nucleotide exchange factors (NEFs). Cells with the indicated genotypes were grown and treated as described above and then examined using an

EVOS fluorescence microscope. Representative fluorescent images are shown for WT, snl1Δ, sse1Δ, sse2Δ, fes1Δ, and sse1Δ fes1Δ cells expressing Htt103QP-GFP.

Scale bar = 5μm. (E) Cells from (D) were quantified for the number of aggregates in each cell: 1, 2 or>2 (n = 100 cells). The results are the average of three

independent experiments. (F) The average number of aggregates in WT, sse1Δ, fes1Δ, and sse1Δ fes1Δ cells from (D) were quantified (n> 40 cells). The results are

the average of three independent experiments. � indicates statistical comparison between WT and mutants. p< .0001 in all instances.

https://doi.org/10.1371/journal.pone.0191490.g001
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accelerated aggregation of Htt103QP compared to WT cells (Fig 2A). In cells lacking Sse1 and

Fes1, visible aggregates appeared at 1 and 2 hr after Htt103QP induction, respectively, while

visible aggregates began to appear in WT cells after 3 hr induction. Furthermore, the average

number of aggregates was substantially higher in both mutants with sse1Δmutants averaging

nearly four per cell after 5 hr galactose induction (Fig 2B). To validate these microscopic obser-

vations biochemically, we performed SDS agarose gel electrophoresis (SDS-AGE) [31].

Htt103QP species with higher molecular weight were observed in sse1Δ mutants compared to

WT after 3 hr galactose induction, suggesting more pronounced Htt103QP aggregation in

sse1Δ cells (Fig 2C). As expected, increased aggregated Htt103QP was not observed in sse2Δ
and snl1Δ mutant cells. Surprisingly, we did not observe an appreciable increase in Htt103QP

aggregates in fes1Δ cells using SDS-AGE (Fig 2C), indicating that the biochemical nature of

the aggregates observed in sse1Δ and fes1Δ is likely different. These results suggest that Sse1

and Fes1 aid in preventing the aggregation of Htt103QP in yeast cells, with Sse1 seemingly

playing a more predominant role.

Hsp70 and Hsp40 chaperones facilitate Htt103QP IB formation

Sse1 and Fes1 are NEFs that replace ADP with ATP on the cytosolic Ssa subfamily of Hsp70

[32, 33]. This subfamily includes Ssa1, Ssa2, Ssa3 and Ssa4, and they interact with both Sse1

and Fes1 [34]. Therefore, we determined whether these chaperones played a role in Htt103QP

Fig 2. Cells lacking Sse1 and Fes1 exhibit accelerated Htt103QP aggregate formation. (A) WT, sse1Δ, and fes1Δ cells with PGALFlag-Htt103QP-GFP plasmid

were grown in non-inducible raffinose medium (YEP + Raffinose) to mid log phase, and then galactose was added to induce the overexpression of Flag-

Htt103QP-GFP. Cells were collected every hour for microscopy using the EVOS microscope. Representative DIC and fluorescence images are shown for Htt103QP

aggregate formation. Scale bar = 5μm. The number of aggregates in each cell were quantified. The percentage of cells with 1, 2 or>2 aggregates (n = 100 cells) is

shown. (B) Quantitation of the average number of aggregates per cell in WT, sse1Δ and fes1Δ cells. Averages are from three independent experiments (n> 50 cells).

(C) Detection of Htt103QP protein aggregates using agarose gel electrophoresis. WT and mutant cells were grown in non-inducible raffinose medium (R). After

galactose addition, the cells were incubated for 3 hr (G). Protein samples were prepared as described in Materials and Methods and subjected to SDS agarose gel

electrophoresis (SDS-AGE) and SDS-PAGE. Two separate WT and sse1Δ strains are shown for reproducibility (left). The results for WT, sse2Δ, fes1Δ, and snl1Δ
mutants are shown in the right panel. Pgk1: loading control.

https://doi.org/10.1371/journal.pone.0191490.g002
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IB formation. We first examined the IB formation in each single deletion mutant, but no obvi-

ous defect was observed (S1A Fig). We speculated the efficient Htt103QP IB formation in each

single mutant is likely due to the redundant function of Hsp70 protein family. To test this pos-

sibility, we used a strain lacking SSA2, SSA3 and SSA4 genes but expressing temperature-sensi-

tive ssa1-45 [35]. We found that this mutant showed a significant Htt103QP IB formation

defect when incubated at 35˚C. Many of the mutant cells exhibited diffuse Htt103QP-GFP,

while others showed numerous small aggregates (Fig 3A). Due to the diffuse nature of

Htt103QP in many mutant cells, quantitation was not performed. These results indicate that

cytosolic Hsp70 proteins are critical for Htt103QP IB formation.

We next examined the role of Hsp40 chaperones in Htt103QP IB formation. Hsp40 co-chap-

erone proteins stimulate the ATPase activity of Hsp70 to facilitate complex formation between

Hsp70 and client proteins [11]. Previous work indicates that Hsp40 co-chaperone proteins Sis1

and Ydj1 physically interact with Sse1 [34]. Therefore, we examined IB formation in the absence

of Hsp40 co-chaperones Ydj1 and Sis1. Because YDJ1 deletion mutant is very sick and SIS1 is an

essential gene, we used temperature sensitive mutants for this experiment [36, 37]. The non-

Fig 3. Hsp70 and Hsp40 chaperones participate in Htt103QP IB formation. (A) Htt103QP IB formation in yeast Hsp70 Ssa family mutants. Fluorescent images

of SSA1-WT and SSA1-45 cells expressing Flag-Htt103QP-GFP at 35˚C for 16 hr. Two separate fluorescent images for ssa1-45 mutants indicate two phenotypes.

