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Abstract

The present study aimed to evaluate the functional connectivity (FC) in relevant cortex areas

during simulated driving with distraction based on functional near-infrared spectroscopy

(fNIRS) method. Twelve subjects were recruited to perform three types of driving tasks,

namely, straight driving, straight driving with secondary auditory task, and straight driving

with secondary visual vigilance task, on a driving simulator. The wavelet amplitude (WA) and

wavelet phase coherence (WPCO) of the fNIRS signals were calculated in six frequency

intervals: I, 0.6–2 Hz; II, 0.145–0.6 Hz; III, 0.052–0.145 Hz; IV, 0.021–0.052 Hz; and V,

0.0095–0.021 Hz, VI, 0.005–0.0095Hz. Results showed that secondary tasks during driving

led to worse driving performance, brain activity changes, and dynamic configuration of the

connectivity. The significantly lower WA value in the right motor cortex in interval IV, and

higher WPCO values in intervals II, V, and VI were found with additional auditory task. Signifi-

cant standard deviation of speed and lower WA values in the left prefrontal cortex and right

prefrontal cortex in interval VI, and lower WPCO values in intervals I, IV, V, and VI were

found under the additional visual vigilance task. The results suggest that the changed FC lev-

els in intervals IV, V, and VI were more likely to reflect the driver’s distraction condition. The

present study provides new insights into the relationship between distracted driving behavior

and brain activity. The method may be used for the evaluation of drivers’ attention level.

Introduction

Car driving has become an inevitable social activity and requires higher brain functions even

for basic driving operations and driving safety [1]. Safe car driving is highly important. No

other system exposes many individuals to as much high risk, especially risk to their lives, as
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that in a car [2]. According to statistics, 25%-50% of road traffic accidents involved distracted

drivers, whereas 36.4% involved those who participate in in-vehicle secondary task (IVST)

behavior [3]. IVST refers to other tasks indirectly related or unrelated to driving, such as listen-

ing to radio, looking at maps, talking with passengers, or adjusting car facilities. These tasks

occupy the driver’s visual, cognitive, and motion resources and distract the driver’s attention

to varying degrees [4,5]. Many studies have proven that IVST seriously affects a driver’s driv-

ing performance and traffic safety [6–8]. Driving a vehicle safely requires concentration,

divided attention to visual and auditory events, and cognitive decision making in a variable

environment [9]. Drivers’ mental load and distraction level increase with the introduction of

new interfaces and technologies in vehicles. Therefore, evaluating the attention status and

brain activity of drivers when studying distracted driving is necessary.

Functional connectivity (FC) is defined as a strong temporal correlation between two raw

time series in a low-frequency band, and cardiopulmonary interval signal frequencies are not

included [10]. FC reflects some essential connections in cerebral cortex, and this functional

network reveals an intrinsic structural brain network [11,12]. FC has been broadly used in var-

ious driving studies to evaluate the correlation levels in drivers [1,13–15]. Studies show that

distracted driving greatly affects a driver’s brain activity. The simultaneous understanding task

of the language made the mental resources far away from driving [16]. The distracted drivers’

brain sacrificed important visual attention and alertness functions from the posterior cortex to

recruit sufficient brain resources to perform secondary cognitive tasks [9]. However, little

information on the effects of distraction on brain FC in distracted driving is known.

Studies on FC based on functional near-infrared spectroscopy (fNIRS) were continuously

conducted in recent years. fNIRS is a novel, versatile, nondestructive blood oxygen testing

technique widely used in brain function research and neuronal imaging [17–20]. fNIRS indi-

rectly detects neuronal brain activity by recognizing changes in oxygenated and deoxygenated

hemoglobin concentrations (Delta [HbO2] and Delta [dHb], respectively) in an area of interest

in the cortex; moreover, fNIRS is applied in studies on brain computer interfaces [21–25].

fNIRS offers unique advantages, such as portability, convenience, and a combination of advis-

able temporal and spatial resolutions, compared with other brain imaging techniques, such as

functional magnetic resonance imaging or electroencephalography [26–28].

Blood oxygen signals detected by fNIRS possess a strong time-frequency characteristics and

involve different physiological sources in various frequency intervals [29,30]. Fluctuant fNIRS

signals mainly involve neurovascular coupling and systemic physiological processes. Physio-

logical processes, such as respiration and evoked or non-evoked neurovascular coupling that

cause hemodynamic changes in fNIRS signal, do not occur as separate and non-influenced

processes but rather as interrelated processes [20]. Wavelet-based method has been used to

identify different characteristic frequencies of cerebral oxygenation signals [31,32] and distin-

guish main physiological noise contributions by combining concurrent time-domain fNIRS

and peripheral physiological recordings [33]. Wavelet phase coherence (WPCO) can be used

to assesses the correlation between two signals with their phase information and evaluates the

possible connectivity based on the degree of coincidence of the instantaneous phase over the

entire time series [34].

