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Abstract

Atopic dermatitis is a chronic inflammatory disease which usually starts in the early child-

hood and ends before adulthood. However up to 3% of adults remain affected by the dis-

ease. The onset and course of the disease is influenced by various genetic and

environmental factors. Although the immune system has a great effect on the outcome of

the disease, metabolic markers can also try to explain the background of atopic dermatitis.

In this study we analyzed the serum of patients with atopic dermatitis using both targeted

and untargeted metabolomics approaches. We found the most significant changes to be

related to phosphatidylcholines, acylcarnitines and their ratios and a cleavage peptide of

Fibrinogen A-α. These findings that have not been reported before will further help to under-

stand this complex disease.

Introduction

Atopic dermatitis (AD) is a chronic inflammatory skin disease that often exhibits characteristic

symptoms in the early childhood and can affect up to 20% of children in developed countries

and 1–3% of adults in developed countries [1, 2]. Various genetic and environmental factors

including allergens contribute to the onset and course of the disease but more specifically den-

dritic cells have been proven to represent a central part in the management of inflammation

[3]. The upregulation of certain T helper 2 cytokines like interleukin-4 and interleukine-13

can also have an effect on the skin barrier in addition to mutations in the filaggrin gene [4]

that encodes the protein responsible for the prevention of water loss in the skin and protection

against microbial pathogens and other irritants [5]. Other notable biomarkers that correlate

with the disease are serum thymus and activation-regulated chemokine, E-selectin, serum

cutaneous T-cell attracting chemokine, macrophage-derived chemokine, interleukin-18 and
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Toomik P, Märtson A, et al. (2017) Blood serum

metabolome of atopic dermatitis: Altered energy

cycle and the markers of systemic inflammation.

PLoS ONE 12(11): e0188580. https://doi.org/

10.1371/journal.pone.0188580

Editor: Andrea Motta, National Research Council of

Italy, ITALY

Received: July 10, 2017

Accepted: November 9, 2017

Published: November 27, 2017

Copyright: © 2017 Ottas et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This study was made possible by the

funding from grant IUT20-42 from the Estonian

Research Council, SP1GVARENG from the

University of Tartu, personal research grant

PUT177, PUT1465 and by the European Union

through the European Regional Development Fund.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0188580
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188580&domain=pdf&date_stamp=2017-11-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188580&domain=pdf&date_stamp=2017-11-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188580&domain=pdf&date_stamp=2017-11-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188580&domain=pdf&date_stamp=2017-11-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188580&domain=pdf&date_stamp=2017-11-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188580&domain=pdf&date_stamp=2017-11-27
https://doi.org/10.1371/journal.pone.0188580
https://doi.org/10.1371/journal.pone.0188580
http://creativecommons.org/licenses/by/4.0/


lactate dehydrogenase [6]. Initial studies in the field of metabolomics on atopic dermatitis

have been published at the beginning of this decade. First, Assfolg and collaborators demon-

strated using NMR higher levels of creatine, creatinine, citrate, 2-hydroxybuturate, formate,

dimethylglycine and lactate in the urine of AD children. However, the levels of betaine, alanine

and glycine were lower in urine samples when compared to controls [7]. The increase in lactate

levels is indicative of activated anaerobic glycolysis, while the decrease in alanine hints at the

increased rate of gluconeogenesis. Another study by Hotze et al describes an altered metabolite

profile of lipids in AD patient’s blood serum samples. Most drastic changes could be noted in

the elevated levels of glycerophospholipids (PC) in particular phosphatidylcholine acyl-alkyl

C38:1, lysophosphatidylcholine acyl C26, lysophosphatidylcholine acyl C28:0 [8]. A third

study by Huang et al, using ultra high performance liquid chromatography tandem mass-spec-

trometry, reported the reduction of concentration of glycine and taurine conjugated bile acids

while the levels of cholic acid and chenodeoxycholic acid were increased in children’s serum

suffering from AD. In addition, the increase of free fatty acids was also noted in the study [9].