Scale bar = 5μm. (B) Htt103QP IB formation in Hsp40 co-chaperone mutant ydj1-151. Fluorescent images of WT and ydj1-151 cells expressing Flag-

Htt103QP-GFP for 16 hrs at permissive (25˚C) and semi-permissive (30˚C) temperatures. Cells were quantified for the number of aggregates in each cell: 1, 2 or

>2 (n = 100 cells). The results are the average of three independent experiments. Scale bar = 5μm. (C) Htt103QP IB formation in Hsp40 co-chaperone mutant sis1-
85. Fluorescent images of SIS1-HA and SIS1-85-HA strains expressing Htt103QP-GFP for 16 hrs at permissive (25˚C) and restrictive (37˚C) temperatures. Scale

bar = 5μm. All microscopy in this figure was performed on the EVOS microscope.

https://doi.org/10.1371/journal.pone.0191490.g003
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permissive temperature of ydj1-151 strain is 37˚C, but multiple Htt103QP aggregates were

observed in the mutant cells even when incubated at 25˚C, and the phenotype was further exac-

erbated at 30˚C (Fig 3B). The temperature sensitive sis1-85 mutant cells failed to aggregate any

Htt103QP at non-permissive 37˚C (Fig 3C), which is likely attributable to its function in

[RNQ+] maintenance, as [RNQ+] is essential for the aggregation of mutant Huntingtin proteins

in yeast cells [37, 38]. Therefore, Ydj1 co-chaperone is required for Htt103QP IB formation.

In addition to the Ssa family, other chaperones are also known to interact with either Sse1 or

Fes1, such as Ssb1, Sti1, Hsp42, Hsp82 and Hsc82 according to the Saccharomyces genome data-

base. We examined the Htt103QP IB formation in yeast mutants lacking these proteins, none of

which exhibited an obvious defect in IB formation (S1C Fig). Taken together, these results sug-

gest that a chaperone network is required to facilitate Htt103QP IB formation, and this network

includes the Ssa class of Hsp70s, NEFs Sse1 and Fes1, and the Hsp40 co-chaperone Ydj1.

Analysis of protein aggregation in HSP mutants using disaggregase Hsp104

as a marker

The function of the yeast AAA+ ATPase Hsp104 in protein disaggregation is well established

[12]. Previous studies have demonstrated that Hsp104 functions with Hsp40 and Hsp70 to

facilitate protein disaggregation [39, 40], whereas more recent work indicates that Hsp110

(Sse1 and Sse2) aids Hsp104 in disaggregation of protein aggregates [13, 41]. Therefore, we

determined whether Sse1 and Fes1 recruit Hsp104 to Htt103QP aggregates for disaggregation.

For this experiment, WT, sse1Δ, and fes1Δ cells with HSP104-GFP PGALFlag-Htt103QP-mApple
were grown in galactose medium for 6 hr to induce Htt103QP overexpression. Surprisingly,

the co-localization of Hsp104-GFP and Htt103QP-mApple was similar in WT, sse1Δ and fes1Δ
cells (Fig 4A), even though the mutants contain more aggregates. This observation indicates

that NEFs Sse1 and Fes1 are not necessary for Hsp104 to recognize Htt103QP aggregates. We

also examined the colocalization of Hsp104-GFP with Htt103QP-mApple in sse2Δ and ydj1-
151 mutants, no colocalization defect was observed, which is similar to sse1Δ and fes1Δ
mutants (Fig 4A). Although Hsp104 seems to recognize Htt103QP aggregates efficiently in

these mutants, further biochemical studies are needed to determine the disaggregase function-

ality of Htt103QP-associated Hsp104 in these mutants.

When examining the Hsp104 –Htt103QP colocalization, WT cells showed enriched nuclear

localization of Hsp104-GFP with very few cytoplasmic GFP foci prior to Htt103QP induction

(S2 Fig). The observation regarding the enriched Hsp104-GFP nuclear localization under non-

stressed conditions differs from the findings from the Glover lab [42], but is consistent with

findings from the Wendland lab [43]. These differences are most likely attributable to N-termi-

nal (the Glover lab) vs C-terminal GFP tagging of Hsp104 (the Wendland lab and this study).

Strikingly, cytoplasmic Hsp104-GFP foci were observed in sse1Δ and ydj1-151 mutants, and to

a lesser extent fes1Δ, even before Htt103QP induction, indicating aggregate formation (Fig

4B). For example, 91% sse1Δ mutant cells contained at least one cytoplasmic Hsp104-GFP pos-

itive foci. These foci were also observed in ydj1-151 mutant even at permissive temperature

25˚C and drastically increased at 30˚C (Fig 4B and 4C). This phenomenon was not observed

in sse2Δ cells, which is consistent with the normal Htt103QP IB formation in these cells. Taken

together, these results suggest that Sse1, Fes1 and Ydj1 are chaperones critical to prevent pro-

tein aggregation and/or promote aggregate disassembly.

