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Abstract

Purpose

To determine if the radiomic features on CT can predict progression-free survival (PFS) in

epidermal growth factor receptor (EGFR) mutant adenocarcinoma patients treated with

first-line EGFR tyrosine kinase inhibitors (TKIs) and to identify the incremental value of

radiomic features over conventional clinical factors in PFS prediction.

Methods

In this institutional review board–approved retrospective study, pretreatment contrast-

enhanced CT and first follow-up CT after initiation of TKIs were analyzed in 48 patients (M:F =

23:25; median age: 61 years). Radiomic features at baseline, at 1st first follow-up, and the

percentage change between the two were determined. A Cox regression model was used to

predict PFS with nonredundant radiomic features and clinical factors, respectively. The incre-

mental value of radiomic features over the clinical factors in PFS prediction was also assessed

by way of a concordance index.

Results

Roundness (HR: 3.91; 95% CI: 1.72, 8.90; P = 0.001) and grey-level nonuniformity (HR:

3.60; 95% CI: 1.80, 7.18; P<0.001) were independent predictors of PFS. For clinical factors,

patient age (HR: 2.11; 95% CI: 1.01, 4.39; P = 0.046), baseline tumor diameter (HR: 1.03;

95% CI: 1.01, 1.05; P = 0.002), and treatment response (HR: 0.46; 95% CI: 0.24, 0.87; P =

0.017) were independent predictors. The addition of radiomic features to clinical factors sig-

nificantly improved predictive performance (concordance index; combined model = 0.77,

clinical-only model = 0.69, P<0.001).
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Conclusions

Radiomic features enable PFS estimation in EGFR mutant adenocarcinoma patients treated

with first-line EGFR TKIs. Radiomic features combined with clinical factors provide significant

improvement in prognostic performance compared with using only clinical factors.

Introduction

Lung cancer is the leading cause of cancer death worldwide and non-small cell lung cancer

(NSCLC) is the largest subgroup, occupying about 85% of cases [1]. The prognosis of NSCLC

still remains poor with no more than a 10-month median overall survival rate with conven-

tional chemotherapy [2]. Several molecular-targeted agents, including epidermal growth factor

receptor (EGFR) tyrosine kinase inhibitors (TKIs), have emerged in the recent decades along

with the concept of personalized medicine. Large-scale clinical trials have repeatedly shown

the benefits of EGFR TKI in EGFR mutation-positive NSCLC patients [2]. For example, the

OPTIMAL study compared erlotinib with chemotherapy as a first-line treatment in Asian

patients which demonstrated that EGFR TKI could significantly prolong progression-free sur-

vival (PFS) (median PFS 13.1 months versus 4.6 months) [3].

Despite their dramatic initial responses and prolonged survival, all of the patients eventually

developed resistance to EGFR TKI [1]. The median PFS after treatment with a first-generation

EGFR TKI in patients with EGFR mutations is typically less than one year [1]. Thus, prediction

of PFS in these patients is significant as the predicted survival before the initiation of therapy

may guide the aggressiveness of treatment, or may help to prepare for additional treatment

options, at the estimated time of acquiring resistance.

Prediction of treatment responses and survival rates, based on images from patients receiv-

ing EGFR TKI, has been investigated by several researchers [4–10]. They reported the utility of

quantitative parameters of positron emission tomography (PET) or computed tomography

(CT) in depicting patient prognosis. Recently, radiomic approaches, which analyze the gray

level of pixels and their spatial distribution with high-throughput feature extraction, have been

suggested and a few studies have shown compelling evidence for the potential of this method

in NSCLC patients [5, 11–15]. However, the prognostic implication of CT radiomic features in

a homogeneous set of patients with adenocarcinoma and EGFR-sensitizing mutations has yet

to be described.

Therefore, we aimed to determine if the radiomic features on CT images at baseline and

first follow-up, or the percentage change between baseline and first follow-up, can predict PFS

in EGFR-mutant adenocarcinoma patients treated with first-line EGFR TKIs. We also sought

to identify the incremental value of radiomic features over conventional clinical factors in PFS

estimation.

Materials and methods

This retrospective analysis was approved by the institutional review board of Seoul National

University Hospital (IRB No. 1609-060-791) with waivers of informed consent from involved

patients as the data were analyzed retrospectively and anonymously.