Overall it can be pointed out that the work done in the field of metabolomics on atopic derma-

titis is still in its beginning phase and a lot of the results need further confirmation and expla-

nation. In this study we aim to expand on the understanding of biochemistry behind atopic

dermatitis using both the targeted and untargeted methods used in metabolomics. The find-

ings may lead to a better explanation of the underlying mechanisms in atopic dermatitis.

Materials and methods

Volunteer recruitment

The adult patients with atopic dermatitis were recruited between 2013–2015 from the Univer-

sity Hospital of Tartu at the Clinic of Dermatology stationary department when they first

arrived and before treatment began whereas the controls were either from the same clinic or

from the Clinic of Traumatology and Orthopaedics. No count was kept on the number of vol-

unteers who refused to participate in the study. Since participants only needed to give a sample

at the beginning of the study, the dropout rate could not be calculated. Volunteers, who had

diabetes or any comorbid skin diseases, were excluded from the study. The patients were all

diagnosed with severe atopic dermatitis and had various other allergies and asthma in 3 cases.

13 volunteers with AD and 15 age and sex-matched controls (ages 20–61, 9 men, 19 women)

were included in the untargeted analysis measurements and expanded to 25 patients and 24

controls for the targeted analysis (ages 20–55, 12 men, 37 women). Using a wide age range of

adult patients ensures that the changes seen are not age-specific and that they can be attributed

to atopic dermatitis. The recruited participants were all Caucasians of eastern European

descent.

Blood collection and storage

Blood samples were collected in the morning before breakfast using 5 ml Vacutainer (REF

367614) tubes containing micronized silica particles to accelerate the clotting process. The

samples were left at room temperature for one hour, centrifuged at 1300 × g for 20 minutes,

the supernatant serum was pipetted into 300 μl aliquots, stored at -80˚C until measurement.

Materials

HPLC grade acetonitrile, water, methanol and formic acid (FA) were purchased from Sigma-

Aldrich (Germany).

Metabolomics of atopic dermatitis
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Targeted metabolic analysis

An Agilent Zorbax Eclipse XDB C18, 3.0 × 100 mm, 3.5 μm with Pre-Column SecurityGuard,

Phenomenex, C18, 4 × 3 mm was used with the AbsoluteIDQ p180 kit (Biocrates Life Sciences

AG, Innsbruck, Austria) for the targeted analysis of 188 metabolites, measured on a QTRAP

4500 (ABSciex, USA) in tandem with a 1260 series HPLC (Agilent, USA). The exact protocol

for the preparation of the samples is detailed in the AbsoluteIDQ p180 kit’s user manual. In

short, the serum samples were thawed on ice, pipetted onto the included 96-well plate (10 μl

per sample), internal standards added and derivatized using phenylisothiocyanate. The con-

centrations of numerous metabolites including acylcarnitines, biogenic amines, amino acids,

hexose, sphingolipids and glycerophospholipids were determined using a combination of flow

injection analysis and liquid chromatography through a C18 column.

Untargeted metabolic analysis

The untargeted measurements were made on a 6450 UHD Accurate Mass Q-TOF tandem liq-

uid chromatograph with 100 series quaternary pump (Agilent, USA). The column used was

EclipsePlus C18 RHD 1.8μm 2.1 × 50 mm (Agilent, USA). Serum samples were processed

according to a protocol by Want et al [10]. A quality control sample was prepared by pooling

20 μl of serum from every sample and measured after 5 sample measurements. The samples

were measured in a random order using the protocol by Want et al[11]. Mass-to-charge (m/z)

ratios of interest from the statistical analysis were subjected to fragmentation with identical

run parameters to earlier measurements.