Chaperones play a minor role in proteasomal degradation of Htt103QP

Mutated Huntingtin with polyQ expansion can be degraded via both UPS and autophagy path-

ways [44]. We speculated that the accelerated aggregation of Htt103QP in some HSP mutants

Heat-shock proteins and the autophagy of misfolded proteins
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could be a result of compromised protein degradation. Therefore, we examined proteasome-

dependent degradation of Htt103QP in sse1Δ and fes1Δ mutant cells. We have previously

shown that Htt103QP is efficiently degraded via the proteasome using a shut-off assay [26].

Here, we confirmed the efficient degradation of Htt103QP after 1 hr induction in galactose

Fig 4. Hsp104-GFP positive aggregates are increased in sse1Δ and ydj1-151 mutants. (A) Hsp104 recruitment to Htt103QP aggregates is independent of

chaperones. Cell with indicated genotypes were grown in non-inducible raffinose medium to mid-log phase then galactose was added. Images were taken after

incubation for 3 hr. Representative fluorescence images show cellular localization of Hsp104-GFP and Htt103QP-mApple. DIC and merged images are also shown.

Scale bar = 5μm. (B) Constitutive appearance of Hsp104-GFP positive aggregates in sse1Δ and ydj1-151mutants. Cells with indicated genotypes were grown in

raffinose or galactose containing medium to mid-log phase. Representative fluorescence images are shown. WT cells show predominantly nuclear localized

Hsp104-GFP in the absence of Htt103QP overexpression. Scale bar = 5μm. (C) Cells from (B) were quantified based on the presence of Hsp104-GFP positive

aggregate(s). Results are the average of three independent experiments (n = 100 cells). All images in this figure was obtained using the EVOS microscope.

https://doi.org/10.1371/journal.pone.0191490.g004
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medium followed by expression shut-off by adding glucose. Inhibition of proteasome activity

with MG132 blocked Htt103QP degradation (S3A Fig). In contrast, deletion of autophagy

genes, atg7Δ and atg8Δ, had little effect on the degradation Htt103QP using the shut-off assay

(S3B Fig). Therefore, the rapid disappearance of Htt103QP protein in WT cells after short-

time induction depends on the UPS, but not the autophagy pathway. We next examined pro-

teasome-dependent degradation of Htt103QP in yeast mutants lacking Hsp70 NEFs. Interest-

ingly, we observed no significant delay in proteasomal degradation of Htt103QP in NEF

mutants, sse1Δ, fes1Δ, sse2Δ, and snl1Δ (S3C and S3D Fig). In addition, we found no obvious

delay in proteasomal degradation of Htt103QP in ydj1-151 or sis1-85 mutants at restrictive

temperature 37˚C (S3E Fig). Sis1 has been shown to be required for the proteasomal degrada-

tion of endogenous misfolded proteins when fused with a degron sequence from Ndc10 [45].

Since Htt103QP is expressed as a misfolded protein without this degron sequence, we specu-

late that Sis1 plays distinct roles for the degradation of different substrates. Similarly, no obvi-

ous Htt103QP degradation defect was observed in mutant cells lacking other chaperone

proteins known to interact with Sse1 (S1B and S1D Fig). The efficient Htt103QP degradation

in sse1Δ, fes1Δ, and ydj1-151 mutants is surprising, given the accelerated Htt103QP aggrega-

tion observed in these mutants. To test the possibility that this proteasome-mediated degrada-

tion of Htt103QP could only be for the soluble fraction, we performed a sedimentation as

previously described [46]. We found that after 2 hr induction nearly all of the Htt103QP pro-

teins still remained soluble in both WT and sse1Δ mutants (S4A Fig). We speculate that the

Htt103QP aggregates observed in sse1Δmutant cells after short-time induction could be solu-

ble, which enables efficient proteasomal degradation of Htt103QP.

Protein ubiquitination is a targeting signal for proteasome-dependent degradation [47].

Previous studies indicate that both Sse1 and Fes1 are involved in Hsp70-dependent ubiquitina-

tion and degradation of misfolded proteins [48–52]. Because the proteasomal degradation was

normal in these mutants, we reasoned that Htt103QP ubiquitination should not be compro-

mised in these mutants. We examined Htt103QP ubiquitination in sse1Δmutant as it exhibited

the most severe phenotype. As expected, sse1Δ mutant exhibited similar Htt103QP ubiquitina-

tion compared to WT cells (S4B Fig). These results indicate that while some chaperone pro-

teins prevent the rapid aggregation Htt103QP, they are not required for its ubiquitination and

efficient proteasomal degradation.

Autophagic degradation of Htt103QP is impaired in sse1Δ, fes1Δ and ydj1-
151 mutant cells

Previous studies have analyzed the roles of chaperone proteins in IB formation and alleviation

of toxic effects of aggregation-prone proteins [22, 53–56]. The chaperone-mediated autophagy

(CMA) pathway has been shown to target soluble cytosolic proteins containing KFERQ-like-

motifs for autophagic degradation in mammalian cells [57]. However, very few studies have

directly analyzed the role of chaperone proteins in the autophagic degradation of mutant Hun-

tingtin protein. We recently showed that Htt103QP is efficiently degraded via autophagy in

yeast cells [26]. Thus, we used a similar protocol to analyze this process in sse1Δ and fes1Δ
mutant cells. Htt103QP-GFP expression was induced in galactose medium for 16 hr, then glu-

cose and DNA synthesis inhibitor hydroxyurea (HU) were added to the medium to shut off

