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Abstract

We consider the problem of concurrent portfolio losses in two non-overlapping credit portfo-

lios. In order to explore the full statistical dependence structure of such portfolio losses, we

estimate their empirical pairwise copulas. Instead of a Gaussian dependence, we typically

find a strong asymmetry in the copulas. Concurrent large portfolio losses are much more

likely than small ones. Studying the dependences of these losses as a function of portfolio

size, we moreover reveal that not only large portfolios of thousands of contracts, but also

medium-sized and small ones with only a few dozens of contracts exhibit notable portfolio

loss correlations. Anticipated idiosyncratic effects turn out to be negligible. These are trou-

blesome insights not only for investors in structured fixed-income products, but particularly

for the stability of the financial sector.

JEL codes: C32, F34, G21, G32, H81.

Introduction

Credit portfolios play a crucial role in the economy and numerous approaches and ideas have

been put forward to model the losses that might occur to the portfolio holder, see eg [1], [2],

[3], [4], [5], [6]. While many contributions have been made regarding single credit portfolios,

little attention has been given to another highly important dimension of credit risk: concurrent

losses of different portfolios. Considering the portfolios of major participants in the financial

system, concurrent extreme losses might impact their solvencies and thus pose high systemic

risks. In addition to this macro-economic aspect, the topic of concurrent credit portfolio losses

is equally interesting from an investor’s point of view. Buying collateralized default obligations

(CDO) allows to hold a “slice” of each contract within a given portfolio, see [7], [8], [9]. Any

investor who is invested in CDOs would thus be severely affected by significant concurrent

credit portfolio losses as many of their CDO investments would simultaneously fail making

their scheduled payments. This raises the question of how strongly the losses of different port-

folios are coupled and how their interdependences could be described. Multiple approaches

have been developed to model credit risk. Most of them can be categorized into reduced (see

eg [10], [11], [12]) and structural approaches (see [13], [14]), which are comprehensively

reviewed in [15]. Here, we stick to Merton’s structural model that accounts for the empirically

observed [16] dependence of probability of default (PD) and recovery rate (RR) and exhibits a

convincing conceptual simplicity.
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In the framework of the Merton model [13], the evolution of a credit portfolio can be traced

back to multivariate stock price return distributions. This allows us to easily incorporate

important features like fat tails and non-stationary asset correlations into credit risk, see eg

[17]. In this study, a new interpretation of the Wishart random matrix model (see eg [18]) for

correlation and covariance matrices was put forward. Applying these concepts, we simulate

losses of two credit portfolios which are composed of statistically dependent credit contracts.

Recalling that correlation coefficients only give full information in the case of Gaussian distri-

butions, we study the statistical dependence of these portfolio losses by means of copulas [19].

The application of copulas in credit risk has thrived in recent years. One of the first and

most influential contributions to this field was given in [20]. Li put forward a method to deter-

mine default correlations and—without going into detail—modeled dependences in credit risk

by means of Gaussian copulas. In contrast, we run Monte-Carlo simulations of credit portfolio

losses with empirical input and analyze the resulting empirical copulas in detail. Moreover, we

study the deviations from Gaussian copulas. Even though Gaussian copulas—which boil down

to a linear correlation of Gaussian variables—are often inadequate, we will also consider the

loss correlation coefficients as a crude measure for the dependence from time to time.

In section Model and methods, we introduce the Merton model of credit risk and relevant

statistical concepts. Next, we analyze copulas of simple homogeneous credit portfolios in sec-

tion Simulation of homogeneous credit portfolios in order to shed light on the mechanisms

causing deviations from the often assumed Gaussian dependences. Further, we make the

reader aware of some difficulties going along with portfolio loss correlations. Section Simula-

tion of empirical credit portfolios is dedicated to empirical S&P 500- and Nikkei 225-based

credit portfolios and their dependences. We conclude with a discussion of our findings in sec-

tion Discussion.

Model and methods

To make our contribution more widely accessible, we start with an introduction of Merton’s

model of credit risk and the powerful statistical concept of copulas. Finally, we explain the

basics of our numerical simulation.

Credit risk

Following Merton [13], we assume a company’s asset value Vi(t) to be the sum of time-inde-

pendent liabilities Fi and equity gi(t), Vi(t) = Fi + gi(t), and model its dynamics by

dVi ¼ mi Vi dt þ si Vi dWi ð1Þ

with μi and σi denoting drift and volatility and dWi being a random process to be specified.

Further, we assume publicly listed companies and thus trace back changes in asset value to

stock price returns. This allows us to determine the parameters μi and σi from stock return

time series.

This deduction has a remarkable weakness though: stock returns do not exclusively reflect

the actual changes in the company’s equity at any time, as could be assumed. Instead, they are

subject to speculation and hence might be an inadequate approximation. However, this draw-

back is especially important on short return time scales Δt—days or weeks, say—and is becom-

ing less and less substantial as Δt approaches longer time scales. Hence, calculations on annual

horizons which are considered hereafter are in line with the reasoning set out above.