The prefrontal cortex (PFC) has been described in numerous occasions as a cognition corti-

cal area in humans (e.g., [35,36]). PFC is an appropriate research object in investigating atten-

tion-related changes in brain activity. The motor cortex (MC) is important in sensation and

motor control [37]. The occipital cortex (OC) mainly functions in processing of visual infor-

mation, and the primary visual cortex V1 is located in OC [38]. Studies have demonstrated

that the prefrontal, motor, and occipital cortices as brain regions responsible for various driv-

ing maneuvers [9,39,40]. Hence, we hypothesized that PFC, MC, and OC are involved in
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distracted driving involving visual and auditory tasks. This study measures fNIRS signals in

these regions of interest during distracted driving and assesses the change in FC by performing

WPCO analysis of the fNIRS signals.

Materials and methods

Subjects

A total of 12 subjects (5 females and 7 males) were recruited from Shandong University to par-

ticipate in this study. All of the subjects had driving license but the driving experiment was less

than one year. We excluded subjects with the following characteristics: history of hypertension,

neurological or psychiatric disease, and drinking or smoking habit. Hypertension was defined

as systolic blood pressure� 140 mm Hg or diastolic blood pressure� 90 mm Hg [41]. The

experimental methods were approved by the Shandong University Human Ethics Committee

and carried out according to the ethical standards of the 1964 Helsinki Declaration. All the

participants provided written informed consent before participating in the study.

Table 1 shows the age of the subjects, body mass index (BMI), and blood pressure measured

before the experiment.

Procedures

A novel driving simulator combined with a semi-immersive virtual reality technology, throttle

and brake pedals, and a steering wheel was used to simulate the driving environment in this

study. The experiment was divided into four states, namely, resting state, straight driving

(Task 1), straight driving with an audio task (Task 2), and straight driving with a visual vigi-

lance task (Task 3). Each state continued for 20 min, and there were 5 minutes between each

state in order to avoid the impact of driving fatigue. Fig 1 shows the experimental procedures.

Table 1. Basic information of the subjects.

Parameters Means (Standard deviations)

Age (years) 24.4 (1.2)

Body mass index (BMI) 21.3 (2.9)

Systolic blood pressure (mmHg) 115.7 (4.8)

Diastolic blood pressure (mmHg) 69.7 (4.5)

Values are presented as means with standard deviations.

https://doi.org/10.1371/journal.pone.0188329.t001

Fig 1. Experimental procedures.

https://doi.org/10.1371/journal.pone.0188329.g001
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During resting state, subjects were required to sit comfortably in the driving simulator, eyes

fixed at the scene on screen (Fig 2A), hands on the steering wheel, and foot on the brake pedal.

Straight driving involves subjects driving straight forward along the virtual road in the driving

simulator. The subjects are in a focused condition in this state. The auditory task was designed

to simulate the distraction caused by ambient sound during driving. Subjects were asked by

the experimenter to mentally solve two-digit addition and subtraction problems and relay the

answer. The vigilance task was described in a previous study [42]. This task was applied in our

experiment to simulate distraction from image or visual change. Fig 2B shows the arrangement

of vigilance tasks in Task 3. Subjects were required to depress the brake pedal upon the appear-

ance of three different odd numbers. Before the experiment, subjects were given 10 min to

adjust to these states. fNIRS measurement was implemented continuously throughout the

experiment.

Fig 2. Driving scenarios in the experiment. Fig A shows the scenario applied to straight driving and straight

driving with auditory task. Fig B shows the scenario applied to straight driving with vigilance task.

https://doi.org/10.1371/journal.pone.0188329.g002
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Measurement

A multi-channel tissue oxygenation monitor (NirScan, Danyang Huichuang Medical Equip-

ment Co., Ltd) was used in NIRS measurements. The calibration function of the instrument

and corresponding template were used to ascertain the channels to fall exactly in correspon-

dence of the 10/10 electrode positions with the different head size of the participants. The tem-

plate was placed at the corresponding positions of PFC, MC, and OC. The template and the

head were fixed with an elastic band. When placing the probes into the template, the subjects’

hair was pulled aside to ensure that the probes were in direct contact with the scalp. Optodes

and templates were placed on the following cortical regions: left prefrontal cortex (LPFC),

right prefrontal cortex (RPFC), left motor cortex (LMC), right motor cortex (RMC), left occip-

ital cortex (LOC), and right occipital cortex (ROC), and the inter-optodes distance was 30

mm. A total of 42 channels corresponding to the 10/10 system were formed [43]. Fig 3 shows

the configuration of the source optodes, detector optodes, and measurement channels. The 36

channels enclosed by the green box (LPFC, RPFC, LMC, RMC, LOC and ROC) in Fig 3 were

Fig 3. Configuration of source optodes (red dots), detector optodes (blue dots), and measurement

channels (black numbers). Six cerebral cortex areas are separate by the green frames as LPFC, RPFC,

LMC, RMC, LOC and ROC.

https://doi.org/10.1371/journal.pone.0188329.g003
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included in the analyses. Signals with a low signal-to-noise ratio were removed, and the sam-

pling rate was 10 Hz.