Htt103QP-GFP expression and prevent cell division, respectively. After glucose and HU were

added for 30 min, vacuolar GFP localization was observed in some WT cells, indicating the

transport of Htt103QP-GFP into the vacuole via the autophagy pathway. After 90 min incuba-

tion, only 26% of WT cells still contained Htt103QP aggregate(s), but 72% of sse1Δ cells con-

tained aggregates (Fig 5A and 5C). Therefore, we conclude that sse1Δ mutant cells exhibit a
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significant autophagic degradation defect for Htt103QP. We also found that fes1Δ mutants

exhibited impaired autophagic degradation of Htt103QP. After glucose and HU were added

for 120 min, 53% of fes1Δ cells showed Htt103QP-GFP aggregates, compared to 19% in WT

cells (Fig 5B and 5D). These results indicate the critical role of chaperone proteins in the effi-

cient autophagic clearance of misfolded proteins.

Aggregated proteins can be degraded through selective autophagy, which involves the rec-

ognition and sequestration of the cargo within the autophagosome, a key structure in autop-

hagy. An autophagosome is a double membrane vesicle that delivers cytoplasmic components

to lysosomes/vacuoles. Atg8 is a protein anchored to the autophagosomal membrane and is

required for autophagosome formation [58]. We speculated that the selective autophagy

machinery may not be able to efficiently recognize the Htt103QP aggregates in sse1Δ and fes1Δ
mutants, which could contribute to the defect in clearance. To test this possibility, we exam-

ined the co-localization of Htt103QP with Atg8. For this purpose, we introduced a plasmid

expressing GFP-ATG8 into yeast cells with PGALFlag-Htt103QP-mApple, and the cells were

incubated in galactose medium for 16 hr to induce Htt103QP overexpression. Indeed, we

found a substantial decrease in the co-localization of Htt103QP-mApple aggregates with

GFP-Atg8 in sse1Δ and fes1Δ mutants (Fig 6A). The percentage of total Htt103QP aggregates

that co-localize with Atg8 was 11% in sse1Δ cells compared to 70% in WT cells (Fig 6B).

Importantly, this decrease was not due to defects in autophagosome formation in the mutants,

as the frequency of visible autophagosomes (GFP-Atg8 foci) was similar in WT and sse1Δ cells

incubated in galactose and glucose media (Fig 6C). In addition, starvation-induced non-

Fig 5. The autophagic degradation of Htt103QP is compromised in sse1Δ and fes1Δmutants. (A) The autophagic disposal of Htt103QP in WT and sse1Δ
mutant cells. pep4ΔVPH1-mApple (WT) and sse1Δ pep4ΔVPH1-mApple (sse1Δ) cells containing Flag-Htt103QP-GFP were grown in galactose medium (YEPG) at

30˚C for 16 hr. Glucose was then added to shut off Htt103QP expression, and 100 mM hydroxyurea (HU) was added to block cell cycle progression. Representative

fluorescent images are shown for the localization of Htt103QP-GFP and Vph1-mApple before and after addition of glucose and HU. Vph1-mApple was used to

mark vacuole structure. Pep4 is a vacuolar protease, and pep4Δmutant was used to slow degradation inside the vacuole to enhance visualization. (B) Htt103QP

autophagic disposal in WT and fes1Δmutant cells. A similar protocol was used to examine the vacuolar localization of Htt103QP-GFP. (C and D) Quantitation of

cells with Htt103QP IB or aggregates localized outside the vacuole over time. The cells from (A) and (B) are used for the quantitation. The quantified results (three

independent repeats) were obtained by counting the number of cells containing at least one IB or aggregate (n = 100). All microscopy in this figure was performed

on the EVOS microscope.

https://doi.org/10.1371/journal.pone.0191490.g005
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selective autophagy was normal, and possibly even more efficient, in sse1Δ and fes1Δ mutants

as indicated by the production of monomeric GFP generated from GFP-Atg8 cleavage after

starvation [59] (Fig 6D). Taken together, these results indicate that Sse1 and Fes1 promote

autophagy-mediated degradation of Htt103QP by allowing the effective recognition of the

aggregates by the selective autophagy machinery.

Since ydj1-151 mutants exhibit similar IB formation defects as sse1Δ and fes1Δ mutants, we

next examined if ydj1-151 cells exhibited an autophagy defect as well. For this experiment,

Htt103QP expression was induced in WT and ydj1-151 cells in galactose medium at 25˚C for

16 hrs, then the cultures were shifted to semi-permissive temperature 32˚C for 15 minutes

before addition of glucose and HU to shut off Htt103QP expression and block cell cycle

Fig 6. Sse1 and Fes1 are required for efficient recognition of Htt103QP by autophagy machinery. (A) The co-localization of Htt103QP and Atg8 in WT, sse1Δ,

and fes1Δ cells. Cells containing GFP-ATG8 and PGALFlag-Htt103QP-mApple were grown in galactose medium YEPG for 16 hrs and fixed for microscopy.