Handling of data and statistics

MetIDQ (BioCrates, Austria) and Analyst (ABSciex, USA) software were used for the calcula-

tion of the metabolite concentrations from the targeted analysis. Data from both targeted and

untargeted analysis have been analysed and pre-processed using the R programming language

version 3.4.2[12] in RStudio 0.98.501. Untargeted analysis measurement data (from positive

and negative ionization modes) required processing using the library mzMatch.R [13] where

peak picking was applied using XCMS [14], also biological replicate combining, correction of

retention time, RSD filtering, QC correcting and filling of gaps. In order to approach normal

distribution of data from both experiments, log10 transformation was applied, mean subtracted

for each data point and divided by the standard deviation. Later, Shapiro-test was used to test

for normality. The data were normally distributed in the targeted analysis and not normally

distributed in the untargeted analysis. Non-paired t-test was used for targeted analysis and

Mann-Whitney Wilcox test was applied to the untargeted analysis data. All p-values were FDR

5% corrected. PCA was used on both targeted and untargeted analysis first to assess that there

are no visual batch effects present in the data. Later, PCA plots were generated using differenti-

ating metabolites to confirm if they produce visually distinct clusters of samples that corre-

spond to studied phenotypic groups. PLS-DA plots were generated to confirm the results of

PCA plots using statistically significant metabolites.

Verification of significant metabolites via machine learning

In order to verify the importance of metabolites that were found to be statistically significantly

different between phenotypes for the discrimination of patients and controls, three well-

known machine learning algorithms were applied: GLMNET [15], PDA [16] and RandomFor-

est [17].
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Using metabolites identified by univariate tests as features for supervised models was

shown to inflate accuracy of constructed classifiers. This type of bias was called selection bias

[18]. Therefore, in order to avoid selection bias but still be able to verify metabolites found to

be significant, the three mentioned classifiers were trained on the whole data from both tar-

geted and untargeted analysis using 5-fold cross-validation algorithm [19] repeated 5 times to

avoid overfitting. Overfitting is a problem of the model not being able to generalize to unseen

data due to the limited size of training set [20].

Average performance was recorded for each classifier separately. Accuracy as a perfor-

mance metric was used. If classifiers were capable of achieving an average accuracy larger than

0.5 (random choice), it was concluded that it is possible to differentiate between groups of

samples. Three classifiers were used to ensure that none of the models has overfitted the data.

Then, RandomForest importance measure was used to sort metabolites by their influence on

the final model. If metabolites found using statistical tests were indeed important for discrimi-

nating between patients and controls, these metabolites must have been used by RandomFor-

est and thus, should have been among the topmost important metabolites.

Identification of metabolites

The fragmentation spectra from the untargeted analysis were matched to public databases

HMDB [21], MassBank [22], METLIN [23], and LipidMaps [24]. Identification was positive

when a specific compound’s fragmentation spectra’s peaks and relative heights were compara-

ble to database’s spectrum.

Results

The untargeted analysis resulted in 6 statistically differing metabolites out of which 3 were

identified (S1–S3 Figs)–a peptide DSGEGDFXAEGGGVR and phosphatidylcholine PC(16:0–

16:1) /(14:0–18:1) levels in the serum were both significantly higher in AD patients while phos-

phatidylcholine PC(16:1/20:4) was lower in AD patients’ serum. The targeted analysis yielded

a total of 7 metabolites that differ statistically significantly between groups: acetylcarnitine

(C2), phosphatidylcholine diacyl C38:5 (PC.aa.C38.5), phosphatidylcholine diacyl C40:5 (PC.

aa.C40.5), ratio of short chain acylcarnitines (acylcarnitine–C2, propionylcarnitine–C3) to free

carnitine (C0), ratio of acetylcarnitine to free carnitine (C2. . .C0), fraction of dicarboxylacyl-

carnitines of the total acylcarnitines (Total.AC.DC. . .Total.AC) and ratio of esterified acylcar-

nitines to free carnitine (Total.AC. . .C0). Statistically significantly different m/z-s from the

targeted analysis are given in Table 1 and S4 Fig; metabolites from the untargeted analysis in

Table 2 and S5 Fig. No statistically significant changes could be seen in amino acids, biogenic

amines, hexoses or sphingolipids in targeted analysis.

Table 1. Targeted analysis results from non-paired t-test where atopic dermatitis patients’ serum

metabolites were compared to controls.