Subjects were required to refrain from moving or shaking their heads during the experi-

ment. In the experimental process of resting state, the template of one subject fell off, so only

11 subjects’ data are valid in the state. The driving performance parameters, including driving

speed and driving errors (DE) (times of leaving the driveway and inappropriate crossing of

lines) were recorded by the simulator.

http://dx.doi.org/10.17504/protocols.io.kcjcsun

Data pre-processing and wavelet-based coherence analysis

The pre-processing method for fNIRS data has been described in detail in previous studies

[44,45]. In short, we used the moving average method and a six-order Butterworth band-pass

filter to obtain the filtered signals of 0.005–2 Hz with an improved signal-to-noise ratio. The

time window used for the moving average filter was 3s. Movement artifacts appearing on visu-

ally identified channels were removed by using moving standard deviation and spline interpola-

tion routines [46]. Fig 4 shows the original Delta [HbO2] signal (Fig 4A) and the preprocessed

Fig 4. Delta [HbO2] signals before (A) and after (B) data preprocessing.

https://doi.org/10.1371/journal.pone.0188329.g004
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Delta [HbO2] signal (Fig 4B). The standard deviation of speed (SDS) was calculated from the

driving speed to reflect the degree of dispersion in each state.

WPCO analysis was described in our previous studies [47–50]. In brief, wavelet transform

(WT) is a method facilitating complex transformations of time series from the time domain to

the time-frequency domain and provides appropriate time and frequency resolutions by using

tunable filter band lengths. In this study, Morlet wavelet was used for continuous WT as it has

its best time-frequency compactness [51]. This compactness is obtained by measuring the area

of the time-frequency box corresponding to different wavelet. Morlet wavelet shows the most

likely small time-frequency box area in all wavelet functions, and thus can achieve the best

time-frequency resolution.

Through WT, we can obtain the wavelet amplitude (WA) of each Delta [HbO2] signals.

WA is the average result of the WT in the time domain. By subtracting the instantaneous

phase, we can obtain the instantaneous phase difference of two Delta [HbO2] signals: Δϕ(f,tn).

We subsequently averaged the cos Δϕ(f,tn) and sin Δϕ(f,tn) in the time domain to obtain 〈cos

Δϕ(f,tn)〉 and 〈sin Δϕ(f,tn)〉. Furthermore, WPCO was defined as:

Cϕðf Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

〈cosDϕðf ; tnÞ〉
2
þ 〈sinDϕðf ; tnÞ〉

2

q

ð1Þ

WA reflects the magnitude of the fluctuation of the original signal at a certain frequency, so

it serves as an index of power that can be used to describe the activity intensity of the cortical

region. The typical hemodynamic response to mental activation is the basis for NIRS measure-

ment. When a specific brain area is activated, neural metabolism is supported through a local-

ized vascular response that causes an influx of oxygen-rich blood to the active area and the

surrounding tissue. This phenomenon leads to an increase in [HbO2] and a decrease in [dHb]

in the active brain area [52,53]. The functional hyperaemia mechanism is to adjust the distri-

bution of cerebral blood flow (CBF) based on functional activities of different brain regions

[54]. Therefore, when the activity of the cerebral cortex region increases or decreases, the flow

into this area changes accordingly. This change is reflected in the WA of the fNIRS signal

([HbO2]) during driving task, which is used to characterize the intensity of activity in a partic-

ular cortex region. In this study, brain activation represents the task-evoked cortical activity

related to the execution of the task.

WPCO identifies possible relationships by evaluating the match between the instantaneous

phases of two signals. Cerebral NIRS signals mainly consist of evoked neurovascular coupling,

non-evoked neurovascular coupling, and systemic physiological interference [20]. Some differ-

ent, and possibly overlapping, physiological mechanisms such as the sympathetic nervous sys-

tem, endothelial derived nitric oxide, and vascular myogenic responses could play some part

in neurovascular coupling [55]. We previously demonstrated the oscillations in NIRS signals

with six characteristic frequencies [49,56,57], possibly reflecting neurovascular coupling and

systemic regulation activities. Overall, six frequency intervals were divided in WA and WPCO

analyses based on their possible physiological origins: I, 0.6–2 Hz (cardiac activity); II, 0.145–

0.6 Hz (respiration); III, 0.052–0.145 Hz (myogenic activity); IV, 0.021–0.052 Hz (neurogenic

activity); and V, 0.0095–0.021 Hz (NO-related endothelial metabolic activity), VI, 0.005–

0.0095Hz (NO-independent endothelial activity) [58].