Representative fluorescence images show the localization of Htt103QP-mApple and GFP-Atg8. Scale bar = 5μm. (B) Quantitation of total number of Htt103QP

aggregates colocalized with GFP-Atg8 in WT, sse1Δ, and fes1Δ cells (n = 100 IB/aggregates). Quantities indicate the average of three independent experiments.
� indicates statistical comparison. p< .001. (C) Quantitation of the number of GFP-Atg8 autophagosomes present in WT, sse1Δ and fes1Δ cells incubated in

glucose or galactose medium (n = 100 cells). Quantities indicate the average of three independent experiments. (D) Sse1 and Fes1 are not required for starvation-

induced autophagy. WT, sse1Δ, and fes1Δ cells with GFP-ATG8 were grown in SC -TRP medium, and then shifted to nitrogen-deficient medium (SD-N) for 24 hr.

The cells were collected to detect the presence of GFP-Atg8 and the cleavage product, monomeric GFP, using anti-GFP antibody. Pgk1: loading control. The EVOS

microscope was used to obtain the images in this figure.

https://doi.org/10.1371/journal.pone.0191490.g006
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progression, respectively. After glucose addition for 120 min, only 16% of WT cells contained

Htt103QP aggregates and most of the cells showed obvious GFP signal in the vacuole, indicat-

ing successful autophagy. In ydj1-151 mutants, however, 61% of cells contained at least one

Htt103QP aggregate, and the vacuolar GFP signal was much less frequent (Fig 7A and 7B).

Consistent with the lack of vacuole localization, the frequency of Htt103QP aggregates coloca-

lizing with GFP-Atg8 was dramatically reduced in ydj1-151mutant at semi-permissive temper-

ature 32˚C (Fig 7C and 7D). The frequency of visible GFP-Atg8 autophagosomes in WT and

ydj1-151 mutant cells incubated in galactose or glucose media was similar, indicating that the

autophagic degradation defect in ydj1-151 mutant was not due to defective autophagosome

formation (Fig 7E). Taken together, these results indicate that chaperone proteins Sse1, Fes1,

and Ydj1 are required for the recognition of Htt103QP aggregates by Atg8 and the subsequent

autophagosome formation. Therefore, cells lacking these chaperones show a significant defect

in autophagic clearance of Htt103QP.

Fig 7. Hsp40 co-chaperone Ydj1 is required for efficient autophagic degradation of Htt103QP. (A) Htt103QP autophagy in WT and ydj1-151mutant cells.

pep4ΔVPH1-mApple (WT) and ydj1-151 pep4ΔVPH1-mApple (ydj1-151) cells containing PGALFlag-Htt103QP-GFP were grown in galactose medium (YEPG) at

25˚C for 16 hrs. Cells were then shifted to semi-permissive temperatures (32˚C) for 10 min prior to glucose and hydroxyurea (HU) addition. Representative

fluorescent images are shown for the localization of Htt103QP-GFP and Vph1-mApple (vacuolar marker) before and after addition of glucose and HU. Scale

bar = 5μm. (B) Quantitation of cells with Htt103QP IB or aggregates localized outside the vacuole over time. Results from three independent experiments were

used for the quantitation. The quantified results were obtained by counting the number of cells containing at least one IB or aggregate (n = 100). (C) The co-

localization of Htt103QP and Atg8 in WT and ydj1-151 cells. Cells containing GFP-ATG8 and PGALFlag-Htt103QP-mApple were grown in galactose medium YEPG

for 16 hrs at 32˚C and fixed for microscopy. Representative fluorescence images show the localization of Htt103QP-mApple and GFP-Atg8. (D) Quantitation of

total number of Htt103QP aggregates colocalized with GFP-Atg8 in WT and ydj1-151 cells (n = 100 IB/aggregates). Quantities indicate the average of three

independent experiments. � indicates statistical comparison. p< .005. (E) Quantitation of the number of GFP-Atg8 autophagosomes present in WT and ydj1-151
cells incubated in glucose or galactose medium (n = 100 cells). Quantities indicate the average of three independent experiments. All images in this figure were

acquired using the EVOS microscope.

https://doi.org/10.1371/journal.pone.0191490.g007

Heat-shock proteins and the autophagy of misfolded proteins

PLOS ONE | https://doi.org/10.1371/journal.pone.0191490 January 18, 2018 12 / 21

https://doi.org/10.1371/journal.pone.0191490.g007
https://doi.org/10.1371/journal.pone.0191490


Discussion

The accumulation of misfolded proteins in neurons is a hallmark of neurodegenerative dis-

eases [60, 61]. The stressful environment caused by protein aggregates may interfere with cel-

lular functions. The chaperone network prevents aggregation and facilitates refolding [5].

Thus, chaperone expression alterations are associated with aging and neurodegeneration [53].

The role of chaperones in protein folding, disaggregation and proteasome-dependent degrada-

tion has been well documented [5, 12], but the role of chaperone proteins in autophagy-depen-

dent clearance of misfolded proteins is not fully understood. Using yeast as a model system,

we found that cytosolic Hsp70 proteins and their co-factors, Hsp40 co-chaperone and NEFs,

are required for the efficient clearance of mutated Htt103QP through autophagy. Moreover,

this defect is likely due to the failure of IB formation, as evidenced by the accelerated protein

aggregation and the increased number of aggregates in the mutant cells.

