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Abstract

MicroRNAs (miRNAs) are a class of approximately 22 nucleotides single-stranded non-cod-

ing RNA molecules that play crucial roles in gene expression. It has been reported that the

plant miRNAs might enter mammalian bloodstream and have a functional role in human

metabolism, indicating that miRNAs might be one of the hidden bioactive ingredients in

medicinal plants. Viscum album L. (Loranthaceae, European mistletoe) has been widely

used for the treatment of cancer and cardiovascular diseases, but its functional compounds

have not been well characterized. We considered that miRNAs might be involved in the

pharmacological activities of V. album. High-throughput Illumina sequencing was performed

to identify the novel and conserved miRNAs of V. album. The putative human targets were

predicted. In total, 699 conserved miRNAs and 1373 novel miRNAs have been identified

from V. album. Based on the combined use of TargetScan, miRanda, PITA, and RNAhybrid

methods, the intersection of 30697 potential human genes have been predicted as putative

targets of 29 novel miRNAs, while 14559 putative targets were highly enriched in 33 KEGG

pathways. Interestingly, these highly enriched KEGG pathways were associated with some

human diseases, especially cancer, cardiovascular diseases and neurological disorders,

which might explain the clinical use as well as folk medicine use of mistletoe. However, fur-

ther experimental validation is necessary to confirm these human targets of mistletoe miR-

NAs. Additionally, target genes involved in bioactive components synthesis in V. album

were predicted as well. A total of 68 miRNAs were predicted to be involved in terpenoid bio-

synthesis, while two miRNAs including val-miR152 and miR9738 were predicted to target

viscotoxins and lectins, respectively, which increased the knowledge regarding miRNA-

based regulation of terpenoid biosynthesis, lectin and viscotoxin expressions in V. album.

Introduction

MicroRNAs (miRNAs) are a class of single-stranded non-coding RNA molecules of approxi-

mately 22 nucleotides that play crucial roles in gene expression [1]. They generally bind to

complimentary sequences in the 3’ untranslated region (UTR) of specific protein-coding

genes, inducing mRNA cleavage or translational repression [2]. MiRNAs are highly pleiotropic
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and a single miRNA can recognize hundreds of mRNA transcripts, allowing them to regulate a

diverse range of biological pathways [3,4]. In 2012, Zhang et al. reported miRNAs derived

from plant-based dietary can function as active signalling molecules to regulate mammalian

genes [5]. A recent study demonstrated that a medicinal plant-derived miRNA, MIR2911, can

be acquired by mice via GI tract and target influenza A virus and protect the mice against

influenza virus infections [6]. These findings provide thrilling clues that miRNAs might act as

bioactive constituent mediating the cross-kingdom regulation [7].

Viscum album L. (Loranthaceae) commonly known as mistletoe or European mistletoe, is a

hemi-parasitic evergreen shrub that grows on a number of host trees including apple, oak,

poplar and other trees [8]. Mistletoe has been used medicinally in Europe for centuries. In

ancient Greece, Hippocrates (460–377 BC) used the mistletoe to treat disorders of the spleen

and complaints associated with menstruation. Around 150 AD, the Roman naturalist Celsus

prescribed mistletoe to treat abnormal growths (including possible swellings and cancer). Dur-

ing the middle ages, mistletoe was considered as a golden herb for the treatment of epilepsy. In

the 16th century, mistletoe was applied for many conditions including epilepsy, diseases of

kidneys and spleen, ulcers, bone fractures and labour-pain. According to the homeopathic

Materia Medica, mistletoe was applied for “weakness of the heart” and oedema in the 18th cen-

tury. However, in the late 19th century when the modern medicine rose, these medicinal appli-

cations of mistletoe did not gain considerable attention. Until 1907, Gaultier scientifically

proved the anti-hypertensive effect of mistletoe extract. In the 1920s, mistletoe was recom-

mended as a possible treatment for cancer. Thereafter, the medicinal use of mistletoe has

awakened [9].

Nowadays, V. album extracts are most frequently used in adjuvant cancer therapy in Ger-

man-speaking countries [10]. Preparations from V. album extracts for this purpose are com-

mercially available in Europe, such as Iscador1, Eurixor1, Helixor1 and Abnoba viscum1.

Three components of mistletoe, namely viscotoxins, lectins and terpenoids, which showed sig-

nificant immune-system-stimulating activity and cell-killing activity, were suggested to be

responsible for its anti-cancer effect [11–13]. In folk medicine, V. album has been mainly prac-

ticed for the treatment of cardiovascular diseases such as hypertension and diabetes [14,15],

but its clinical efficacy has not been established [16]. Studies have shown that V. album extracts

possess potent cardioprotective, hypoglycemic, anti-hypertensive and vasodilator effects both

in vitro and in vivo [17–22], nitric oxide pathway, calcium signaling pathway and cholinergic

pathway might be involved [18,20,23]. Although various secondary metabolites such as flavo-

noids, saponins, tannins, alkaloids, phenylpropanoids are present in V. album [15,20], the bio-

active constituents that might be responsible for its cardiovascular protective effects remain to

be elucidated [19,24].

In this study, we considered that miRNAs might be involved in the pharmacological activi-

ties of V. album. The conserved and novel miRNAs from V. album have been identified using

Illumina platform technologies. The putative human targets have been predicted using bioin-

formatics tools, and their potential roles in human biological pathways and diseases have been

elucidated. The results indicated that mistletoe miRNAs might possess beneficial effects

against some human diseases such as cancer, cardiovascular diseases and neurological disor-

ders, which might explain the medicinal use of mistletoe in ancient time, and provide scientific

support for folk medicinal use and clinical use of mistletoe in modern medicine.

Furthermore, to promote understanding of miRNA-based regulation of bioactive ingredi-

ents in V. album, the genes involved in terpenoids, lectins and viscotoxins biosynthesis in

V. album have been characterized, and their corresponding regulatory miRNAs have been pre-

dicted, which might facilitate bioengineering research in the production of mistletoe pharma-

cologically active components.

miRNAs of Viscum album L.
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Materials and methods

Ethics statement

The mistletoe plants were collected from Niefern-Öschelbrunn (Baden-Wuerttemberg) Ger-

many with permission of Birken AG. We confirm that the experiments in this study did not

involve any endangered or protected species.

Plant materials

One-year-old leaves and stems were randomly collected from different individual V. album
grown on Malus domestica L. trees in Niefern-Öschelbrunn (Baden-Wuerttemberg) Germany

in November 2015. The mistletoe plants were snapped in liquid nitrogen and stored at -80˚C

until use.