Spurious correlations (false discoveries) across two channels of data may be produced by self-

correlations of fNIRS signals for WPCO analysis. These self-correlations are closely related to

error terms, such as slow hemodynamic signal, systemic physiological noise, and motion arti-

facts, which may lead to either high false-discovery rates or high false-negative rates in correla-

tion analyses [59]. Low-frequency components are fewer than high-frequency components in

finite length signals. Less variation in phase difference occurs at low frequencies due to error

FC analysis of distracted drivers based on the WPCO of fNIRS signals

PLOS ONE | https://doi.org/10.1371/journal.pone.0188329 November 27, 2017 7 / 22

https://doi.org/10.1371/journal.pone.0188329


terms and results in increased phase coherence. The amplitude-adaptive Fourier transform

(AAFT) method was applied to perform significant WPCO test. A total of 100 surrogate signals

were produced, and these signals possess the same mean, variance, and autocorrelation functions

as the original signal but without any phase correlation. The WPCO value of the experimental

signal was considered significant when it was higher than the mean WPCO values of surrogate

with two standard deviations. This significant value denotes significant connectivity [34].

The WA and WPCO values in the specific frequency interval were obtained by using the aver-

aging method. In one frequency interval, six WA values of each subject were obtained by averag-

ing the WA of the internal channels in each brain cortex (LPFC, RPFC, LMC, RMC, LOC and

ROC). The 15 WPCO values were obtained from each subject by averaging the WPCO of chan-

nels between two brain regions (LPFC-RPFC, LPFC-LMC, LPFC-RMC, LPFC-LOC, LPFC-ROC,

RPFC-LMC, RPFC-RMC, RPFC-LOC, RPFC-ROC, LMC-RMC, LMC-LOC, LMC-ROC,

RMC-LOC, RMC-ROC and LOC-ROC). This process was performed in six frequency intervals.

In this study, the connectivity of six frequency intervals was classified into global connectiv-

ity (GC) and FC. FC is usually characterized by a temporal correlation between two raw time

series with low frequency (<0.1 Hz) [19] and separable from respiratory (0.1–0.5 Hz) and car-

diovascular (0.6–1.2 Hz) signal frequencies [10]. The systemic signals including respiratory and

cardiovascular signals were commonly considered global interferences [60]. In this study, FC

was revealed by the significant WPCO values in intervals III to VI (0.005–0.145 Hz), whereas

GC was revealed by the significant WPCO values in intervals I to II (0.145–2 Hz). These param-

eters might reflect the neurovascular coupling and systemic regulation activities. The GC

reflects the synchronization of cardiac and respiratory activities in the cerebral areas [61].

Statistical analysis

The normal test (Kolmogorov-Smirnov test) and variance uniformity test (Levene test) of each

subject’s data were performed at the group level to ensure that the assumptions required for

parameter analysis were satisfied. Significant differences in the driving performance parame-

ters and WA, as well as WPCO changes in each state, were calculated through one-way

ANOVA. A difference of p<0.05 was considered statistically significant. The Bonferroni t-test

was used for the pair-wise comparisons. Three groups for WA and WPCO comparison were

designed (rest and Task 1, Task 1 and Task 2, Task 1 and Task 3), so the α value was set to

0.0167 (0.05/3). Two groups for driving performance comparison were designed (Task 1 and

Task 2, Task 1 and Task 3), thus the α value was set to 0.025 (0.05/2). Pearson correlation coef-

ficient test was performed to compare the changes between WPCO (4WPCO) and driving

performance parameters (4SDS and4DE) under the influence of different secondary tasks. Δ
represents the difference between task 1 and task 2, or between task 1 and task 3.

Results

Driving performance parameters

Fig 5 illustrates the changes in driving performances between straight driving and the other two

distracted states. The SDS in Task 3 was significantly higher than that in Task 1 (F (2, 33) =

3.564, p = 0.040, p (t-test) = 0.015).

Table 2 shows a list of the Pearson correlation results. Significant negative correlation existed

between4SDS and4WPCO in LPFC-RMC (interval III) between Task 1 and Task 2 (-0.8< R<

-0.5, p< 0.05). Similar negative correlation was observed in LPFC-RPFC (interval I and IV) and

RPFC-ROC (interval IV) between Task 1 and Task 3. Furthermore, significant positive correlation

existed between4SDS and4WPCO in RPFC-LMC (interval V), LMC-LOC (interval I) and

LOC-ROC (interval VI) (0.5< R< 0.8, p< 0.05) between Task 1 and Task 2.