Credit risk can be easily introduced in this framework: let us consider a company with

V0i> Fi and liabilities, Fi, that mature after one year (without any coupon payments in

between). If Vi(T)> Fi holds, the company is able to make the required payments and thus
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fulfills its obligations. Contrarily, if Vi(T)< Fi holds, the company fails to make the payments,

ie it defaults. The normalized loss li the creditors are suffering can be expressed as

li ¼
Fi � ViðTÞ

Fi
YðFi � ViðTÞÞ; ð2Þ

with Θ(x) denoting the Heaviside step function.

In the following, all loss simulations refer to a one-year time horizon and are carried out

using the time parameter T = 252 days = 12 × 21 days. This is due to the described correspon-

dence between asset value and stocks and the fact that a calender year has about 252 trading

days, ie the stock markets are open 252 days a year. Moreover, it is useful to introduce the ratio

of liabilities and asset value, Fi/Vi(t), the so-called leverage. The default criterion then reads

Fi/Vi(T)< 1 (no default) and Fi/Vi(T)> 1 (default), respectively.

Next, we pass on from single credit contracts to credit portfolios. The importance of a single

contract in a portfolio is determined by comparing the face value of this specific contract with

the sum of all face values. To this end we use the fractional face values

fi ¼
Fi

PK
j¼1

Fj

: ð3Þ

Then we can write the normalized portfolio loss L as

L ¼
XK

i¼1

fi li with li ¼
Fi � ViðTÞ

Fi
YðFi � ViðTÞÞ : ð4Þ

Here, i enumerates the K credit contracts. K is hereafter often referred to as portfolio size. Due

to normalization, L ranges from zero to one. Further note that all credit contracts are supposed

to mature at time T and are to be coupon-free, ie the total face value must be payed at

maturity.

According to the explanations above, the dynamics of such a portfolio of correlated credit

contracts is well described by correlated stock price returns, which are frequently modeled

using a multivariate normal distribution

gðrjSÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ð2pSÞ

p exp �
1

2
r0 S� 1r

� �

: ð5Þ

Here, r = (r1, r2, . . ., rK) denotes the K-dimensional return vector and r0 its transpose. The com-

ponents of r are coupled via a K × K covariance matrix S, which can be expressed as S = σ C σ
with C being the K × K correlation matrix and σ = diag(σ1, σ2, . . ., σK) a diagonal matrix con-

taining the volatilities σi of the different stock returns ri. Assuming returns according to Eq (5)

results in a multivariate log-normal distribution for the stock prices.

More realistic, however, is the aforementioned random matrix concept of [17], an extension

of [21], which accounts for non-stationary covariances. The key idea is a new application of

the Wishart random matrix model (see eg [18]). In the original setting, generic spectral prop-

erties of correlation and covariance matrices were modeled for the case of large dimensions

by using a statistical ensemble of random matrices. Hence, a certain ergodicity reasoning is

underlying, as spectral averages have to equal ensemble averages—in the limit of large matrix

dimensions. In this sense, the ensemble is fictitious. In the above references we advertise

another interpretation of the Wishart model: Due to non-stationarity the covariances and cor-

relations fluctuate in time. We show that, when looking at larger time intervals, the resulting

fluctuating correlation and covariance matrices form a truly existing, non-fictitious ensemble
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which can very well be modeled by a random matrix ensemble. Ergodicity is not an issue.

Importantly, the matrix dimension is in this interpretation given by the number of considered

assets, it can have any value and it is not to be taken to infinity. Finite size effects are thus not

artefacts, they are real effects which are automatically contained in our model. In the different

context of random matrix theory for dynamical systems, there is recent progress in studying

finite size effects [22], [23]. In our modeling, Eq (5) with the stationary covariance matrix S

serves as a starting point. Averaging over covariance matrices fluctuating around S in the

course of time finally yields the multivariate ensemble averaged distribution

hgiðrjS;NÞ ¼
Z1

0

dz w2

NðzÞ g rj
z
N

S
� �

: ð6Þ

Here, the parameter N controls the strength of fluctuations around the mean S. Compared to

the multivariate normal distribution with a fixed covariance matrix, the ensemble averaged

distribution exhibits fat tails for any finite N, the more pronounced the smaller N. N is deter-

mined by fitting and depends strongly on the considered return interval Δt. In [17] it was

shown particularly that daily returns are matched best by N = 5, while annual returns behave

normally (N� 1). Yet, the ensemble approach remains useful if simplified correlation matri-

ces with homogeneous off-diagonal elements Cij = Corr(Vi, Vj) = ca, i 6¼ j, are used. (The

subscript “a” stands for “asset” and is used to distinguish asset correlations ca from other

correlation coefficients.) In [24, 25] it was shown that distributions of annual stock returns are

fitted best by N = 5 in this case, as opposed to N� 1 in the case of full correlation matrices.

We obtain the asset values at maturity Vi(T) from the stock price returns ri via

ViðTÞ ¼ V0i exp ri þ mi �
s2

i

2

� �

T
� �

ð7Þ

according to Itō’s lemma [26].