RNA isolation, library construction and high-throughput sequencing

Total RNA was extracted from plant leaves and stems using RNA isolation reagent (amsbio,

USA) according to the manufacturer’s protocol. The RNA samples with high purity (OD260/

280 between 1.8 and 2.2) and high integrity (RNA integrity number of 6.5 or higher) were used

to construct the sRNA library. The mRNA and small RNA library preparations and sequencing

were performed by BGI (Beijing Genomics Institute, Shenzhen, China). For mRNA library con-

struction, mRNA in the sample was enriched and fragmented. The RNA fragments were served

as templates for cDNA synthesis. The cDNA fragments were ligated with sequencing adapters,

and amplified by PCR to construct the cDNA library for paired-end sequencing. Small RNAs

(18 to 30 nt) were gel purified and ligated to the 3’ and 5’ adaptor. The ligated products were

used for cDNA synthesis, followed by acrylamide gel purification and PCR amplification to

generate small RNA library. The Agilent 2100 Bioanalyzer (Agilent, USA) was used for quantifi-

cation and qualification of the sample library. Finally, the library was sequenced using Illumina

HiSeq 4000 sequencing platform (Illumina Inc., San Diego, CA, USA).

Sequence data analysis

The raw reads obtained from Illumina sequencing were processed by trimming low-quality

reads, reads with 5’ adapter contaminants, reads without 3’ adapters, reads without an insert

fragment, reads containing poly A, and reads shorter than 18 nt. Other RNAs (rRNA, tRNA,

snRNA and snoRNA) were removed by blasting against the GenBank database (http://blast.

ncbi.nlm.nih.gov) and the Rfram database (http://rfam.xfam.org/). The remaining clean reads

were used to detect conserved and novel miRNAs.

The reads obtained by RNA-seq sequencing were filtered by adaptor sequences, duplication

sequences, and low quantity reads. De novo transcriptome assembly was performed by Trinity

[25]. The Trinity program first assembles reads of a certain length that overlap to form longer

fragments without gaps called contigs. These contigs were further processed for sequence clus-

ters using the sequence clustering software TGICL [26] to obtain unigenes that could no longer

be extended on either end. The sequence dataset generated in this study is available at the

sequence read archive (SRA) of National Center for Biotechnology Information (NCBI) under

the accession numbers of SUB2752327 and SUB2754679.

Identification of the conserved and putative novel miRNAs

The clean data were used in a BLAST search against known plant miRNAs in the miRBase

21.0, and matched sequences were considered as conserved V. album miRNAs. The small

RNAs that were unaligned to any databases were defined as unannotated sequences.

miRNAs of Viscum album L.
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The novel miRNAs were identified by mapping unannotated sequences to the V. album
transcriptome using Mireap software (http://sourceforge.net/projects/mireap/). The parame-

ters setting for the identification of novel miRNA were: 1) the sequences used to predict novel

miRNAs were from the unannotated sequences that were matched to the transcriptome of V.

album; 2) The sequences and their structures satisfy the criteria of forming hairpin miRNAs,

and that the mature miRNAs were present in one arm of the hairpin precursors; 3) Hairpin

precursors did not contain large internal loops or bulges; 4) Secondary structures of hairpins

had free energy of hybridization�−18kcal/mol; and 5) The number of mature miRNAs with

predicted hairpins were� 5 in the alignment result [27]. The novel miRNAs were named

using a “miR” prefix to denote miRNAs, a three-letter prefix to denote the species (e.g. “val”

representing V. album) and a unique sequential number [1].

Plant targets prediction for both conserved and novel miRNAs

The V. album conserved and novel miRNA candidates were searched against the V. album
transcriptome database using psRobot (http://omicslab.genetics.ac.cn/psRobot/) and Target-

Finder (http://targetfinder.org/) with default parameters to identify potential miRNA target

genes. The target candidates were searched against protein database Nr using BLASTX with E-

values less than e-5 to predict their possible functions. To classify the function distribution of

these potential targets, Gene Ontology (GO) annotation and functional classification were

conducted using Blast2GO and WEGO [28,29].

Human target gene prediction for the novel miRNAs

The novel miRNAs are unique to V. album and differ from those found in other plant species,

and might be responsible for the unique medicinal value of V. album. These novel miRNAs

were therefore used for human targets prediction. In addition, to minimize false positives, the

novel miRNAs were further filtered with following conditions: (1) the maximal free energy

allowed for the miRNA precursor was -30kcal/mol; (2) the length of precursors were no more

than 200nt; (3) the reads for mature miRNAs were at least 20. The human mRNA sequence

were download from the UCSC genome browser (http://hgdownload.soe.ucsc.edu/goldenPath/

hg19/bigZips/refMrna.fa.gz). Four commonly used animal target prediction algorithms includ-

ing TargetScan, miRanda, PITA, and RNAhybrid were employed to predict putative human

genes, and only those identified by all four softwares were selected for further study [30–33].

The target genes were mapped to the KEGG database to identify significantly enriched meta-

bolic pathways or signal transduction pathways in target genes compared with the whole

genome background. A corrected p value<0.05 was set as the threshold.

Real-time quantitative PCR

Five conserved and five novel miRNAs were randomly selected and validated by stem-loop

RT-PCR as previously described by Chen et al. [34]. The stem-loop primers for reverse tran-

scription and primers for PCR were listed in S1 Table. First-strand cDNA synthesis was

performed using TaqMan MicroRNA Reverse Transcription Kit (Thermo Scientific). The

reaction was carried out at 16˚C for 30min, at 42˚C for 10min, followed by heat-inactivation at

85˚C for 5min.

Quantitative real-time PCR was conducted using the PowerUp™ SYBR1 Green Master Mix

(Thermo Scientific) and PikoReal Real-Time PCR System (Thermo Scientific). The reactions

were carried out under the following amplification conditions: activation at 50˚C for 2min,

95˚C for 2min, followed by 40 cycles of denaturation at 95˚C for 15s, annealing at 55˚C for

15s, and extension then at 72˚C for 30s. All reactions were performed in three independent

miRNAs of Viscum album L.
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biological samples with three technical repeats. The melting curve was generated to test the

specificity of PCR products and avoid the false-positive peaks. No template control and no

reverse transcription control were included in all reactions.

Results

Analysis of small RNA

In total, 76357334 raw reads were initially obtained. After data processing, 73552622 clean

reads (96.33% of all raw reads) were kept for subsequent analysis. As shown in Fig 1, the clean

reads exhibited an uneven length distribution, with the majority (~85%) ranging from 19 to

25nt in length. The most abundant was the small RNAs of 24nt, followed by those of 22, 21

and 20nt. In addition, 342263 (7.75%) unique small RNAs were mapped to the transcriptome

data of V. album. After annotating and removing the non-coding RNAs, including rRNAs,

tRNA, snRNAs and snoRNA, 33369 reads remained for the identification of conserved miR-

NAs, and 4306925 unannotated reads were used for the prediction of novel miRNAs (Table 1).