Metabolite p-value AD mean Control mean

C2 0.026 -0.617 0.397

PC.aa.C38.5 0.026 -0.667 0.142

PC.aa.C40.5 0.026 -0.663 0.195

X.C2.C3. . . .C0 0.026 -0.232 0.737

C2. . .C0 0.026 -0.237 0.736

Total.AC.DC. . .Total.AC 0.026 0.551 -0.353

Total.AC. . .C0 0.036 -0.174 0.698

https://doi.org/10.1371/journal.pone.0188580.t001
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PCA plots constructed on the whole data from targeted (Fig 1) and untargeted analysis (Fig

2) did not show any hidden batch effects that could bias metabolite identification. The separate

clustering of phenotypic groups could also not be seen, suggesting that the use of simple linear

models will not differentiate classes. PCA plots generated using only statistically significantly

different metabolites produced visually distinct clusters of samples that correspond to studied

Table 2. Untargeted analysis results from Mann-Whitney Wilcox test where atopic dermatitis patients’ serum metabolites were compared to

controls.

Positive mode m/z Identification AD mean Control mean p-value

545.393 unknown -0.98 0.85 0.0075

737.735 DSGEGDFXAEGGGVR 0.98 -0.85 0.0075

780.611 PC(16:1/20:4) -0.91 0.79 0.0192

829.891 unknown -0.91 0.79 0.0192

641.512 unknown -0.77 0.67 0.0430

Negative mode 537.507 PC(16:0–16:1) /(14:0–18:1) 0.84 -0.73 0.0351

https://doi.org/10.1371/journal.pone.0188580.t002

Fig 1. PCA plot for targeted analysis based on the whole data. Red circles—cases; blue squares—

controls. Initially, both groups largely overlap, also PCs explain a modest amount of variance.

https://doi.org/10.1371/journal.pone.0188580.g001
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phenotypic groups (Figs 3 and 4). PLS-DA plots show a clear clustering of samples, similarly

to PCA plots using only statistically significantly different metabolites (S6 and S7 Figs).

In targeted analysis, machine-learning models achieved an average performance close to

75%, suggesting that it is possible to differentiate between cases and controls using metabolites

measured in targeted analysis (Fig 5A). Importantly, metabolites identified as significant in

targeted analysis appear in the top of the list of metabolites that were most influential for Ran-

domForest classifier (Fig 5B).

For untargeted analysis all three machine-learning models show high accuracy (~90%) on

all three modes (negative, positive and combined) (Fig 6). Metabolites that were identified

using statistical tests in untargeted analysis were ranked first by the RandomForest algorithm

in all three modes (Fig 7), suggesting that these metabolites carry true discriminative power

between classes. Also, the constructed PCA plot based on significant metabolites clearly shows

the separation between classes of samples (Fig 4).

Discussion

Acylcarnitines are fatty acid and carnitine esters formed in the cytosol to transport fatty acids

into the mitochondrial matrix for β-oxidation. The origins of plasma acylcarnitines, namely

acetylcarnitine and propionylcarnitine, are mostly from the liver and can be transported

throughout the body to wherever they are needed for energy production [25]. Acetylcarnitine

is needed for the carnitine-dependent production of energy from different fatty acids and cell

membrane structure maintenance [26]. Patients with atopic dermatitis had a significantly

lower mean serum value for C2. Three carnitine ratios X.C2.C3. . ..C0, C2. . .C0, Total.

AC. . .C0 are all indicators of overall β-oxidation activity and the means are all lower in the

blood serums of patients with atopic dermatitis. This means that the metabolites central in β-

oxidation (acetyl-CoA and propionyl-CoA) have lower levels in AD patients’ serums. The

decrease of C2 and C3 means that less ATP is produced through β-oxidation. The suppression

of the β-oxidation and the accumulation of lipids in the liver due to atopic dermatitis has been

demonstrated in mice by Seino et al [27]. To compensate the defective β-oxidation and the

accumulation of lipids in the cytosol, ω- oxidation has been upregulated in AD patients, indi-

cated by the higher level of Total.AC.DC. . .Total.AC discovered in this study.