FC analysis of distracted drivers based on the WPCO of fNIRS signals
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Connectivity maps

Fig 6 shows the connectivity maps in the six frequency intervals under the four states at the

group level. The GC maps were formed by the significant WPCO in intervals I and II, while

the FC maps were formed by those in intervals III to VI. The connectivity line indicated a sig-

nificant WPCO value between two channels. The color of line indicates the connectivity inten-

sity, and the sizes of the red dots indicate the numbers of connectivity among the channels.

The comparison of connectivity was performed between Task 1 and resting state, Task 1

and Task 2, Task 1 and Task 3. The connectivity was dense in intervals I to IV, and sparse in

intervals V and VI in each state. The connectivity map was sparser and the connectivity was

weaker in intervals II to V in straight driving than in the resting state (Fig 6(B) and Fig 6(A)).

Fig 5. Comparison of SDS and DE between Task 2 and Task 1, Task 3 and Task 1. Significant differences

are marked with *(P (t-test) <0.025).

https://doi.org/10.1371/journal.pone.0188329.g005

Table 2. Correlations betweenΔWPCO andΔSDS,ΔWPCO andΔDE.

Task Cortex areas Intervals ΔSDS (Km/h) ΔDE

R P R P

ΔWPCO Task 1 and Task 2 LPFC-RMC III -0.610 0.035* -0.405 0.192

RPFC-LMC V 0.534 0.074 0.586 0.045*

LMC-LOC I 0.401 0.197 0.625 0.030*

LOC-ROC VI 0.398 0.201 0.653 0.021*

Task 2 and Task 3 LPFC-RPFC I -0.579 0.048* -0.107 0.740

IV -0.618 0.032* 0.095 0.769

RPFC-ROC IV -0.585 0.046* -0.105 0.746

Δ represents the difference between Task 1 and Task 2, or between Task 1 and Task 3.

Significant correlations are marked with

*(p < 0.05).

https://doi.org/10.1371/journal.pone.0188329.t002
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The connection map showed evident increase in interval II in Task 2 compared with Task 1.

Also, the connection map showed evident increase in interval IV between RPFC and other cor-

tex areas, in interval V between PFC and LOC, LMC and LOC, LMC and RMC in Task 2 com-

pared with Task 1 (Fig 6(C) and Fig 6(B)). However, the map showed a decrease in all the

intervals, especially in intervals IV to VI in Task 3 compared with that in Task 1 (Fig 6(D) and

Fig 6(C)).

Fig 6. FC (frequency intervals III to VI) and GC (frequency intervals I and II) maps of resting state (A), Task 1 (straight driving) (B), Task 2

(straight driving with auditory task) (C) and Task 3 (straight driving with vigilance task) (D). The connectivity line indicated a significant WPCO value

between two channels. The color of line indicates the connectivity intensity, and the sizes of the red dots indicate the numbers of connectivity among the

channels.

https://doi.org/10.1371/journal.pone.0188329.g006
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Connectivity matrices

Fig 7 shows the significant changes (indicated by the p-value of Bonferroni t-test) of WPCO

values as revealed by the one-way ANOVA analysis between Task 1 and resting state. The

WPCO values of LPFC-LMC and LMC-RPFC were significantly higher in interval I in straight

driving state compared with the resting state. On the contrary, significantly lower WPCO val-

ues were found in interval II between LPFC and RMC, RPFC and ROC, RPFC and RMC, in

interval III in all cortex regions except for LPFC-RPFC, in interval IV in all cortex regions

except for LPFC-ROC, LPFC-RMC, LPFC-RPFC, LPFC-LOC, LPFC-LMC and RPFC-LOC,

in interval V between LMC and LOC, LOC and RMC, in interval VI between RMC and LPFC,

RMC and LMC, RMC and LOC, RMC and RPFC, in straight driving state compared with the

resting state.

Fig 8 shows the significant changes (indicated by the p-value of Bonferroni t-test) of WPCO

values between Task 2 and Task 1. Significantly higher WPCO values were found in intervals

II, V and VI in Task 2 compared with the values in Task 1 (II: LPFC-RMC, LPFC-LMC,

Fig 7. Significance matrices representing significantly changed WPCO value in comparison with

Task 1 to resting state (indicated by the p-value of Bonferroni t-test). Warm colors represent increase of

WPCO value, brighter boxes represent stronger significance. Cold colors represent decrease of WPCO

value, darker boxes represent stronger significance.

https://doi.org/10.1371/journal.pone.0188329.g007
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LMC-RPFC, and RPFC-RMC; V: LPFC-RMC and RPFC-RMC; VI: LPFC-RMC and

RPFC-RMC).

Fig 9 shows the significant changes (indicated by the p-value of Bonferroni t-test) of WPCO

values between Task 3 and Task 1. Significantly lower WPCO values were found in intervals I

between LPFC and LMC, LMC and RPFC, in interval IV in LPFC-RMC, LPFC-LMC,

LMC-ROC, LMC-RPFC, LMC-LOC, LOC-RMC and RPFC-RMC, in interval V among all

cortex regions except for LPFC–RPFC and LMC-RMC, in interval VI among all cortex regions

in Task 3 compared with Task 1.