Fig 1. Length distribution of small RNAs from V. album.

https://doi.org/10.1371/journal.pone.0187776.g001

Table 1. Distribution of small RNAs among different categories of V. album.

Category Unique small RNAs Percent (%) Total small RNAs Percent (%)

total reads 4415441 100 73552622 100

matched reads* 342263 7.75 44727990 60.81

miRNA 33369 0.76 4245509 5.77

rRNA 58531 1.33 6860606 9.33

snRNA 2030 0.05 92161 0.13

snoRNA 1534 0.03 38977 0.05

tRNA 13052 0.30 1141541 1.55

unannotated 4306925 97.54 61173828 83.17

*The reads that matched to the V. album transcriptome.

https://doi.org/10.1371/journal.pone.0187776.t001
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Identification of conserved miRNAs in V. album

Evolutionarily conserved miRNAs are present in diverse plant species and play essential roles

in plant development and adaptation to adverse environments. The conserved nature of plant

miRNAs provides the possibility of finding homolog sequences of miRNAs in different plant

species. In this study, 699 conserved miRNAs were identified in V. album with a total read

number of 5511469, of which 44% were detected with more than 100 reads. The most abun-

dant miRNAs were miR166a-3p with 687103 reads, and miR166 with 673128 reads, followed

by miR9778 (614703 reads), miR4993 (539038 reads) and miR159a (486726 reads) (S2 Table).

Some miRNAs were lowly expressed with abundance of less than ten reads such as miR8004,

miR5799 and miR6296 (S2 Table).

Identification of putative novel miRNAs in V. album

To identify novel miRNA candidates in V. album, the unannotated small RNA sequences were

matched against the assembled unigene sequences of V. album. A total of 1373 miRNAs with

reads varied from 5 to 11875 were identified as novel miRNA candidates (S3 Table). The

length of novel miRNAs ranged from 20 to 23nt, and the precursors ranged from 50 to 372bp

in length, with an average of 178bp. The average minimum free energy (MFE) value obtained

for these pre-miRNAs was -58.7kcal/mol, which is comparable with the MEF values of precur-

sors for trifoliate orange (Citrus trifoliate L. Raf.) (-52.41kcal/mol) [35], Arabidopsis thaliana
L. (-57kcal/mol) [36], and Ginkgo biloba var. epiphylla Mak (-46.0kcal/mol) [37]. The first

nucleotide bias of these candidate miRNAs was common 5’ terminal uridine (U) nucleotide,

which is a typical feature of miRNAs [36,38]. The most abundant novel miRNA candidate was

val-miR218 with 11875 reads in V. album, followed by val-miR11 and val-miR1338. Only 4.9%

of novel miRNAs were counted more than 20 reads. Although the expression levels of novel

miRNA candidates were much lower than the conserved miRNAs, the species-specific func-

tions they played should not be ignored.

Experimental validation of conserved and novel miRNAs in V. album

Stem-loop RT-qPCR was employed to validate the gene expression data from Illumina

sequencing. As illustrated in Fig 2, miR166a-3p was the most abundant miRNA among

tested miRNAs, followed by miR159a, miR6135c, val-miR218, miR4414-3p, miR831-5p, val-

miR1017, val-miR832, val-miR633 and val-miR1087, respectively. The results from sequenc-

ing showed that miR166a-3p, miR159a, miR6135c, val-miR218, miR4414-3p, miR831-5p,

val-miR1017, val-miR832, val-miR633 and val-miR1087 with reads of 687103, 486726,

20440, 11875, 5752, 1099, 852, 736, 562 and 285, respectively (S2 and S3 Tables). The expres-

sion trend of tested miRNAs was consistent with the Illumina sequencing results, indicating

that the gene expression data of miRNAs by sequencing technique was reliable.

Bioinformatics prediction of V. album targets for miRNAs

Based on the V. album transcriptome, a total of 16188 and 17078 target genes were identified

for 593 conserved miRNAs and 1373 novel miRNAs, respectively (S4 Table). To evaluate the

putative functions, the targets were mapped to Nr database. Many of putative targets were

annotated as transcription factors that play important roles in plant growth and development,

such as TATA-binding protein (TBP)-associated factor 4 as a potential target of miR5246,

miR838-3p, val-miR314 and val-miR1299; transcription initiation factor TFIID as a target

of miR838-3p; basic leucine zipper (bZIP) transcription factors predicted to be targeted by

miR5380c, val-miR1128, val-miR 885, val-miR273 and val-miR331; MADS-box protein might

miRNAs of Viscum album L.
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be targeted by miR8130-5p, miR396e-3p, miR8168, miR477g, miR5293, miR5371-5p and val-

miR287.

Besides, some targets encoded proteins involved in stress responses, for example, heat shock

protein 70 as target of miR6425a-3p; WRKY transcription factor as target of miR5380c,

miR5298b and val-miR799; SNF7 family protein as target of miR477g, miR838-3p and val-

miR953; E3 ubiquitin-protein ligase COP1 as target of val-miR132. Other predicted targets

encode proteins associated with pollen tube development (val-miR284 for mitochondrial Rho

GTPase, val-miR111 for gamma-aminobutyrate transaminase), secondary metabolites synthesis

(miR172e-3p and val-miR632 for phenylalanine ammonia-lyase, miR5491, val-miR954 and val-

miR477 for omega-hydroxypalmitate O-feruloyl transferase) and immune response (miR8136,

val-miR360, val-miR260 and val-miR500 for silencing defective 1 family protein), indicating V.

album miRNAs may be involved in a broad range of physiological and pathological functions.

GO analysis assigned these putative targets into three main categories in terms of biology

processes, cellular components, and molecular functions (S5 Table). Based on biology pro-

cesses, these genes were classified into 23 categories, and the most three over-represented GO

terms were “cellular process”, “single-organism process” and “metabolic process”. Categories

based on cellular component revealed that these genes were related to 17 cellular parts, of

which they are mostly related to “cell”, “cell part” and “organelle”. Based on molecular func-

tion, the genes were classified into 14 categories, of which they are mostly involved in “bind-

ing” and “catalytic activity” and “transporter activity”.