The rapid accumulation of Htt103QP aggregates in sse1Δ, fes1Δ, and ydj1-151 mutant cells

is unlikely attributable to impaired Htt103QP degradation by the proteasome. All tested chap-

erone mutants exhibited proteasome-dependent degradation, although we found slight delay

in some strains. Since polyubiquitination is a targeting signal for proteasome-dependent deg-

radation and mutant Huntingtin protein is known to be ubiquitinated [27, 62, 63], we exam-

ined the ubiquitination state of Htt103QP in sse1Δ cells. The ubiquitination of Htt103QP was

unaffected by sse1Δ deletion, arguing against the role of Sse1 in Htt103QP ubiquitination. We

further tested the possibility that Sse1 and Fes1 recruit disaggregase Hsp104 to Htt103QP

aggregates [64], but we found clear co-localization of Hsp104 with Htt103QP in sse1Δ and

fes1Δ mutants. One explanation is that the Hsp104 is not fully functional in these mutant cells

even though its recruitment to Htt103QP aggregates is normal. Alternatively, Sse1, Fes1, and

Ydj1 chaperones could have a disaggregase function independent of Hsp104.

We have previously shown that Htt103QP can be efficiently cleared via autophagy [26]. We

found that Sse1, Fes1, and Ydj1 are all required for efficient autophagy of Htt103QP. The rate

of clearance of the multiple aggregates observed in these mutants is significantly delayed com-

pared to WT cells. However, Htt103QP is still observed in the vacuole in some mutant cells,

indicating autophagic degradation of Htt103Qp is not abolished completely. We found a stark

decrease in the colocalization of autophagosmal marker Atg8 with Htt103QP aggregates in all

three mutants. It is possible that the biochemical nature of the aggregates in these mutants dif-

fers from the IB in WT cells, and thus cannot be efficiently recognized and encapsulated into

autophagosomes [65]. Another possibility is that the accelerated Htt103QP aggregation may

block the binding sites for an autophagy receptor. Recent studies suggest that the ubiquitin-

Atg8 adaptor Cue5 acts as the receptor to facilitate autophagy-dependent clearance of mutated

Huntingtin [63]. Further studies are needed to examine the binding of Htt103QP to Cue5 in

cells lacking HSPs.

It is of interest that the IB formation defects found in yeast cells lacking Sse1 and Fes1 do

not cause cytotoxicity like in other mutants, such as dsk2Δ and cdc48-1 and bmh1Δ [25, 26, 66].

One explanation is that the aggregates formed in sse1Δ and fes1Δ mutants are less toxic [67,

68]. However, the aberrant aggregates in sse1Δmutants appear morphologically similar to the

aggregates in cells overexpressing Htt103Q that lacks the proline-rich domain, and yeast cells

are very sensitive to Htt103Q expression [38]. Our explanation is that sse1Δ mutant cells accu-

mulate multiple aggregates even in the absence of Htt103QP expression as indicated in Fig 4,

which may contribute to the slow growth of sse1Δ cells. Htt103QP expression does not further

exacerbate the growth defect in sse1Δ cells.

Chaperone proteins are highly conserved from yeast to human. Our findings suggest that

a chaperone network regulates aggregation of mutated Huntingtin. On one hand, these
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chaperone proteins prevent aggregation of misfolded proteins after their synthesis. On the

other hand, this network is required for IB formation and the subsequent autophagic clear-

ance. Therefore, functional HSPs are critical for the healthy cellular environment, and dys-

functional HSPs may contribute to disease development. In line with this, transgenic

expression of Hsp110 is linked to extended survival in mice with ALS [69]. In contrast, loss of

Hsp110 is linked to early accumulation of Alzheimer’s disease proteins Aβ and hyperpho-

sphorylated Tau in mice [70]. Additionally, Hsp70 is known to bind and facilitate refolding of

mutant Huntingtin, α-synuclein, Aβ, hyperphosphorylated Tau and mutant SOD1 [22]. Fur-

ther mechanistic insights into this pathway may uncover potential therapeutic strategies.

Materials and methods

Strains, plasmids and growth conditions

Yeast strain used in this study are W303 unless otherwise noted. Genotypes are listed in S1

Table. Gene deletions and GFP tagging of HSP104 were performed using a PCR-based method

[71]. The plasmid of Flag- and GFP-tagged Htt103QP fragment with galactose-inducible pro-

moter (PGALFlag-Htt103QP-GFP) was originally from the Lindquist lab [23]. Using this plas-

mid, we subcloned the PGALFlag-Htt103QP-GFP into pRS406 vector, and the resulting plasmid

was then inserted into the yeast genome after EcoRV digestion. To construct the PGALFlag-
Htt103QP-mApple plasmid, the GFP was replaced with mApple using PCR-based subcloning.

The pRS414-GFP-Atg8 plasmid, originally from the Klionsky lab [72], was obtained from

Addgene. The p1217 plasmid is a derivative of pRS414 containing a galactose inducible

promoter followed by 3xHA. We used PCR-based protocol to subclone the WT ubiquitin

sequence from pRK5-HA-Ub [73] into p1217 to obtain PGALHA-Ub plasmid. Yeast extract/

peptone medium supplied with raffinose, galactose or glucose was used for the growth of yeast

strains, except for those carrying centromeric plasmids.

Fluorescence imaging

Confocal fluorescence imaging was performed using a Zeiss LSM 880 microscope (Ober-

kocken, Germany). All other fluorescence imaging analyses were performed using an EVOS

microscope (Thermo Fisher Scientific, Waltham, MA). For all imaging analysis, samples were

fixed in paraformaldehyde for 5 minutes then resuspended in 1× PBS buffer.

Western blotting

Protein samples were prepared using an alkaline method and resolved by 10% SDS–PAGE.