Copulas

Let us assume a bivariate random variable X = (X1, X2) that is comprehensively described by

means of its joint probability density, f(x1, x2), say. The main idea of copulas, which were intro-

duced in [27], is to separate the statistical dependence of X1 and X2 from the two marginal dis-

tributions. This is achieved by the copula

Copðu; vÞ ¼ FðF � 1
1
ðuÞ; F � 1

2
ðvÞÞ; ð8Þ

which is the cumulative joint distribution of the quantiles u and v with (u, v) 2 [0, 1] × [0, 1].

F � 1
i denotes the inverse marginal cdfs. This construction—the copula as a composition of

inverse marginal cdfs and the joint cdf—allows us to analyze statistical dependences regardless

of the marginal distributions. Instead of the copula itself, we will work with the copula density
cop(u, v), which is given by

copðu; vÞ ¼
@

2Copðu; vÞ
@u@v

: ð9Þ

In particular, we are interested in estimating and analyzing copula densities obtained from

empirical or simulation data. The construction of such an empirical copula density from a

bivariate data set of length n takes the following steps. First, we need to replace the actual

values (xi, yi), i 2 {1, . . ., n} with their ranks (rank(xi), rank(yi)); this is conducted separately

for xi- and yi-values. Next, the ranked values, 1� rank(xi)� n are scaled to the interval
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[0, 1]. These normalized ranks produce the empirical cdf-values of the initial data points in

the data set.

Binning these new data points yields a two-dimensional histogram which is—if normalized

appropriately—an empirical approximation of the copula density. The number of bins is cho-

sen to be b = 20 in each direction.

Simulation setup

Here and in all simulations hereafter, we consider two credit portfolios which are set up

according to Fig 1. On a given financial market, illustrated by means of its correlation matrix,

we choose these portfolios to be non-overlapping, ie no credit contract is part of both portfo-

lios. The number of contracts in each portfolio is K, ie they are of equal size. We mark the two

portfolios in Fig 1 as black-rimmed squares. We note that the off-diagonal squares are impor-

tant as well. They illustrate the asset correlations of companies which are part of different port-

folios and thus cause interdependences between the two portfolio losses.

Fig 1. Exemplary correlation matrix. This example illustrates a financial market. The black-rimmed squares (solid and dashed) correspond to two

disjoint portfolios.

https://doi.org/10.1371/journal.pone.0190263.g001
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The portfolio loss copula of these portfolios is obtained as follows: We simulate the corre-

lated asset values, Vi(T) with T = 252, of all companies within the financial market. For both

portfolios, we choose the affiliated Vi(T) and calculate the corresponding portfolio losses L1

and L2 according to Eq (4). Repeating this portfolio loss calculation a few thousand times yields

enough data to estimate the copula histogram of the two portfolio losses.

We repeat these steps several thousand times for different pairs of portfolios in order to

avoid results which are due to the specific features of two particular portfolios. All these pairs

are non-overlapping and operate on the same financial market; each portfolio is of size K. We

determine the copula histogram in each case and average over them. The resulting mean cop-

ula histogram provides information about the average portfolio interdependence. However, it

still depends on the portfolio size K as well as on the considered market.

As mentioned above, statistical dependences are often reduced to correlation coefficients

or—at the level of copulas—to Gaussian copulas. Here, we would like to study the deviations

of the averaged empirical copula from the related Gaussian copula. In order to achieve this

Gaussian copula, we need to estimate its parameter c in the first place. Here, c equals the aver-

aged correlation coefficient of portfolio losses CL1L2
= Corr(L1, L2), which is determined—simi-

larly to the averaged copula histogram—by averaging over the portfolio loss correlation for

every portfolio pair.

Moreover, we employ leverages, which are drawn from a uniform distribution U on the

interval [0.6, 0.9],

Fi

V0i
� Uð0:6; 0:9Þ; i ¼ 1; . . . ;K; ð10Þ

for every non-homogeneous, ie heterogeneous, portfolio hereafter.

Simulation of homogeneous credit portfolios

We shall first restrict ourselves to the simulation of homogeneous credit portfolios in order to

systematically study the impact of different parameters on portfolio loss copulas. In particular,

we focus on asset correlations and drifts. In addition to copulas, we analyze the wide-spread

measure of portfolio loss correlations. Here, our focus is the dependence of portfolio loss cor-

relations on the underlying asset correlations and on the portfolio size.

Impact of asset correlations on portfolio loss copulas

For the simulation of asset value processes and loss calculation, we specify μ = 10−3 day−1,

σ = 0.03 day−1/2 and leverages F/V0 = 0.75. Our choice of rather small portfolios, K = 50, will

be discussed at the end of this section. Furthermore, we assume a market with vanishing asset

correlation, ca = 0. The simulation of asset values Vi(T), which underlies the portfolio loss cal-

culation and thus the averaged copula histogram, is run in two different ways. On the one

hand, we assume Gaussian dynamics, ie we use—in the framework of the ensemble averaged

distribution—the “fat-tail” parameter N!1. On the other hand, we choose N = 5—in accor-

dance with the findings of [25] for homogeneous average correlation matrices and annual time

horizons. The resulting averaged copula histograms for 10000 portfolio loss simulations and

1000 portfolio pairs are shown in Fig 2. (The choice of different portfolio pairs is unnecessary

for homogeneous portfolios, as they are all equivalent. However, it matters for heterogeneous

portfolios and we employ—except for the input parameters—the same simulation in either

case.)