Biosynthesis of bioactive components in V. album and their putative

regulatory miRNAs

Terpenoids are one of the main components of mistletoe. The lipophilic extract of V. album
that contained oleanolic acid, betulinic acid, ursolic acid and beta-amyrin acetate showed

Fig 2. RT-qPCR analysis of miRNAs in V. album. The expression level of val-miR1087 was set as control

and taken as 1, and the expression levels of other miRNAs were quantified relative to it. The values represent

the mean and standard deviation of three independent experiments.

https://doi.org/10.1371/journal.pone.0187776.g002
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potent anti-tumor effects [8, 39]. To date, the pathways involved in terpenoids biosynthesis as

well as the miRNAs that might regulate these pathways in V. album are still unclear. Terpenoid

precursors can be biosynthesized through the mevalonate (MVA) pathway and/or the methy-

lerythritol phosphate (MEP) pathway in different organisms [40,41]. In current study, most

enzymes involved in mevalonate pathway including acetyl-CoA C-acetyltransferase (AACT),

3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase, HMG-CoA reductase, mevalonate

kinase, phosphomevalonate kinase and diphosphomevalonate decarboxylase have been identi-

fied at transcriptome level (S6 Table). Meanwhile, the genes encoding all the enzymes of the

methylerythritol phosphate (MEP) pathway were present in V. album, including deoxyxylu-

lose-5-phosphate (DOXP) synthase, DOXP reductase, 4-diphosphocytidyl methylerythritol

(CDP ME) synthase, CDP ME kinase, methylerythritol cyclodiphosphate (MEcPP) synthase,

hydroxymethylbutenyl 4-diphosphate (HMBPP) synthase, HMBPP reductase. These findings

indicated that both MVA pathway and MEP pathway were involved in terpenoids backbone

biosynthesis in V. album.

The enzymes of MVA pathway including AACT, HMG-CoA synthase, HMG-CoA reduc-

tase and diphosphomevalonate decarboxylase were predicted to be targeted by miR5042-3p,

val-miR720; miR477g; miR6196, miR395o-3p, val-miR187; and miR5246, respectively. The

DOXP reductase in upstream processes of MEP pathways was predicted to be target of

miR8673. All of these aforementioned enzymes are involved in the biosynthesis of isopentenyl

diphosphate/dimethylallyl diphosphate, the precursors of the all the downstream end terpe-

noids. Additionally, some enzymes associated with the biosynthesis of sesquiterpenoid,

triterpenoid, monoterpenoid and diterpenoid might be targeted by miRNAs. For example,

miR3932b-5p; miR6451, miR9748; miR7820, miR8714, miR9748; miR5258, miR2106 might

be able to target beta-amyrin synthase, farnesol dehydrogenase, (+)-neomenthol dehydroge-

nase and ent-kaurene oxidase, respectively, which are responsible for catalyzing the generation

of common triterpene beta-Amyrin, sesquiterpenoid farnesol, monoterpenoid neomenthol

and diterpene ent-kaurene, respectively.

Mistletoe lectins (MLs) are complex molecules comprising both protein and carbohydrates

that are capable of binding to cells and inducing biochemical changes in cells. Three com-

monly known toxic lectins MLI, MLII, and MLIII are type II ribosome inactivating proteins

(RIPs), and have been reported to stimulate immune system and induce apoptosis in tumor

cells [11,42,43]. They share a common primary structure homology but differ in molecular

mass and carbohydrate specificity [44]. It was speculated that ML I-III might be encoded by

the same gene and process differently during post-translational modification [45]. The

sequences CL9238.Contig1 and CL9238.Contig2 are highly homolog to lectin I precursor

(99.11%) and lectin precursor (92.31%), respectively (Table 2), and might be responsible for

the encoding of ML I-III in V. album. A structurally unrelated chitin-binding mistletoe lectin

that consists of 49 amino acids has been characterized recently [46]. It is less toxic than ML

I-III [46]. This lectin shows complete identity (100%) with the protein encoded by Uni-

gene23246, indicating Unigene23246 might be the origin of chitin-binding mistletoe lectin.

Besides, two other lectins including Mannose/glucose-specific lectin and Curculin-like (man-

nose-binding) lectin were also identified in mistletoe, which might possess pharmacological

effects [47].

Viscotoxins are small proteins belonging to plant thionins, exhibiting cell-killing activity

and possible immune-stimulating activity [11,13,15]. To date, seven different isoforms of vis-

cotoxins have been characterized (A1, A1, A3, B, B2, C1 and 1PS), and they differ mainly in

their sequence of amino acids. The viscotoxin composition of V. album depends on its host

tree [8]. Consistent with a previous study [48], our results confirmed that viscotoxins A3 and

miRNAs of Viscum album L.
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viscotoxin B, which is probably encoded by CL146.Contig1 and CL10031.Contig1, were pres-

ent in V. album growing on Malus.
As for the potential regulatory miRNAs, only miR9748 and val-miR152 were predicted to

target Curculin-like (mannose-binding) lectin family protein and viscotoxin, respectively.

Bioinformatics prediction of human gene targets for V. album novel

miRNAs

Stringent filters were further applied for the novel miRNA candidates that might target human

genes. As listed in Table 3, novel miRNA candidates with more than 20 reads, precursors with

minimum free energy of less than -30kcal/mol, and precursors with length of no more than

200nt were considered as the most genuine novel miRNA candidates and were later used for

human target prediction.

As listed in Table 4, the putative human targets vary by different programs. TargetScan,

miRanda, PITA, and RNAhybrid predicted thousands of potential human genes for every

novel miRNA, while PITA predicted potential targets for 29 miRNAs, which was probably

caused by different algorithms and parameters used in different miRNA target prediction pro-

grams. It has been suggested that not a single program was consistently superior than the oth-

ers among current miRNA target prediction programs [49]. Based on the combination of the

methods, the intersection of 30697 potential genes with 59266 miRNA-target pairs were used

in subsequent bioinformatics analysis (S7 Table).

Molecular components often interact with each other in a complex reaction network to

perform certain biological functions. Pathway enrichment analysis identifies significantly

enriched metabolic pathways and signal transduction pathways in proposed targets comparing

with the whole genome background, which helps further elucidating genes biological func-

tions. The predicted targets were mapped to the KEGG database and categorized into 305

pathways of which 33 signaling pathways were significantly enriched (Table 5). Notably, these

highly enriched KEGG pathways are associated with some human diseases, especially cancer,

cardiovascular diseases and neurological disorders.

Five significant enriched signaling pathways are highly related to cancer including tran-

scriptional misregulation in cancer (ko05202), vascular endothelial growth factor (VEGF) sig-

naling pathway (ko04370), pathways in cancer (ko05200), pancreatic cancer (ko05212) and

non-small cell lung cancer (ko05223). Tumorigenesis is a multistep process involving a series

of genetic alterations [50]. Transcription factors play instrumental functions in driving these

Table 2. Genes involved in lectin and viscotoxin expressions and their putative regulatory miRNAs.