Anti-Flag antibody was purchased from Sigma-Aldrich (St. Louis, MO); anti-GFP antibody

was from Santa Cruz Biotechnology (Santa Cruz, CA); anti-Pgk1 antibody was from Molecular

Probes (Eugene, OR); anti-HA antibody was from Covance Research Products (San Diego,

CA). The horseradish peroxidase–conjugated goat anti-mouse IgG secondary antibody was

from Santa Cruz Biotechnology (Santa Cruz, CA).

Starvation induced GFP-Atg8 cleavage assay

Cells containing a pRS414-GFP-ATG8 plasmid were grown in synthetic glucose medium lack-

ing tryptophan (SC—TRP) to OD600 1.0, then shifted to nitrogen deficient medium (SD-N)

for 24 hr. SD-N medium contains YNB, glucose and water.
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Ubiquitination assay

Cells containing PGALFlag-Htt103QP-GFP with either p1217 empty vector or PGALHA-Ub plas-

mid were grown in raffinose containing synthetic medium without tryptophan (SC—TRP) to

OD600 = 0.2. Galactose was then added to the medium for 4 hr to induce expression of HA-Ub

and Flag-Htt103QP-GFP. Cells were then harvested by centrifugation at 10,000 rpm for 10

min at 4˚C. Cells were washed once with water and then resuspended in RIPA buffer (50mM

Tris-HCl pH 7.5, 150mM NaCl, 5mM EDTA, 0.05% Tween-20) along with azide and protease

inhibitor cocktail (EMD Millipore Corp., Billerica, MA). Samples were then frozen by slowly

dripping them into liquid nitrogen to form pellets. Pellets were crushed using a freezer mill.

Once crushed, samples were allowed to thaw on ice in the presence of 20mM deubiquitinase

inhibitor NEM (Sigma Aldrich). Then, samples were centrifuged at 4,000 rpm for 20 min at

4˚C. Supernatant was collected and centrifuged again at 20,000 g for 20 min at 4˚C. Input sam-

ples were saved, then M2 Flag agarose beads (Sigma Aldrich) were used to immunoprecipitate

Flag-Htt103QP-GFP. The beads were washed 3 times and resuspended in 1× SDS loading

buffer and boiled for 5 min. Western blotting was performed using anti-Flag, anti-HA and

anti-Pgk1 antibodies.

Sedimentation assay

The protocol was described previously with minor adaptation for our experiments [46]. Cells

were grown in YEP (yeast extract peptone) medium containing 2% raffinose. Once cells were

in mid-log phase, galactose was added to 2% and the cells were incubated at 30˚C for 2 hrs.

Five mL of cells were harvested and resuspended in 100μL lysis buffer (100mM Tris-HCl pH

7.5, 200mM NaCl, 1mM EDTA, 1mM DTT, 5% glycerol and 0.1% Nonidet P40) plus PMSF

with 100μL 0.5mm acid-washed glass beads. Cells were lysed using a beads beater at 4˚C. Cell

debris were cleared by centrifuging lysates at 700g for 1 min at 4˚C. We removed 50μL lysate,

representing total lysate, and added to 50μL SUMEB (8M Urea, 1% SDS, 10mM MOPS pH

6.8, 10mM EDTA, 1mM PMSF, 0.01% Bromophenol Blue). The remaining lysate (100μL) was

centrifuged at 12,800 g for 15 min at 4˚C. We added 100μL supernatant, representing the solu-

ble fraction, to 100μL SUMEB. The pellet representing the insoluble fraction was resuspended

in 100μL lysis buffer and 100μL SUMEB. All samples were incubated at 65˚C for 10 minutes

and then centrifuged for 5 minutes at 12,800g. Proteins were resolved on SDS-PAGE gels,

transferred to nitrocellulose membrane and immunoblotted with anti-Flag (Sigma) and anti-

Pgk1 (Molecular Probes) antibodies.

SDS agarose gel electrophoresis (SDS-AGE)

We adapted the protocol from previous work with some modification [31]. Briefly, yeast cells

were grown in 10 mL non-inducible raffinose medium until mid-log phase, then galactose was

added to 2% for 3 hrs. 1mL of cells was harvested and resuspended in RIPA (0.05% Tween,

5mM EDTA, 50mM Tris-HCl pH 7.5, 150mM NaCl) buffer plus protease inhibitor cocktail

(Millipore Calbiochem) and PMSF. Cells were broken using a beads beater. Cell debris were

cleared by centrifuging at 300 g for 3 min. Sample buffer (150mM Tris, pH 6.8, 33% glycerol,

1.2% SDS, bromophenol blue) was added at equal volume to lysate and samples were incu-

bated at 37˚C for 15 min. Samples were then loaded on a 1% agarose gel with running buffer

(25mM Tris-HCl, 192mM glycine, and 0.1% SDS). Gels were run at 125V until blue dye

reached the bottom. Gel was then semi-dry transferred onto a nitrocellulose membrane for 30

min at constant 0.09 Amps at 4˚C. The membrane was probed with anti-Flag antibody

(Sigma).
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Statistical analysis

Statistical analysis and significance was performed using student T-test. All error bars shown

in this manuscript represent standard error of the mean (SEM). ImageJ was used for quantita-

tion of Western blot images.

Supporting information

S1 Table. Yeast strains used in this study.