For N!1 (top panel), we find an independence copula, which exhibits a constant level of

one due to normalization. We observe only minimal deviations due to the finite simulation

Concurrent credit portfolio losses
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Fig 2. Averaged copula histograms for vanishing mean correlations. The copula histograms of losses L1 and L2 of homogeneous portfolios with

vanishing (mean) asset correlations, ie ca = 0, averaged. The asset values are multivariate normal with N!1 (top) and multivariate heavy-tailed with

N = 5 (bottom). The coloring indicates the local deviations from the Gaussian copula with c = CL1L2
= 0.752.

https://doi.org/10.1371/journal.pone.0190263.g002
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length. Measuring the average portfolio loss correlation yields CL1L2
= 0 and thus the related

Gaussian copula is an independence copula as well. The reason for this result is quite obvious:

the simulation of asset values is based on uncorrelated Gaussian random numbers, ie they are

statistically independent. Unsurprisingly, quantities derived from these random numbers do

not exhibit dependences either.

The combination of ca = 0 and N = 5 yields a different result (bottom panel of Fig 2); its

deviations from the independence copula are striking. Ignoring the coloring for a moment

and considering solely the bar heights is sufficient to recognize that this copula is not Gaussian:

the bar in the (0, 0)-corner is twice as high as its equivalent in the (1, 1)-corner. Contrarily,

Gaussian copulas are perfectly symmetric regarding the line spanned by (0, 1) and (1, 0). Nev-

ertheless, we calculate the correlation coefficient c = CL1L2
= 0.752 of the simulated portfolio

losses and determine the corresponding Gaussian copula. The difference between the actual

copula and the Gaussian copula within each bin is illustrated by means of coloring. The color

bar (on the right in Fig 2) provides the translation between color and value. In general, the col-

ors yellow, orange and red indicate that the actual copula exhibits a stronger dependence

within the given (u, v)-interval than predicted by a Gaussian copula. Contrarily, turquoise and

blue are illustrations of local dependences weaker than Gaussian.

The differences from the independence copula (N!1) are due to the fact that finite val-

ues of N, eg N = 5, cause fluctuating correlations (cf section Model and methods). Here, they

are centered at ca = 0, ie positive and negative fluctuations are equally likely. This raises the

question why the portfolio losses exhibit such a strong positive correlation, c = CL1L2
= 0.752.

The answer to this question is twofold: First, a large correlation matrix with strong positive

and negative correlations implies, roughly speaking, a devision of the companies into two

blocks with positive correlations within the blocks and negative correlations between them.

Second, credit risk is—as discussed before—highly asymmetric. There is no positive impact of

prospering and thus non-defaulting companies on portfolio losses. The Heaviside functions in

Eq (4) cut off all these non-defaults and project them onto zero. This way, anti-correlations of

asset values contribute to the portfolio loss correlation only in a rather limited fashion. Even

worse, due to the aforementioned block-structure, the negative correlation between the blocks

makes it more likely that one of the blocks is adversely affected. And the positive correlations

within the blocks imply a high risk of concurrent defaults.

Drift dependence of portfolio loss copulas

Defaulting portfolios (L> 0) contribute to the portfolio loss copula as well as non-defaulting

portfolios (L = 0). We would like to study the impact of each on the portfolio loss copula in

greater detail. First, we vary the asset value drifts μ in order to influence the default-non-

default ratio. Deviating from the specifications above, ca = 0.3, instead of ca = 0, and N!1
are used. Moreover, we choose the slightly lower volatility σ = 0.02 day−1/2. The resulting

averaged copulas for three different drift parameters are shown in Fig 3. For μ = 10−3 day−1

(top panel), non-defaults occur with a probability of 39.1%. The “plateau” within [0, 0.3] ×
[0, 0.3] is due to simultaneous non-defaults of both portfolios. More striking, however, is

the strong tail dependence in the (1,1)-corner. Even though we observe such an obviously

non-Gaussian averaged copula, we estimate the average portfolio loss correlation and obtain

CL1L2
= 0.851.