Gene name Accession no. Putative genes Identity E value miRNAs

lectin I precursor AAR25545.1 CL9238.Contig1 99.11% 0 NA

lectin precursor AAR25551.1 CL9238.Contig2 92.31% 3.73E-34 NA

Chitin-binding lectin P81859.1 Unigene23246 100% 1.78E-26 NA

Mannose/glucose-specific lectin family protein XP_006372325.1 Unigene7638 2.02E-27 NA

62.77%

Curculin-like (mannose-binding) lectin family protein XP_007021734.1 Unigene24650 5.98E-137 miR9748

54.77%

thionin precursor AAB29761.1 CL146.Contig4 96.49% 1.12E-60 NA

Viscotoxin-A3 AAB29759.1 CL146.Contig1 90.99% 2.01E-53 val-miR152

Viscotoxin-B P08943.2 CL10031.Contig1 85.15% 2.21E-47 NA

NA represents not available.

https://doi.org/10.1371/journal.pone.0187776.t002
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Table 3. Potential novel miRNAs from V. album used for human target prediction.

miRNA Reads Sequences ML(nt) PL(nt) MFE (kcal/mol)

val-miR218 11875 GAUGAUCGCCACGUCGGAGGA 21 119 -63.1

val-miR11 1436 CACUGUAGCACUUUUGACAAAG 22 85 -30.2

val-miR1338 1081 CGCAAGGACGUUAAUGAUGAU 21 143 -43.03

val-miR856 1021 UAAUGGUGCUGGUUCAUGAUCA 22 105 -56.41

val-miR718 882 UUUUGUCUUUGUAGCAUGCUU 21 161 -79.2

val-miR1017 852 UCCCACAUCGGACUUGAGGUC 21 189 -48.4

val-miR832 736 UAAGUUCCAGCUCUGACUACC 21 136 -49.9

val-miR457 565 UAGCCGGGUCUUCUUCAACGC 21 182 -74.77

val-miR633 562 UCAAUGAACUGGGUUGUGCCU 21 105 -53.3

val-miR1370 436 UUCAAUAAAGCUGUGGGAAG 20 98 -48.9

val-miR588 435 CGAUCUGAUAAUUCAAGAUUU 21 126 -50.4

val-miR539 366 UAAAGUCGUAGCAGGUGUCGA 21 131 -44.7

val-miR1087 285 GGGGAAUGACAACUGGGGACC 21 179 -97

val-miR944 278 UUUUUCUUGGUUGGCUUGGGU 21 156 -82.66

val-miR1048 267 CGGUGGAACCUGGCAGUGGG 20 64 -51

val-miR262 227 UUAAAUCCCUGGAUUGGUCUC 21 131 -63.1

val-miR765 201 CAGGAUGGAGAAGCAGGGCAC 21 146 -70.8

val-miR1052 181 CAAGACAUUACUGUGGGCUCC 21 117 -36.13

val-miR421 103 UUUCAGUAAGUGUUGUCGAAC 21 119 -30.4

val-miR885 103 UUGAUUUCAGGAAUAAUGCUC 21 104 -43.3

val-miR64 101 AGGGUGGAUGGAUCGGUGAGA 21 85 -43.7

val-miR790 93 UAGCCAAGGAUGACUUGCCUG 21 111 -54.6

val-miR648 84 UGUCUGAUUAGAACUCCACAGU 22 81 -31.6

val-miR333 80 AUGAUGUCGGAGUAUUUGGCA 21 85 -30

val-miR503 76 UCAUCAAUAUGUUGGUCUGA 21 149 -80

val-miR552 48 CAUUGGAUCUGUAAUUGGACC 21 150 -54

val-miR1306 40 CAAUGGAUGGCCGUCACGUCG 21 108 -68.61

val-miR269 36 GACUACGAUCGGAGGACCCGGG 22 142 -51.1

val-miR1328 33 CGAGAAUGUAGGUCAAGGGCAC 22 127 -39.8

val-miR1127 32 CCCACACUUGAAUGUCGGUG 20 170 -67.8

val-miR1110 28 CGGCGAGGCGAUCGGAGCUCCG 22 91 -46.8

val-miR855 27 GAACUACGUGGACUUUGAUCCU 22 129 -36.3

val-miR1086 26 UGCCCCGGGAUCGUCGAUGCC 21 141 -57.9

val-miR6 26 AUAUGUGAUGUCAAAUGGACC 21 148 -46.41

val-miR954 26 UCUUGGACUGCCGGCGAGCCU 21 130 -56.6

val-miR198 24 UGACGAUUGGGGACCAAAACU 21 148 -69.39

val-miR560 24 UCUCAGCAACUCUGAAUCUGC 21 180 -56.4

val-miR82 24 UGAUUGCUCUCACUCUGGCCU 21 178 -58.5

val-miR1342 23 ACCUUGACCCGUAGGGCUGCA 21 104 -33.39

val-miR92 22 AAGAUCAUGAUCCAAUAGGCCU 22 59 -36.5

val-miR550 21 UCUUUGGGUAUUAGGGGGGAC 21 117 -59.3

val-miR615 21 UUUCUGUCGGCAGCUCGAGGA 21 125 -42.5

val-miR163 20 GAUCGAGGAGUAAGUUAACU 20 197 -84.8

val-miR834 20 CGGCACUCGCGUCUCUGGCC 20 102 -34.6

ML: mature miRNA length; PL, precursor length; MFE, minimum free energy.

https://doi.org/10.1371/journal.pone.0187776.t003
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Table 4. Statistics of miRNA target predictions.

miRNA target prediction program miRNA number Target genes miRNA-target pairs

Targetscan 44 46555 581567

miRanda 44 36284 95353

PITA 29 48154 1009051

RNAhybrid 44 48354 1524020

Intersection 29 30697 59266

https://doi.org/10.1371/journal.pone.0187776.t004

Table 5. Highly enriched KEGG pathways for putative human targets.