WA values

Fig 10 compares the WA values of the six frequency intervals in each cortex area. The compari-

son of WA values was performed between Task 1 and resting state, Task 1 and Task 2, Task 1

and Task 3. Significantly higher WA values in intervals IV, V, and VI were found in the LPFC,

RMC and ROC in straight driving sate compared with the resting state. Moreover, significantly

lower WA values in interval VI were found in the LPFC (F (3, 43) = 3.333, p = 0.028, p (t-test) =

0.010) and RPFC (F (3, 43) = 2.853, p = 0.048, p (t-test) = 0.007) in Task 3 than in Task 1.

Discussion

In the present study, higher brain activation in intervals IV to VI and decreased connectivity

in intervals II to VI were found in straight driving state than that in resting state. Also, the

WPCO in intervals II, V, and VI showed enhanced level as a result of additional auditory task,

but decreased level in intervals I, IV, V, and VI due to additional visual vigilance tasks. More-

over, driving performance became worse and brain activation decreased when secondary tasks

were applied to simulated driving.

The analysis of connectivity in fNIRS is based on the statistical relationship between sponta-

neous temporal fluctuations between two or more parts of the brain. Such analysis may be

Fig 8. Significance matrices representing significantly changed WPCO value in comparison with

Task 2 to Task 1 (indicated by the p-value of Bonferroni t-test). Warm colors represent increase of

WPCO value, brighter boxes represent stronger significance.

https://doi.org/10.1371/journal.pone.0188329.g008

FC analysis of distracted drivers based on the WPCO of fNIRS signals

PLOS ONE | https://doi.org/10.1371/journal.pone.0188329 November 27, 2017 12 / 22

https://doi.org/10.1371/journal.pone.0188329.g008
https://doi.org/10.1371/journal.pone.0188329


performed in the time domain or in the frequency domain using spectral coherence or phase

locking measurements [59]. In this study, FC or GC was identified with phase synchronization.

The phase information was extracted by multiple scales WT, and the WPCO method was used

to identify oscillations with consistent phase differences. Consistent phase differences at a cer-

tain frequency interval indicated high phase synchronization.

GC and FC in straight driving state and the resting state

This study showed a significantly lower level of GC in straight driving than in the resting state

in the LPFC-RMC, RPFC-ROC and RPFC-RMC in interval II. The oscillations in interval II

closely resemble the oscillations of respiratory activity [62]. Driving action requires energy

provided by strong respiratory activity, which produce significant changes in the CBF inde-

pendent of task-related nerve activation [63]. The increase of this task-related CBF was

revealed by the rising WA values in straight driving. However, the activation levels of cortex

regions were different under the driving task and the oxygen extraction fractions might vary

from one region to another [64]. The declined GC in interval II in some cortex regions may be

attributed to the inhomogeneous activation.

The oscillations in frequency interval III correspond to the myogenic activity of smooth

vascular muscle cells [58,61]. Vascular smooth muscle contracts in response to increased intra-

vascular pressure. This contraction is then relieved by reduced pressure and directly regulates

the diameter and pressure of blood vessels. In the multi-cognitive task, such as driving, human

manifestations are immediately affected by undifferentiated resources [65]. Thus, the vascular

smooth muscles contract in response to the incremental intravascular pressure, and the ampli-

tude of myasthenia is increased [58]. That is, the myogenic mechanism affects FC levels. Com-

paring straight driving to resting state, the raising WA values in interval III in brain region

indicate the difference of myogenic activity, especially between LMC and other regions. Corre-

spondingly, the reduced synchronization of the vascular smooth muscles’ spontaneous

Fig 9. Significance matrices representing significantly changed WPCO value in comparison with

Task 3 to Task 1 (indicated by the p-value of Bonferroni t-test). Cold colors represent decrease of WPCO

value, darker boxes represent stronger significance.

https://doi.org/10.1371/journal.pone.0188329.g009
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Fig 10. Comparison of the WA value in the six frequency intervals in the LPFC (A), in the RPFC (B), in the LMC (C), in the

RMC (D), in the LOC (E) and in the ROC (F). Significant differences between resting state and Task 1 are marked with * (P (t-test)
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contraction was revealed by the significantly lower WPCO values in all connectivity except for

LPFC-RPFC, which indicates lower level of FC in interval III.