Choosing the smaller drift μ = 3 × 10−4 day−1 (middle panel) yields—unsurprisingly—a

lower probability of non-defaults, namely 12.8%, and a copula which is far more Gaussian

compared to the previous one. Nevertheless, there are several deviations from an ideal Gauss-

ian copula. The (1, 1)-tail is narrower and more pointed. And even though we have not

Concurrent credit portfolio losses

PLOS ONE | https://doi.org/10.1371/journal.pone.0190263 February 9, 2018 8 / 20

https://doi.org/10.1371/journal.pone.0190263


Fig 3. Averaged copula histograms for non-vanishing mean correlations. The copula histograms of losses L1 and L2

of homogeneous portfolios with asset correlations ca = 0.3. The drifts are μ = 10−3 day−1 (top), 3 × 10−4 day−1 (middle)

and −3 × 10−3 day−1 (bottom). The coloring refers to the local deviations from the Gaussian copula with CL1L2
. The

asset values are multivariate normal (N!1).

https://doi.org/10.1371/journal.pone.0190263.g003
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changed the dependences of asset values, the resulting average portfolio loss correlation is

CL1L2
= 0.904 and thus approximately 5% higher compared to the result in the top panel.

Finally, the drift μ = −3 × 10−3 day−1 leaves no non-default events at all. We observe an ideal

Gaussian copula (no coloring except for white) with an average portfolio loss correlation of

CL1L2
= 0.954. Again, this portfolio loss correlation is 5% higher compared to the previous

result. We have seen that portfolio loss correlations increase and that the averaged copula

turns ever more Gaussian if the percentage of default events increases. In order to explain

these findings, let us analyze the according marginal distributions of the portfolio losses

(Fig 4). For μ = 10−3 day−1 and μ = 3 × 10−4 day−1, ie for portfolio default probabilities of

60.9% and 87.2%, respectively, we find extremely asymmetric portfolio loss pdfs. Both exhibit

a fat tail for high portfolio losses and a delta peak at zero due to non-defaults. In contrast, for

μ = −3 × 10−3 day−1, ie for a default probability of 100%, the pdf has no delta peak at zero—as

the chance of non-defaults is 0%—and moreover is almost symmetric. Nevertheless, it shows

some deviations from a normal distribution, even though we observe an ideally Gaussian

dependence of the portfolio losses (see bottom panel of Fig 3).

Moreover, let us consider enlarged versions (K� 50) of these three portfolios for a

moment. It can be easily shown that such scalings lead to a decreasing number of non-default

events and thus to smaller delta peaks of the portfolio loss pdfs at zero, which vanish entirely

if K is large enough. Despite this change, however, the shapes of the pdfs remain almost the

same for K� 50. In contrast to this virtual K-independence of the marginal distributions, the

Fig 4. Portfolio loss distributions. Semi-log scaled portfolio loss pdfs for homogeneous portfolios (asset correlations ca = 0.3) are shown with drift

parameters μ = 10−3 day−1 (blue), 3 × 10−4 day−1 (red) and −3 × 10−3 day−1 (green). The asset values are multivariate normal (N!1).

https://doi.org/10.1371/journal.pone.0190263.g004
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statistical dependences turn ever more Gaussian as K increases and the number of non-default

events decreases.

Taking all these findings into consideration, we infer that the loss of information—resulting

from the projections of non-default events onto zero—is responsible for the decrease in portfo-

lio loss correlation with decreasing likeliness of default events. Furthermore and even more

importantly, we deduce that these projections onto zero cause the observed deviations of the

statistical dependences from Gaussian copulas.

Portfolio loss correlation

Even though non-Gaussian portfolio loss copulas cannot be described comprehensively by

means of correlation coefficients, correlations are frequently applied in credit risk, eg in [28]

and [20]. It is worth pointing out that our concept of loss or default correlations differs from

theirs, as we account for the actual loss values. In contrast, Lucas applies the frequently used

“binary” approach, ie he only distinguishes default and non-default, while Li’s concept is based

on so-called “survival times”.

Here, we examine portfolio loss correlations more closely, because the reduction of an

entire statistical dependence to a single number simplifies the analyses of further parameter

dependences considerably. Especially, we are interested in the dependence of portfolio loss

correlations on the underlying asset correlations and on the portfolio size K. They are shown

in Fig 5 for a homogeneous portfolio—as described above—with drifts μ = 2 × 10−3 day−1 (top

row) and μ = −3 × 10−3 day−1 (bottom row) and “fat-tail” parameters N!1 (left column)

and N = 5 (right column). Portfolio size K serves as a curve parameter and takes on values

between K = 1 and K = 150. (For a list of all portfolio sizes K, cf caption of Fig 5.)

First, we find the portfolio loss correlation to be a monotonic function of asset correlation

as well as of portfolio size—regardless of drift μ and “fat-tail” parameter N. Keeping in mind

the results of the previous subsection, we already know that correlation coefficients capture the

entire dependence of portfolio losses for μ = −3 × 10−3 day−1 and N!1 (bottom left panel).

Obviously, asset and loss correlation equal each other for K = 1. As K increases, portfolio loss

correlation is a concave function of asset correlation and increases much more steeply. An

asset correlation differing only slightly from zero is sufficient to make it take on values close to

one. This behavior is related to credit portfolio granularity, which increases with portfolio size

K and causes ever more deterministic results. In the limit K!1 and for every ca > 0, all port-

folio losses are the same and thus are perfectly correlated. In order to preserve some random-

ness to achieve non-trivial results, we decided to choose the rather small portfolio size of

K = 50 in the previous subsections.