(DOCX)

S1 Fig. Htt103QP inclusion body formation and degradation in chaperone mutants. (A)

Fluorescent images of Htt103QP-GFP in WT, ssa1Δ, ssa2Δ, ssa3Δ, and ssa4Δ cells after 16 hr

induction in galactose medium. Cells were quantified for the number of aggregates in each

cell: 1, 2 or> 2 (n = 100 cells). The results are the average of three independent experiments.

Scale bar = 5μm. (B) Htt103QP degradation in cytosolic Hsp70 mutants. WT, ssa1Δ, ssa2Δ,

ssa3Δ, and ssa4Δ cells with PGALFlag-Htt103QP-GFP were grown in non-inducible raffinose

containing medium to mid-log phase. Galactose was then added for 1 hr to induce Htt103QP

overexpression. Glucose was subsequently added to shut off expression. Cells were collected at

indicated time points to determine Htt103QP protein levels. Pgk1: loading control. (C) Fluo-

rescent images of Htt103QP-GFP in WT, hsp42Δ, hsp82Δ, hsc82Δ, sti1Δ, and ssb1Δ cells after

16 hr induction. Cells were quantified for the number of aggregates in each cell: 1, 2 or > 2

(n = 100 cells). The results are the average of three independent experiments. Scale bar = 5μm.

(D). Htt103QP degradation in WT, hsp42Δ, hsp82Δ, hsc82Δ, sti1Δ, and ssb1Δ cells. Same proto-

col was used as in (B). All microscopy in this figure was performed on the EVOS microscope.

(TIFF)

S2 Fig. Hsp104-GFP localization in WT yeast cells. WT cells containing HSP104-GFP were

grown in either YPD, YEP+Galactose (YEPG), or YEP+Raffinose (YEPR) for at 30˚C for 3 hrs.

Cells were then collected, fixed with 70% ethanol, stained with DAPI, and visualized using

microscopy. DAPI staining was used to mark the nucleus. Representative GFP and DAPI

images are shown. Scale bar = 5μm.

(TIFF)

S3 Fig. Proteasome-dependent Htt103QP degradation in HSP mutants. (A) Proteasome

inhibitor MG132 blocks Htt103QP degradation after short-time induction. WT cells growing

at 30˚C in non-inducible (YEP + raffinose) medium containing 0.1% L-proline were treated

with 0.003% SDS for 3 hr. Then, either DMSO or 75μM MG132 was added to the cultures for

30 min. Galactose was then added to induce Htt103QP overexpression for 1 hr. Finally, glu-

cose was added to shut off Htt103QP expression. Cells were collected when in galactose

(Gal) and also at 90 and 180 min after glucose addition. The Htt103QP protein levels were

detected using anti-Flag antibody. Pgk1: loading control. The quantitative degradation kinetics

expressed as percent remaining is shown in the right panel. (B) Htt103QP degradation in cells

lacking autophagy genes after short-time induction. WT, atg8Δ, and atg7Δ were grown in

non-inducible YEP + raffinose medium to mid log phase, then galactose was added for 1 hr to

induce Htt103QP overexpression. Glucose was then added to shut off Htt103QP expression.

Samples were collected after 1 hr galactose induction and after glucose addition for 90 and 180

min. The Htt103QP protein levels were detected using anti-Flag antibody. Pgk1: loading con-

trol. (C) Htt103QP degradation in WT and sse1Δmutant. Same protocol was used as in (B).

The quantitative degradation kinetics expressed at percent remaining is shown in the right

panel. (D) Htt103QP degradation in WT, sse2Δ, snl1Δ and fes1Δ cells. Same protocol was used
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as described in (B). The quantitative degradation kinetics expressed at percent remaining is

shown in the right panel. (E) Htt103QP degradation in WT and ydj1-151 cells. Cells were

grown at 25˚C in non-inducible YEP + raffinose medium to mid log phase, then galactose was

added to induce Htt103QP overexpression for 50 min. Cells were then shifted to 37˚C for 10

min before glucose was added. Samples were taken after 1 hr galactose induction (Gal) and

after glucose addition for 90 and 180 min. The quantitative Htt103QP degradation is shown in

the right panel.

(TIFF)

S4 Fig. The solubility and ubiquitination of Htt103QP in WT and sse1 mutant cells. (A)

Htt103QP sedimentation assay in WT and sse1Δ cells. Cells were grown in non-inducible raffi-

nose medium at 30˚C to mid-log phase, then galactose was added to 2% for 2 hr. Cells were

lysed with beads beater and Htt103QP was fractionated into soluble (S) and insoluble (I)

fractions by centrifugation. The preparation of the T (total), S and I fractions was described in

the Materials and Methods section. Anti-Flag antibody was used to detect Htt103QP, and anti-

Pgk1 antibody was used to determine the distribution of Pgk1 in each fraction. (B) Htt103QP

ubiquitination in WT and sse1Δ cells. WT and sse1Δ cells carrying PGALFlag-Htt103QP-GFP
and PGALHA-Ub or PGAL-HA were grown in raffinose containing medium to early log phase.

Galactose was added to induce Htt103QP and Ub overexpression for 4 hr. Flag-Htt103QP-

GFP was immunoprecipitated (IP) using anti-Flag M2 agarose beads. Anti-Flag antibody was

used to detect Htt103QP protein level. Anti-HA antibody was used to detect Ub protein level.

Pgk1: loading control.
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