The oscillations in frequency interval IV correspond to the neurogenic activity controlling

smooth muscle cells [32,58]. The central nervous system, especially the motor cortex region,

should maintain or increase incentives for related motor neurons to deliver sustained and sta-

ble force production [66]. In driving task, the body parts should be coordinated to gain a favor-

able performance. This coordination leads to increased activity of motor units and the

frequency of stimulation. Our results showed significant activation in LPFC, RMC and ROC

when driving. Increased brain activation and redistribution of brain resources (i.e., CBF) are

partially controlled by neurovascular coupling. The distribution of brain resources can change

the activation intensity in each brain area, and the connectivity between brain areas varies

accordingly [67]. The decline of synchronization shown in WPCO in interval IV indicated

reduced strength of FC in neurological activity among cortex regions.

The WPCO values of LMC-LOC and LOC-RMC in interval V showed significantly lower

level in straight driving. The oscillations in frequency interval V correspond to NO-related

endothelial metabolic activity [58,68]. NO is a highly important vasoactive substance [69]. The

endothelial cell is a basic component of the blood vessel wall. The NO produced and released

by endothelial cells and relaxing smooth muscle cells is associated with vasodilatation and

vasoconstriction [70]. The local cerebral metabolism is tightly coupled to local brain perfusion,

and this coupling is a product of the anatomical and metabolic relationship among neurons,

glial cells, and cortical penetrating arterioles that together comprise the neurovascular unit

[71]. In short, the NO-related endothelial metabolic activity is tightly integrated with neuro-

genic activity. This can be shown from the consistent significant increase in WA values of

LPFC, RMC and ROC in interval IV and V. The lower WPCO values in interval V indicated a

reduced phase-synchronized endothelial activity in LMC-LOC and LOC-RMC.

In addition, the oscillations in the frequency interval VI correspond to NO-independent

(probably prostaglandin-dependent) endothelial activity [58]. Different prostaglandins exert

different effects on vascular smooth muscle cells; these prostaglandins cause the smooth mus-

cles to regulate blood flow and blood pressure [72,73]. The NO-independent endothelial activ-

ity is closely related to neurogenic activity, as shown in significantly increased WA values of

LPFC, RMC and ROC in interval IV and VI. Our results show that driving task may cause the

phase asynchrony of the NO-independent endothelial activity in the RMC-LPFC, RMC-LMC,

RMC-LOC and RMC-RPFC. This asynchrony indicates a decline in FC.

Interestingly, the WPCO values of LPFC-LMC and RPFC-LMC were significantly higher in

interval I in straight driving than in the resting state. The heart pumping effect was reflected in

the blood oscillation in interval I. The higher level in this interval indicates the enhanced heart

output, and the coordination regulation between LPFC-LMC and RPFC-LMC showed an

enhancement due to the driving task.

GC and FC in distracted driving

In contrast to straight driving, the WA values in the states with secondary auditory task

declined in all cortex regions except for LPFC in intervals III and V. This interplay between

anterior and posterior brain regions is possibly related to a competition for limited resources

and attentional reallocation between the anterior, executive attention in multi-tasking and the

<0.0167), ** (P (t-test) <0.01), *** (P (t-test) <0.001). Significant differences between Task 1 and Task 3 are marked with # (P (t-

test) <0.0167), ## (P (t-test) <0.01).

https://doi.org/10.1371/journal.pone.0188329.g010
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posterior, visual response attention system [65]. [9] reported that the distracted brain sacrifices

important visual attention and alertness functions from the posterior cortex to recruit suffi-

cient brain resources to perform secondary cognitive tasks, which was consistent with our

results. The auditory calculation task added to driving raised the GC level in interval II and FC

level intervals V and VI between MC and other cortex areas. This change may result from the

brain resource reallocation between MC and other brain regions. The reduced parietal lobe

activation in the dual task condition reflected a decrease in the spatial computations associated

with driving as well as a decrease in spatial attention [16,74]. Increased phase synchronization

suggests an enhanced coordinated regulation of respiratory activity, NO-related endothelial

metabolic activity, and NO-independent endothelial activity to cerebral circulation between

PFC and MC. Besides, the more unstable driving performance was found in Tasks 2 than in

the Task 1. The results indicate that the additional auditory task makes mental resources away

from driving and leads to deterioration of driving performance.

The additional visual vigilance task induced a loss of cerebral GC in interval I between PFC

and MC, complete loss of FC in intervals IV to VI, and declined activation in LPFC and RPFC

in interval VI. This finding was different from the effect of the secondary auditory task on the

driving task. Some studies demonstrated that brain activities and connectivity vary under dif-

ferent multiple tasks [75–77]. The main determinants may depend on how the two tasks are

automated and whether they are on non-overlapping cortical regions [16].