For μ = 2 × 10−3 day−1 and N!1 (top left panel of Fig 5), portfolio loss correlations are

only a first approximation of the actual statistical dependence of portfolio losses. Here, concav-

ity holds only for large K (namely, K = 50, 100, 150), while portfolio loss correlation is a convex

function of asset correlation for small K (namely, K = 1, 2, 3, 4). The functional dependences

for all K in between are neither concave nor convex. If convexity holds, we find the portfolio

loss correlations to be always smaller than the corresponding asset correlations.

Comparing the results for N!1 in the top and bottom left panel reveals that the strength

of portfolio loss correlation is not only a function of asset correlation, but moreover a function

of the ratio of non-default and default events. This result is of particular importance for stress

testing, as it implies that the correlations of single credit losses as well as of credit portfolio

losses are stronger during financial crises than in calm market periods!

Contrasting these results with the results for N = 5 (right column), we find remarkable devi-

ations for μ = 2 × 10−3 day−1. We observe large portfolio loss correlations for ca = 0 and ca close
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to zero, which are in line with the portfolio loss correlation we determined in the context of

Fig 2. There, we discussed fluctuating asset correlations that occur for N = 5 and argued that

the contributions of negative asset correlations to the portfolio loss are negligible. Hence, posi-

tive asset correlations dominate and cause the large portfolio loss correlations we just men-

tioned. For μ = −3 × 10−3 day−1, however, the portfolio loss correlations depend only slightly

on the “fat-tail” parameter N, as the impact of the strongly negative drift on the asset values

Fig 5. Portfolio loss correlation. As a function of asset correlation ca, the portfolio loss correlation CL1L2
is shown. The size K of the underlying

homogeneous portfolio ranges from 1 (blue) over 2, 3, 4, 7, 10, 15, 25, 50, 100 to 150 (green). The daily drifts are set to μ = 2 × 10−3 day−1 (top row) and

μ = −3 × 10−3 day−1 (bottom row). All asset values are multivariate normal with N!1 (left column) and multivariate heavy-tailed with N = 5 (right

column). The bisecting line is shown in red.

https://doi.org/10.1371/journal.pone.0190263.g005
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and thus on the portfolio loss is much more important compared to the contribution of the

involved random process.

Simulation of empirical credit portfolios

After the previous parameter study of homogeneous portfolios, we now focus on more realistic

portfolios with heterogeneous parameters. We will commence by studying the impact of

choosing a single parameter heterogeneously and then turn to investigating realistic, fully het-

erogeneous portfolios. The section is concluded by an analysis of portfolio sizes and portfolio

loss correlations.

Impact of parameter heterogeneity

First, we consider a rather simple heterogeneous portfolio. It equals the homogeneous port-

folio we have discussed so far, except for the fact that the daily volatilities σi are not set to

σi = σ = 0.02 day−1/2, but their values are drawn from the uniform distribution Uð0; 0:25Þ.

Moreover, it is important to mention that we choose the daily drift μ = −3 × 10−3 day−1 and

the Gaussian limit (N!1) of the ensemble averaged random process. The resulting portfo-

lio loss copula for such portfolios is shown in Fig 6. Due to the strongly negative drift, the

probability of non-default events is zero. Nevertheless, we observe deviations from the

Gaussian copula with parameter CL1L2
. This result is in contrast to the Gaussian copula dis-

played in the bottom panel of Fig 3, where a homogeneous σ = 0.02 day−1/2 is assumed. For

such a perfectly homogeneous portfolio, the Gaussian dependence of asset values is pre-

served at the level of portfolio losses. However, the Gaussian loss dependence is altered

by the heterogeneous choice of one or more parameters; here, volatility. Thus, we have

Fig 6. Averaged copula histogram for heterogeneous volatilities. Copula histogram of portfolio losses L1 and L2 of two portfolios with heterogeneous

volatilities, si=day� 1=2
� Uð0; 0:25Þ, averaged. The coloring indicates the local deviations from the Gaussian copula with CL1L2

.

https://doi.org/10.1371/journal.pone.0190263.g006
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identified two causes of non-Gaussian copulas: parameter heterogeneity and the aforemen-

tioned projections of non-defaults onto zero.

Simulation setup and results

In order to set up realistic, fully heterogeneous portfolios we employ empirical data for drifts,

volatilities and correlations. They are based on stock return data over the period 01/1993–04/

2014 from S&P 500 at New York Stock Exchange (all 272 companies available over the whole

period) and from Nikkei 225 at Tokio Stock Exchange (all 179 companies available over the

whole period). All data are freely avaliable at Yahoo! finance [29], see S1 Appendix, enti-

tled Download of financial data from Yahoo! finance. We want to to obtain an average

portfolio loss copula of empirical portfolios which is first averaged over many portfolio pairs

and then averaged over the 21-year interval. To achieve this goal, we run the following proce-

dure 20000 times: First, an annual time interval within the 21-year period is randomly chosen.