Pathway terms Number of target genes Rich factor Qvalue Pathway ID

MAPK signaling pathway 793 0.795 7.71E-10 ko04010

Transcriptional misregulation in cancer 1866 0.755 1.89E-08 ko05202

Calcium signaling pathway 495 0.810 2.41E-08 ko04020

VEGF signaling pathway 271 0.850 2.43E-08 ko04370

ECM-receptor interaction 365 0.824 6.91E-08 ko04512

Purine metabolism 1684 0.750 8.92E-07 ko00230

Glutamatergic synapse 312 0.823 9.30E-07 ko04724

Focal adhesion 692 0.773 1.37E-05 ko04510

Neurotrophin signaling pathway 421 0.794 1.52E-05 ko04722

Pyrimidine metabolism 1488 0.746 4.01E-05 ko00240

Measles 309 0.794 4.00E-04 ko05162

Morphine addiction 219 0.808 7.92E-04 ko05032

GnRH signaling pathway 273 0.796 7.92E-04 ko04912

Phosphatidylinositol signaling system 229 0.801 1.49E-03 ko04070

Arginine and proline metabolism 404 0.774 1.57E-03 ko00330

Type II diabetes mellitus 188 0.810 1.57E-03 ko04930

Axon guidance 440 0.769 1.91E-03 ko04360

GABAergic synapse 214 0.799 2.69E-03 ko04727

Pathways in cancer 874 0.746 3.37E-03 ko05200

Herpes simplex infection 407 0.768 3.71E-03 ko05168

Retrograde endocannabinoid signaling 230 0.785 9.05E-03 ko04723

Glycosaminoglycan biosynthesis—chondroitin sulfate 40 0.909 1.20E-02 ko00532

Alanine, aspartate and glutamate metabolism 93 0.830 1.47E-02 ko00250

Influenza A 448 0.755 1.69E-02 ko05164

Amphetamine addiction 246 0.776 1.69E-02 ko05031

Leishmaniasis 174 0.791 1.70E-02 ko05140

Fc epsilon RI signaling pathway 211 0.781 1.76E-02 ko04664

B cell receptor signaling pathway 252 0.771 2.64E-02 ko04662

Pancreatic cancer 195 0.780 2.83E-02 ko05212

beta-Alanine metabolism 226 0.771 3.70E-02 ko00410

Nicotine addiction 86 0.819 3.73E-02 ko05033

Toxoplasmosis 267 0.763 4.63E-02 ko05145

Non-small cell lung cancer 147 0.786 4.63E-02 ko05223

Rich factor represents the ratio of the number of predicted genes and the number of all genes in the pathway.

https://doi.org/10.1371/journal.pone.0187776.t005
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gene expressions, whereas misregulation of transcription factors can cause the acquisition of

tumor-related properties [51]. For example, runt related transcription factor 1 (RUNX1) and

lysine methyltransferase 2A (MLL1) are essential for chromosomal translocations in acute

myeloid leukemia [52,53], which were predicted as targets of val-miR1086, val-miR765, val-

miR615; and val-miR834 val-miR765, val-miR550, val-miR1127, val-miR954, val-miR1086,

val-miR421, respectively. It is well known that the tumor protein p53 is a major tumor sup-

pressor, and the mutation of p53 can provoke tumor imitation [54]. The miRNAs such as val-

miR1086 and val-miR1127 were predicted to regulate the expression level of p53. By targeting

these genes associated with transcriptional misregulation in cancer, these novel miRNA candi-

dates may prevent cancer initiation and progression. Angiogenesis induction is one of the

major hallmarks of cancer. It is generally accepted that VEGF is a major driver of the angio-

genic process in physiological and pathological processes. VEGF and its receptors are often

found overexpressed in tumors [55,56]. Suppression of the essential molecules in VEGF signal-

ing pathway, such as phospholipase C gamma 1 (PLCG1) possibly targeted by val-miR615 and

val-miR1086, tyrosine-protein kinase Src possibly targeted by val-miR834 and val-miR1086,

may block the angiogenic activity of tumor tissue, resulting in tumor vascular regression and

anti-tumor effects.

Diabetes mellitus is one of the most prevalent metabolic disorders. It is characterized by

hyperglycemia, and long-term hyperglycemia may lead to systemic complications, such as

macrovascular diseases, coronary artery disease, peripheral arterial disease and stroke [57].

Insulin receptor (INSR) dysregulation is a well-established defect in type II diabetes mellitus

(ko04930). Mitogen-activated protein kinase 1(ERK) and inhibitor of nuclear factor kappa B

kinase (IKK) are serine kinases that can directly inactivate insulin receptor substrate (IRS)

through serine phosphorylation, and impair insulin sensitivity [58,59]. The putative inhibition

of ERK and IKK by val-miR615 and val-miR834 might restore the impaired INSR singling.

Calcium is a critical mediator of excitation–contraction coupling in cardiac cells, and cellular

calcium signaling dysfunction is central to the pathophysiology of a wide range of cardiac dis-

eases [60]. Based on computational analysis, a range of key molecules in calcium signaling

pathway (ko04020) were targeted by mistletoe miRNAs, for example, calcium voltage-gated

channels (CaV1, CaV2 and CaV3) were mutual putative targets of val-miR1086 and val-

miR765, calcineurin (CaN) was predicted to be target by val-miR765 and val-miR1110.

Through regulation of these potential therapeutic targets [61,62], mistletoe miRNAs might be

responsible for its cardiovascular protective effect.

It is noteworthy that the putative human genes targeted by mistletoe miRNAs were also

involved in several pathways associated with the nervous system, such as neurotrophin signal-

ing pathway (ko04722), morphine addiction (ko05032), glutamatergic synapse (ko04724),

GABAergic synapse (ko04727), axon guidance (ko04360), amphetamine addiction (ko05031)

and nicotine addiction (ko05033). Mistletoe had been beneficial for the treatment of epilepsy,

depression, sleep disorders and labour-pain in middle ages [63], however, since deficiency of

scientific evidence, mistletoe preparations are not applied for neurological diseases in modern

medicine. Based on our bioinformatics prediction, mistletoe novel miRNAs might target

critical neurotransmitter receptors and neurotransmitter transporters, such as gamma-amino-

butyric acid type B receptor (GABAB) as a putative target of val-miR1086; glutamate metabo-

tropic receptors (mGluRs) as putative targets of val-miR1342, val-miR954, val-miR550, val-

miR560, val-miR765, val-miR1086, val-miR550, val-miR1328; dopamine transporter (DAT) as

a putative target of val-miR765 and val-miR1110. It is possible that mistletoe miRNAs could

influence neurotransmission by affecting transport of neurotransmitters including GABA, glu-

tamic acid and dopamine, which might explain the traditional use of mistletoe to treat epilepsy,

insomnia and other neurological disorders. One critical concern regarding treatment of
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neurological diseases is the blood-brain barrier that represents a problem to any therapy

involving systemic delivery of oligonucleotides [64]. Recent publications indicated that exo-

somes could transfer across blood-brain barrier, serving as an efficient vehicle to deliver miR-

NAs to the recipient neurocytes [65–67]. Therefore, with the assistance of plant- or animal-

derived molecules or nanoparticles such as exosomes, mistletoe miRNAs might reach nervous

system and exert its function.

Interestingly, it is recorded that mistletoe has been used by North American Indians to

treat measles and dog bites [68], indicating the antiviral potential of mistletoe. Indeed, the

predicted targets were involved in several virus and parasitic infections including measles

(ko05162), herpes simplex infection (ko05168), influenza A (ko05164), leishmaniasis

(ko05140) and toxoplasmosis (ko05145). Specifically, Toll-like receptors that are sentinel

receptors of the host innate immune system to detect the presence of microbial infection

[69], were predicted to be targeted by val-miR765 and val-miR1328. Furthermore, val-

miR1086 and val-miR954 might target TNF receptor (TNFR) and interferon gamma recep-

tor (IFNGR), and thus prevent overexuberant inflammatory response. Although mistletoe is

not used for pathogenic diseases nowadays, the antiviral potential of mistletoe might be

recognized.