Fig 2. PCA plot for untargeted analysis based on negative (A), positive (B) and combination of both

(C) datasets. Red circles—cases, blue squares—controls. It can be seen that adding the dataset obtained

from negative mode does not explain additional variance in the positive mode dataset, on the contrary—the

amount of variance explained by the first and second principle components decreases for the combined

dataset, which suggests that there is very little important information in the dataset obtained from negative

mode.

https://doi.org/10.1371/journal.pone.0188580.g002
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Dicarboxylacylcarnitines are the end products of ω- oxidation and in humans they are almost

exclusively oxidized by peroxisomal fatty acyl-CoA oxidase of the classical β-oxidation path-

way [28]. In addition, anaerobic glycolysis is also upregulated as compensation, indicated by

the rise of lactate in AD patients [7]. The concentration of lactate in the serum is representative

of the balance between the uptake and production of lactate in tissues whereas the normal lev-

els range from 0.5 to 1.8mM. Lactate is formed by the reduction of pyruvate and metabolized

by oxidation to pyruvate. This reaction is catalyzed by the NAD-dependent lactate dehydroge-

nase in the cytosol. Carbon dioxide and water are the end products of pyruvate metabolism

and are part of the respiratory chain for energy production. Pyruvate is diverted to lactate

when the production of pyruvate exceeds the capacity of oxidative metabolism [29]. Another

indicator for energy compensation would be the decrease in blood glucose levels. Although the

measured hexose levels in AD patients were lower in this study, the change was not statistically

significant (p = 0.51).

Phosphocholines are the building blocks of cell membranes but they are also crucial to vari-

ous lipid-signaling pathways. O-6 unsaturated fatty acids e.g. arachidonic acid form inflamma-

tory prostanoids whereas anti-inflammatory and homeostatic prostanoids are derived from ω-

Fig 3. PCA plot for targeted analysis based on the significantly different metabolites. Red circles—

cases; blue squares—controls. The groups are visually separable, although there is still a significant overlap

between samples. It is important to note that PCs explain much more variance than in Fig 1.

https://doi.org/10.1371/journal.pone.0188580.g003
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3 unsaturated fatty acids. This can have an effect on systemic inflammation, allergy and asthma

[30]. In this study we identified 3 different phosphatidylcholines that were downregulated in

AD and one, PC(16:0–16:1) /(14:0–18:1) that was upregulated. Peiser et al demonstrated that

patients with AD have a defective phosphatidylcholine-sphingomyelin transacylase [31] which

might explain the higher concentration of that particular PC. Although it was not possible to

determine whether the downregulated PCs from the targeted analysis were ω-3 or ω-6, the

changes in measured levels clearly point to a disbalance in lipid signaling pathways that might

have an effect on systemic inflammation. Treating AD patients with an IgE antibody omalizu-

mab has been shown to alter the lipid profile [8] and bring them closer to normal levels.

Fig 4. PCA plots based only on metabolites that were found to be significant in untargeted analysis

for positive (A) and combined (B) datasets. Red circles—cases; blue squares—controls. Points on both

plots are visually separable and form very clear clusters that correlate with phenotypes.

https://doi.org/10.1371/journal.pone.0188580.g004

Fig 5. A Average classification performance (accuracy) of three distinct classifiers (rf = Random Forest,

pda = Pennalised Discriminant Analysis and glmnet = Lasso and Elastic-Net Regularized Generalized Linear

Model) on data from targeted analysis. The performance was measured with cross-validation algorithm over

5 folds and 5 repetitions. Average performance reaches 70%–75%, which suggests that metabolites are

indeed capable of distinguishing between cases and controls. B Top 20 most important metabolites used by

RandomForest classifier. Metabolites identified as significantly different in targeted analysis are highlighted.

We can see that indeed almost all metabolites (except for C2. . .C0) identified as significantly different are in

the top of the list.

https://doi.org/10.1371/journal.pone.0188580.g005
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However the effects of various phosphatidylcholines and their roles in atopic dermatitis

remain to be clarified.