We determine the drifts, volatilities and correlations of all companies on this interval and draw

two portfolios of size K = 50. Furthermore, the leverages Fi/V0i are drawn from the uniform

distribution in Eq (10). Finally, 10000 portfolio loss simulations (N!1) are run and the port-

folio loss copula is estimated. This Monte-Carlo simulation enables us to determine the desired

time-averaged portfolio loss copula of empirical portfolios. We consider three different cases:

First, portfolio 1 is always drawn from S&P 500, while portfolio 2 is always based on the Nikkei

225 (top panel of Fig 7). Next, both portfolios are drawn from the S&P 500 (middle panel), and

finally, from Nikkei 225 (bottom panel). In the latter two cases we divided these stock markets

into two “sub-markets” before drawing any portfolios. Thus, we avoid a given company to be

part of portfolio 1 in one iteration and part of portfolio 2 in another iteration. Due to this divi-

sion into “sub-markets”, the almost perfect symmetry of all three copulas regarding the line

spanned by (0, 0) and (1, 1) is not trivial, but an important feature. We will return to this point.

In the S&P-Nikkei case, the deviations of the copula from the Gaussian copula are obvious,

as we observe dependences of extreme events in the (1, 1)-corner that are more pronounced

than the Gaussian prediction. Further deviations are the narrower and more pointed (1, 1)-tail

as well as the flatter (0, 0)-tail, which renders it quite asymmetric regarding the line spanned

by (0, 1) and (1, 0). We interpret this result as follows. We find extreme portfolio losses to

occur more often simultaneously than it is the case for small portfolio losses. Thus, a modeling

of portfolio loss dependences by means of Gaussian copulas is highly erroneous and might

cause severe underestimations of the actual risks.

In the S&P-S&P as well as in the Nikkei-Nikkei case, the time-averaged copulas bear a cer-

tain resemblance to the result in the top panel. However, we find higher coupling strengths, as

can be seen from Table 1 which lists the average asset correlation and the portfolio loss correla-

tion for all three cases.

For K = 50, the averaged marginal distributions of empirical portfolio losses are depicted in

Fig 8. The S&P 500-related pdf is shown in red, the Nikkei 225-related result in green. They

are highly asymmetric and exhibit distinct tails as well as delta peaks at zero. These features are

in accordance with the blue and red curve in Fig 4, which illustrate the portfolio loss distribu-

tions of a homogeneous portfolio with drifts μ = 10−3 day−1 (blue) and μ = 3 × 10−4 day−1

(red), respectively. In contrast, the averaged empirical portfolio loss pdfs have much heavier

tails. While the risk of extreme portfolio losses (L> 0.7) is equally high for S&P- and Nikkei-

based portfolios, the Nikkei-based portfolio loss pdf is almost half a magnitude higher for large

portfolio losses (0.15< L< 0.45). Considering the delta peak more closely, we find the time-

averaged probabilities of portfolio non-default events to be 11.7% (S&P 500) and 12.2% (Nik-

kei 225), respectively.
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Fig 7. Time-averaged copula histogram. Copula of losses L1 and L2 of two empirical portfolios (K = 50), time-

averaged. Top: portfolio 1 is always drawn from S&P 500 and portfolio 2 from Nikkei 225, middle: both portfolios are

drawn from S&P 500, bottom: both portfolios are drawn from Nikkei 225. The coloring indicates the local deviations

from the Gaussian copula with CL1L2
. The asset values are multivariate normal (N!1).

https://doi.org/10.1371/journal.pone.0190263.g007
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Portfolio size and portfolio loss correlation

Although we have seen that a Gaussian modeling of loss dependences falls short in most cases,

it can be seen as a rough but useful approximation of the actual dependence. Especially, as

such a reduction of the full statistical dependence to a single number simplifies the study of

further parameter dependences. Here, we consider the average loss correlation for empirical

portfolios as a function of portfolio size K. So far, we have discussed K = 50 and have found

portfolio loss correlations which were much smaller than the ones for homogeneous portfolios

of the same size. This is unsurprising, because empirical portfolios are heterogeneous and thus

exhibit higher idiosyncrasies for a given portfolio size. Once again, we distinguish three cases:

Both portfolios are S&P 500-based, both are Nikkei 225-based, one is S&P 500-based and the

other one Nikkei 225-based. Taking a look at Fig 9, we observe steep increases in portfolio loss

Table 1. Asset correlation and portfolio loss correlation.

Stock Markets ca CL1L2

S&P-Nikkei 0.119 0.287

S&P-S&P 0.266 0.779

Nikkei-Nikkei 0.385 0.927

Averaged asset correlation ca and portfolio loss correlation CL1L2
of empirical portfolios drawn from the indicated

stock markets.

https://doi.org/10.1371/journal.pone.0190263.t001

Fig 8. Time-averaged portfolio loss distributions. Semi-log scaled time-averaged portfolio loss pdfs of empirical portfolios of size K = 50. The

portfolios are drawn from S&P 500 (red) and Nikkei 225 (green), respectively. The asset values are multivariate normal (N!1).

https://doi.org/10.1371/journal.pone.0190263.g008
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correlation with increasing K, which is in line with our findings for homogeneous portfolios.