Discussion

Endogenous microRNAs (miRNAs) are a class of single-stranded non-coding RNA molecules

of approximately 22 nucleotides that play crucial roles in gene expression. In mammals, an

estimated 60% of all protein-coding genes may contain miRNA binding sites [3,4]. MiRNA

dysregulation is frequently associated with human diseases such as cancer, cardiovascular dis-

eases, central nervous system diseases and metabolic disorders [70,71]. To date, miRNA-based

novel therapeutics have been developed for the treatment of human diseases, and several pre-

clinical studies on therapeutic miRNA replacement have been initiated [72,73], indicating

miRNA-based therapeutics are coming of age.

Herbal medicine is globally accepted as a valid alternative system of therapy. Though

ancient medical treatises have documented a large number of medicinal plants, their bioactive

constituents and corresponding interactions with human have not been comprehensively

characterized. New plant bioactive molecules are being discovered. In recent years, regulation

of human genes by plant miRNAs has attracted great attention. Rice miRNAs were suggested

to enter mammalian bloodstream and have a functional role in human metabolism [5]. The

MIR2911 from honeysuckle were found to target influenza viruses and protect mice from

influenza [6]. Plant derived miR159 significantly suppressed breast cancer cell proliferation by

targeting transcription factor 7 (TCF7) [74]. Oral application of a cocktail that consisted of

plant-based tumour suppressor miRNAs was able to reduce tumour burden in mice [75].

These studies indicate that miRNAs derived from plants may function as bioactive constitu-

ents to regulate human health.

V. album is a European medicinal plant surrounded by legends and myths. It has been

used in folk medicine for the treatment of cancer, cardiovascular disease, and other symp-

toms. In modern medicine, V. album has been mainly used as an anti-tumor therapy, which

is attributed to the anti-cancer and immune stimulating activities of its bioactive components

including viscotoxins, lectins and terpenoids. However, the active ingredients that might be

responsible for its cardiovascular protective effects as well as other beneficial applications

remain to be clarified.

Here we propose that miRNAs in V. album might serve as an independent category of

active ingredients and provide beneficial effects for human consumers. Since V. album genome
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information is limited, we conducted RNA-seq and sRNA-seq to identify and characterize the

conserved and possibly novel miRNAs from V. album. Bioinformatics tools have been applied

to understand their possible functions in plant biological processes and potential roles in

human gene regulation.

By using high-throughput sequencing technology, a total of 699 conserved miRNAs and

1373 novel miRNAs with a length of 21–24 nt have been identified from V. album. The reli-

ability of the sequencing data was confirmed by qRT-PCR. In V. album, these miRNAs were

involved in various biological processes including plant growth, development, signal trans-

duction and stress responses. Transcription factors are involved in important plant develop-

mental processes. The MADS-box transcription factors are crucial for floral development

[76], and might be controlled by several miRNAs such as miR8130-5p, miR396e-3p and

miR8168. WRKY transcription factors are involved in various plant processes, especially in

coping with diverse biotic and abiotic stresses [77], and were predicted to be targeted by

miR5380c, miR5298b and val-miR799. One miRNA could target several transcription

factors, such as miR838-3p was predicted to target TBP-associated factor and TFIID;

miR5380c might target bZIP transcription factors and WRKY transcription factors, indicat-

ing their multiple roles in plant processes. Besides, the annotated targets involved in various

metabolic processes, stimulus response, catalytic activity, and other biological process

were also predicted, suggesting that miRNAs play essential roles in plant growth and

development.

Mistletoe lectins and viscotoxins are pharmaceutical proteins present in V. album, and

they have been considered to be mainly responsible for the anti-tumor activity of V. album.

Previous studies have isolated and identified lectins and viscotoxins from mistletoe at protein

level [44,46,78,79]. In this study, the expressions of these bioactive components were con-

firmed at transcriptome level. ML I-III might be translated from CL9238.Contig1 and/or

CL9238.Contig2, while Unigene23246 probably encodes chitin-binding mistletoe lectin.

However, the miRNAs that might target CL9238.Contig1, CL9238.Contig2 and Uni-

gene23246 were not identified in our study. It has been reported that the amount of MLs in

the leaves of V. album showed maximum in December [80]. It is possible that at this time,

their corresponding regulatory miRNAs are too low to be detected. Mannose/glucose-specific

lectin and curculin-like (mannose-binding) lectin, which differ from known mistletoe lectins

(ML I-III and chitin-binding lectin), have been newly identified from mistletoe. However,

the expression and bioactivities of these two newly identified mistletoe lectins need to be fur-

ther validated.

For viscotoxins, CL146.Contig1, which is highly homologous to Viscotoxin-A3 (90.99%),

was predicted to be target of val-miR152. However, no miRNAs were identified to target

CL10031.Contig1 and CL146.Contig4, which were annotated as Viscotoxin-B and thionin pre-

cursor, respectively. Except through post-transcriptional regulation by miRNAs, the expres-

sions of viscotoxins might as well be controlled by transcriptional regulation.

The pharmacological properties of V. album also attributed to the presence of triterpene

acids, especially oleanolic acid, betulinic acid and ursolic acid, which have been reported to

enhance the toxicity of mistletoe lectins in tumor cells [39,42]. The biosynthesis of terpenoids

in V. album has not yet been elucidated. Our study identified majority of genes encoding

enzymes that involved in both MVA pathway and MEP pathway, indicating terpenoids biosyn-

thesis in V. album was via both pathways. The compounds isopentenyl pyrophosphate (IPP)

and dimethylallyl pyrophosphate (DMAPP), produced in upstream pathway, are the common

precursors for all the downstream end terpenoids. The miRNAs such as miR5042-3p, miR477g

and miR6196 that predicted to target the upstream enzymes, might be involved in the regula-

tion of IPP and DMAPP levels. Some putative targets of miRNAs were downstream enzymes
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in mono-, sesqui, di-, and triterpenoid biosynthetic pathways, such as beta-amyrin synthase,

farnesol dehydrogenase, neomenthol dehydrogenase and ent-kaurene oxidase might be tar-

geted by miR3932b-5p; miR6451, miR9748; miR7820, miR8714, miR9748; miR5258, miR2106,

respectively.

Bioinformatics predictions have been employed to identify the potential human targets of

plant miRNAs. Seven miRNAs from medicinal plant Moringa oleifera L., have been predicted

to involve in cell cycle, apoptosis and metabolic regulation in humans [81]. Approximately 50

human target genes associated with energy metabolism, lipoprotein metabolism, and other

biological process have identified as the target genes of a rice miRNA (MIR168a) [5]. In this

study, bioinformatics tools were applied to identify the putative human target genes of 44

V. album specific miRNAs. A huge number of 30697 putative genes were predicted and then

mapped to the KEGG database to find their roles in human metabolism and human diseases.