The peptide discovered from the untargeted analysis in this study—DSGEGDFXAEGGGVR
is a cleavage peptide of Fibrinogen A-α. The increase in the concentration of named peptide is

not specific to atopic dermatitis but has also been seen in Buruli ulcer [32], tuberculosis [33]

and diabetes [34]. The properties of fibrin clot in AD patients’ blood samples have been stud-

ied and the analysis revealed an increased clot mass and fiber thickness, faster clot formation

among other altered plasma fibrin clot properties [35]. In another study, cutaneous fibrinolytic

activity was noted in the acute phase of AD patients [36]. This might be one of the reasons why

AD patients are at an increased risk for cardiovascular diseases (CVD)[37]. Other risk factors

include the higher consumption of alcohol, increased smoking, obesity and less physical activ-

ity [38]. Increased short-chain dicarboxylcarnitine levels, also discovered in this study, have

been found to correlate with CVD [39, 40]. The combination of lifestyle choices and serum

biomarkers contribute to the higher risk for cardiovascular diseases in atopic dermatitis

patients.

All statistically significant metabolites were confirmed to be relevant using machine-learn-

ing approaches. Although the repeated cross-validation technique was used which is designed

to help avoid overfitting, the limited size of our dataset could be a source of unwanted bias that

might potentially influence the results. To further confirm the findings in this study, a larger

sample size of patients with atopic dermatitis and controls will be necessary in the future.

Conclusion

Atopic dermatitis is a complex disease that has an impact beyond the lesions on the skin. The

disbalance of serum metabolites including phosphatidylcholines, acylcarnitines and peptides

all contribute to the changes seen in atopic dermatitis. This paper on the metabolomics of AD

definitely contributes to the better understanding of the disease through the exploration of

many disease-characteristic metabolites, both novel and old. These findings could potentially

Fig 6. Averaged classification performance (accuracy) of three classifiers (rf = Random Forest,

pda = Penalized Discriminant Analysis and glmnet = Lasso and Elastic-Net Regularized Generalized

Linear Model) on data from untargeted analysis. Their performance was measured with cross-validation

algorithm over 5 folds and 5 repetitions on data obtained with negative mode (A), positive mode (B) and a

combination of two modes (C). We can see that on average all three classifiers show high accuracy (for all

about 90% on average). Hence, it is possible to conclude that metabolites in untargeted analysis indeed have

a discriminative power.

https://doi.org/10.1371/journal.pone.0188580.g006
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lead to a systemic explanation of atopic dermatitis cooperatively with genetics, proteomics and

different machine-learning algorithms.

Supporting information

S1 Fig. Comparison of fragmentation spectra of m/z 537.507 to PC(16:0–16:1) /(14:0–18:1)

in negative mode.

(PNG)

S2 Fig. Comparison of fragmentation spectra of 737.735 to DSGEGDFXAEGGGVR in

positive mode.

(PNG)

Fig 7. Top 20 of the most influential metabolites used by the Random Forest algorithm trained on

data obtained from negative mode (A), positive mode (B) and a combination of two modes (C).

Metabolites identified as significantly different from untargeted analysis (highlighted) are at the top of the list

that was used by Random Forest classifier to obtain highly accurate classification performance.

https://doi.org/10.1371/journal.pone.0188580.g007
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S3 Fig. Comparison of fragmentation spectra of 780.611 to PC(16:1/20:4) in positive

mode.

(PNG)

S4 Fig. Heatmap of significantly different metabolites from targeted analysis. First half of

the columns belong to control samples, while the second part of the columns belong to

patients. The first metabolite has a higher concentration in patients than in controls, while

other metabolites on average have higher concentrations in controls than in patients.

(TIFF)

S5 Fig. Heatmap of significantly different metabolites from untargeted analysis. The first

half of the columns belong to control samples, while the second part of the columns belong to

patients. The first two metabolites have a higher concentration in patients than in controls,

while other metabolites on average have higher concentrations in controls than in patients.

(TIFF)

S6 Fig. PLSDA for targeted analysis. Red circles–cases, blue squares–controls. A clear separa-

tion into clusters is not visible and an overlap of samples can be noted.

(TIFF)

S7 Fig. PLSDA for untargeted analysis based on metabolites identified as significant in

(A) positive and (B) combined datasets. Red circles–cases, blue squares–controls. Both plots

show a clear separation of groups, which is confirmed by the performance of machine learning

methods in Fig 5.

(TIFF)

S1 File. Atopic dermatitis targeted.zip. Data table of results from targeted analysis.
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