Task 3 induced significantly lower level in GC including in the LPFC-LMC and RPFC-LMC

in interval I compared to that in Task 1. Additional visual vigilance task reduced the coordi-

nated regulation of cardiac activity and cerebral circulation between PFC and MC, and may

affect substrate delivery and the removal of by-products of metabolism. Similar results were

noted in previous research that focused on vigilance task-related changes on brain FC between

PFC and sensorimotor areas [42]. The task might affect the functional hyperemia mechanism

and further influence driving performance. Besides, the connectivity map indicates significant

decline in the PFC-MC, PFC-OC, and MC-OC in interval IV. The long-range connectivity

possesses greater context sensitivity and was crucial for task-dependent functions [78]. These

synchronism drops reflect the decreased coordination of sympathetic nervous system function

in these cortex pairs. In interval V and VI, few FCs existed in the LPFC-RPFC, LMC-RMC,

and LOC-ROC. The decreased FC may suggest that the additional visual task induced a desyn-

chronized endothelial regulation activity and affected the neurovascular coupling level

between these cortex regions. Moreover, secondary visual tasks seem to have more adverse

impact on driving compared with the secondary auditory tasks, as revealed by significantly

higher SDS values not just the larger number of driving errors.

Table 2 shows an interesting result. Although the SDS and the DE were on upward trend in

distracted driving, their changes were inversely related to changes in WPCO. The4SDS was

negatively correlated with the4WPCO, which may imply that the change of FC reduce the

changes of SDS in distracted driving state and make speed more stable. The4DE was posi-

tively related to the4WPCO and this indicated that the changes of FC have the same trend as

the changes of DE. As SDS was a measure of longitudinal driving stability and DE was more

focused on the measurement of lateral driving stability [79], the results may indicated that the

driver’s brain sacrificed the ability of lateral driving adjustment to ensure longitudinal driving

adjustment in distracted driving.

In conclusion, the present study provides new insights into the relationship between dis-

tracted driving behavior and brain activity. The results may be used for the evaluation of driv-

ing ability and assessment of new interfaces and technologies in vehicles.
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Method consideration

The different driving experiments of subjects could have different impact on FC. Studies dem-

onstrated that long-term behavior and recent experience would change the resting-state of FC

and might be directly linked to dynamic changes in FC [80,81]. However, the resting-state of

FC of drivers with few years of driving experience is similar to the non-drivers [81]. Thus, in

order to avoid the interference of this differentiation, subjects who have driver’s license but

have less than one year of driving experience were recruited. Moreover, the subjects were

given 10 minutes to adapt to the simulator before the experiment.

Within the long time window, the functional connectivity exhibit dynamic changes at

different time scales. In this study, in order to reveal the phase coherence value of the low-

frequency component (VI, 0.005–0.0095 Hz), the task period was set to 20 minutes. In one

time series of fNIRS signal, the number of cycles of the high frequency component is larger

than that of the low frequency component. The phase difference of the low-frequency com-

ponent tends to remain constant compared to the high-frequency component, that is, the

phase coherence value of the low-frequency component tends to increase [34]. So at least

five or more low-frequency cycles should be included in an fNIRS signal to ensure the

effectiveness of the WPCO [82]. The minimum frequency is 0.005 Hz, and then the maxi-

mum frequency period is 200s. Thus, the minimum measurement time is 1000s. Averaging

WA and WPCO in the time domain can improve the accuracy of the low frequency

component.

A multichannel fNIRS study illustrated that the signal-to-noise ratio of [HbO2] signal was

higher than that of [HHb], and it was more pronounced in cognitive tasks [83]. The [HbO2]

variable appeared to be sufficiently sensitive for representation of attention reduction in the

cortical region, whereas the combination of these two variables only improves slight perfor-

mance in some cases [84]. Therefore, only Delta [HbO2] signal was used for WPCO analysis in

this study. Since [dHb] signal may be less contaminated by global processes compared with

[HbO2] [33,85], future studies will consider changes both in [HbO2] and [dHb] for better

physiological interpretation of the results of FC.

One limitation of the study is the small sample size. The subjects performed the resting-

state and tasks in the same order, however, counterbalance experimental design may make the

results more scientific. Since the objective of this study is to provide a method for the evalua-

tion of functional connectivity (FC) in relevant cortex areas during driving with distraction,

future studies will add more subjects, focus on balanceable procedure and further validate the

results. Another limitation is that we did not consider the interference of Mayer waves (0.08–

0.1 Hz). Mayer waves are oscillations of arterial pressure occurring spontaneously in conscious

subjects at a frequency lower than that of respiration and tightly coupled with the synchro-

nized oscillations of the efferent sympathetic nervous activity [86]. On the one hand, the cere-

bral oscillations in interval III (0.052 to 0.145 Hz) were suggested to originate locally from the

intrinsic myogenic activity of smooth muscle cells in resistance vessels and this myogenic

mechanism may be partly under autonomic control [29]. On the other hand, the frequency

band III might be contaminated by Mayer wave. In this study, the driving task-related changes

in connectivity in interval III mainly reflects the synchronization of neurovascular coupling,

that is, the difference of myogenic activity in different cortex areas and the lower synchroniza-

tion in straight driving compared to resting state. The interference of Mayer waves will be

taken into account in future study.
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