This behavior is due to the decreased idiosyncrasy of large portfolios, which causes very similar

portfolio losses and, thus, high portfolio loss correlations. In all three cases, idiosyncrasy is

almost negligible for K� 80. The above mentioned almost perfect symmetry of all three copu-

las regarding the line spanned by (0, 0) and (1, 1) as observed in Fig 7 can now be understood

from Fig 9. This behavior is due to the almost negligible idiosyncrasy for credit portfolios of

size K = 50.

The results in Fig 9 are of high practical relevance, as the underlying portfolios are based on

realistic, empirically determined parameter sets. For S&P 500-based portfolios we find, in par-

ticular, loss correlations CL1L2
> 0.5 for K� 14, CL1L2

> 0.7 for K� 40 and even CL1L2
> 0.85

for K� 150. This means that losses of medium-sized disjoint portfolios (K = 150) are almost

perfectly correlated and that even small (K = 40) and very small (K = 14) portfolios exhibit

rather strong coupling. Thus, high dependences among banks are not limited to “big players”,

which hold portfolios of several thousand credit contracts, but affect small financial institu-

tions in a very similar fashion.

In the Japanese stock market we observe even higher portfolio loss correlations, as the

underlying asset correlations are on average higher compared to the US market (see above).

The opposite is the case if one Japanese and one US-American portfolio is considered. Here, we

find considerably weaker asset correlations and thus loss correlation coefficients CL1L2
� 0.35.

Fig 9. Time-averaged portfolio loss correlation. As a function of portfolio size K for empirical portfolios, the time-averaged portfolio loss correlation

is shown. Red: both portfolios are drawn from S&P 500, green: both portfolios are drawn from Nikkei 225, blue: portfolio 1 is always drawn from S&P

500 and portfolio 2 always from Nikkei 225.

https://doi.org/10.1371/journal.pone.0190263.g009
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Discussion

The financial crisis started a decade ago at least to a considerable extent as a credit crisis. The

financial system was affected on all scales, avalanche and herding effects set in which changed

the financial system to the present. Among other structural problems, the underestimation of

correlations between credit contracts quickly emerged as a drawback in credit risk assessment,

posing a challenge for improving credit risk modeling. More precisely, one needs a better

understanding of the risk involved in the credit portfolios, before a crisis with its avalanche

and herding effects begins. In previous studies [21, 24, 25] we addressed precisely this issue.

Employing Wishart random matrices, we managed to solve the Merton model for the realistic

non-stationary scenario in which the correlations between assets fluctuate. Our exact results

show in a quantitative fashion that credit risk can not be outmaneuvered by diversification, if

correlations between the assets are present. This is true even for correlations smaller than

those found in empirical data. While the abovementioned studies focused on one credit port-

folio, we addressed two in the present contribution. These two portfolios might belong to one

creditor or bank, but they may also belong to different banks. Hence, we investigated the joint

risk of two creditors operating on the same correlated market.

We addressed the dependence of concurrent credit portfolio losses using Monte-Carlo sim-

ulations within the framework of the Merton model. For two non-overlapping credit portfo-

lios, we estimated the copulas of portfolio losses to reveal their full dependence structure. We

found concurrent large portfolio losses to be more likely than concurrent small portfolio

losses. These deviations from an ideally Gaussian behavior could be traced back to two differ-

ent causes: the dominance of non-default events and the heterogeneity of empirical portfolios.

Thus, concurrent severe losses of credit portfolios are underestimated if employing only stan-

dard correlation coefficients. In contrast, copulas allow for a more realistic view of such

extreme events and the systemic risk they pose. Looking at portfolio loss correlations from

another perspective, we found this wide-spread measure to exhibit further weaknesses, as we

exposed its dependence on the ratio of default and non-default events. If constant asset corre-

lations between single credits or credit portfolios are given, the correlations of losses are higher

the worse the market period. Finally, we analyzed how portfolio loss dependences scale with

portfolio size and found surprisingly strong couplings of portfolio losses even for medium-

sized and small disjoint empirical portfolios.

In summary, we took a new inter-portfolio perspective of credit risk and thereby provided

further insight into intrinsic instabilities of the financial sector. We believe that the interdepen-

dences of tail risks are of fundamental importance for the fixed-income market and thus

relevant for both regulators and investors. In view of our results it is fair to say that sizeable sys-

temic risks are present in the financial system that have so far not received sufficient attention.

In particular, the identification of financial institutions which are important from a systemic

viewpoint ought to be based on a risk assessment which fully incorporates the joint risks. As

the relevant scenarios are quite far away from Gaussian ones, these risk evaluations must not

rely on the (bilinear) correlations only, copulas are called for. The non-stationary fluctuations

of the asset correlations make the tails heavier and thus also influence the copulas and the joint

risks.
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