A total of 14995 putative targets were highly enriched in 33 KEGG pathways. Among them,

five pathways were highly related with cancer including transcriptional misregulation in can-

cer (ko05202), VEGF signaling pathway (ko04370), pathways in cancer (ko05200), pancreatic

cancer (ko05212), non-small cell lung cancer (ko05223), while Type II diabetes mellitus

(ko04930) and calcium signaling pathway (ko04020) were associated with cardiovascular and

metabolism diseases. By targeting essential molecules involved in these pathways, V. album
specific miRNAs might possess pharmaceutical effects against cancer, cardiovascular and

metabolism diseases, which might provide scientific support for the folk and clinic use of

mistletoe.

The use of mistletoe for the treatment of neurological disorders and infections has been

recorded in ancient times. However, since there is no scientific evidence explaining its effects,

mistletoe is not used for these purposes in modern medicine. Interestingly, bioinformatics

predictions showed that some of the putative targets relate to several neurological pathways,

including neurotrophin signaling pathway (ko04722), morphine addiction (ko05032), gluta-

matergic synapse (ko04724), GABAergic synapse (ko04727), axon guidance (ko04360),

amphetamine addiction (ko05031) and nicotine addiction (ko0533). Some infections related

pathways such as measles (ko05162), herpes simplex infection (ko05168), influenza A

(ko05164), leishmaniasis (ko05140) and toxoplasmosis (ko05145) were also highly enriched.

These findings might provide an explanation for the traditional medicine use of mistletoe in

middle ages, and inspire the modern medicine use of mistletoe.

Experimental validation of predicted plant miRNA-human mRNA interaction is necessary

in upcoming investigations. However, a series of questions remain to be answered. Would

herbal miRNAs be stable during herbal preparation and human digestion process? Would

herbal miRNAs be selectively absorbed by the human gastrointestinal tract? How would plant

miRNAs be recognized by human cells? How would plant miRNAs be loaded into mammalian

RNA Induced Silencing Complex (RISC), in which the miRNAs exert their function together

with Argonaute proteins? Our study implied that medicinal plant specific miRNAs might con-

tribute to their corresponding pharmaceutical effects, and our next step would be to focus on

the detection of herbal miRNAs in various herbal preparations, evaluation of the capability of

herbal miRNAs to transfer intestinal barriers, and investigation of their intracellular fate in

human cells.

In summary, this study comprehensively identified the miRNAs from medicinal plant

V. album, and characterized the genes and their potential regulatory miRNAs for the synthesis

of bioactive components such as viscotoxins, lectins and terpenoids, helping to develop a

deeper understanding of biosynthesis of active ingredients in mistletoe. Computational predic-

tions indicated the anti-tumor potential, cardiovascular protective and neurological protective
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effects of V. album specific miRNAs, and initiated further investigation to elucidate the regula-

tory function of plant miRNAs in human health and diseases.
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21. Tenorio FA, del Valle L, González A, Pastelı́n G. Vasodilator activity of the aqueous extract of Viscum

album. Fitoterapia 2005; 76: 204–209 https://doi.org/10.1016/j.fitote.2004.12.013 PMID: 15752631

22. Radenkovic M, Ivetic V, Popovic M, Brankovic S, Gvozdenovic L. Effects of Mistletoe (Viscum Album

L., Loranthaceae) Extracts on Arterial Blood Pressure in Rats Treated with Atropine Sulfate and Hexo-

cycline. Clin Exp Hypertens 2009; 31: 11–19 https://doi.org/10.1080/10641960802409820 PMID:

19172455

23. Radenkovic M, Ivetic V, Popovic M, Mimica-Dukic N, Veljkovic S. Neurophysiological effects of mistle-

toe (Viscum album L.) on isolated rat intestines. Phyther Res 2006; 20: 374–377

24. Choudhary MI, Maher S, Begum A, Abbaskhan A, Ali S, Khan A, et al. Characterization and antiglyca-

tion activity of phenolic constituents from Viscum album (European Mistletoe). Chem Pharm Bull

(Tokyo) 2010; 58: 980–982

miRNAs of Viscum album L.

PLOS ONE | https://doi.org/10.1371/journal.pone.0187776 November 7, 2017 17 / 20

https://doi.org/10.1101/gr.082701.108
http://www.ncbi.nlm.nih.gov/pubmed/18955434
https://doi.org/10.4103/0973-029X.140762
http://www.ncbi.nlm.nih.gov/pubmed/25328304
https://doi.org/10.1055/s-0042-108450
http://www.ncbi.nlm.nih.gov/pubmed/27272400
https://doi.org/10.1371/journal.pone.0159749
http://www.ncbi.nlm.nih.gov/pubmed/27589063
https://doi.org/10.1155/2012/501796
https://doi.org/10.1155/2012/501796
http://www.ncbi.nlm.nih.gov/pubmed/23133496
http://www.ncbi.nlm.nih.gov/pubmed/12027898
http://www.ncbi.nlm.nih.gov/pubmed/12241983
https://doi.org/10.1080/14786419.2015.1022776
http://www.ncbi.nlm.nih.gov/pubmed/25813519
https://doi.org/10.1016/j.jep.2004.12.033
http://www.ncbi.nlm.nih.gov/pubmed/15763369
https://doi.org/10.14744/AnatolJCardiol.2016.6780
https://doi.org/10.14744/AnatolJCardiol.2016.6780
http://www.ncbi.nlm.nih.gov/pubmed/27443473
http://www.ncbi.nlm.nih.gov/pubmed/10967490
https://doi.org/10.1186/s12906-016-1229-3
http://www.ncbi.nlm.nih.gov/pubmed/27465545
https://doi.org/10.1016/j.fitote.2004.12.013
http://www.ncbi.nlm.nih.gov/pubmed/15752631
https://doi.org/10.1080/10641960802409820
http://www.ncbi.nlm.nih.gov/pubmed/19172455
https://doi.org/10.1371/journal.pone.0187776


25. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome

assembly from RNA-Seq data without a reference genome. Nat Biotechnol 2011; 29: 644–652 https://

doi.org/10.1038/nbt.1883 PMID: 21572440

26. Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, et al. TIGR Gene Indices clus-

tering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 2003;

19: 651–652 PMID: 12651724

27. Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, et al. Criteria for Annotation of

Plant MicroRNAs. PLANT CELL ONLINE 2008; 20: 3186–3190

28. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for anno-

tation, visualization and analysis in functional genomics research. Bioinformatics 2005; 21: 3674–3676

https://doi.org/10.1093/bioinformatics/bti610 PMID: 16081474

29. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, et al. WEGO: a web tool for plotting GO annotations.

Nucleic Acids Res 2006; 34: W293–7 https://doi.org/10.1093/nar/gkl031 PMID: 16845012
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