Study population

We retrospectively reviewed a consecutive database of NSCLC patients and identified 415

patients who were treated with first-line EGFR TKIs (gefitinib or erlotinib) until disease
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progression from October 2005 to April 2015 [10, 16–19]. Among these patients, the study

population was determined based on the following criteria: patients with 1) biopsy-confirmed

EGFR-mutant adenocarcinoma, 2) at least one measurable lung lesion (�10mm), 3) contrast-

enhanced chest CT scans taken prior to (baseline) and after EGFR TKIs (first follow-up), 4)

CT scans reconstructed with filtered back projection, and 5) CT scans of 2.5–3mm slice thick-

ness (the routine follow-up CT protocol of our institution is comprised of 2.5 or 3mm thick-

nesses). CT scans reconstructed with iterative reconstruction algorithms were excluded as

iterative reconstruction may increase the variability of radiomic features [20]. Patients were

excluded if they had lesions with adjacent atelectasis or consolidation which could impede

proper tumor segmentation.

The inclusion and exclusion criteria yielded 48 patients for analysis (Fig 1). There were 23

men (median age, 65 years; range, 42–85 years) and 25 women (median age, 61 years; range,

38–85 years). 46 patients were treated with gefitinib and two patients received erlotinib. The

median interval between the baseline (before TKI initiation) and first follow-up CT was 9.6

weeks (interquartile range, 7.9–11.0 weeks). Detailed patient characteristics, including clinical

prognostic factors and TKI treatments, are described in Table 1.

CT image acquisition

CT scans were performed with six different scanners from three manufacturers. All patients

underwent contrast-enhanced CT scans from lung apex to base at suspended maximum inspi-

ration. Detailed information regarding the scanning protocols can be found in S1 Protocol.

In addition, a separate CT dataset of solid pulmonary nodule from 43 patients was prepared

to analyze inter-reader intraclass correlation coefficients (ICCs) of radiomic features. CT

examinations were performed using a 64-detector row Definition scanner at full inspiration

state. Detailed scanning parameters are also described in S1 Protocol.

Clinical factors and PFS

Patient age, sex, stage (according to the 7th edition of The American Joint Committee on Cancer
Staging Manual), smoking status, Eastern Cooperative Oncology Group (ECOG) Performance

Status Score (PS), presence of extrathoracic metastasis, and EGFR sensitizing mutation were

Fig 1. Flow chart of patient selection including inclusion, and exclusion, criteria.

https://doi.org/10.1371/journal.pone.0187500.g001

Radiomics for prognosis prediction in lung adenocarcinoma patients treated with EGFR TKI

PLOS ONE | https://doi.org/10.1371/journal.pone.0187500 November 3, 2017 3 / 13

https://doi.org/10.1371/journal.pone.0187500.g001
https://doi.org/10.1371/journal.pone.0187500


recorded from electronic medical records. Baseline tumor size, before EGFR TKI initiation

and tumor size at first follow-up were also obtained. Tumor size (longest diameter) was mea-

sured on an axial plane of CT image using electronic caliper. In addition, treatment response

of patients assessed at first follow-up CT was also recorded. Patients were classified into either

responders (complete or partial remission) or nonresponders (stable or progressive disease)

based on Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 criteria [21].

Lastly, PFS was measured from the date of EGFR TKI therapy initiation until the date of pro-

gression (or any cause of death).

Radiomic feature extraction

Nodule segmentation was processed as follows: First, digital imaging and communications in

medicine (DICOM) files were transferred from the picture archiving and communication sys-

tem (PACS) to a personal computer and then loaded to an in-house software program (Medi-

cal Imaging Solution for Segmentation and Texture Analysis) [22–26]. This in-house software

program was implemented using dedicated C++ language with Microsoft Foundation Classes

(Microsoft, Redmond, WA). The tumor boundary was segmented manually with freehand

Table 1. Patient characteristics, clinical factors, and TKI treatment.

Characteristics Category Value

Median age (year) 61 (38–85)

Sex Male 23 (47.9)

Female 25 (52.1)

Stage IIIB 2 (4.2)

IV 46 (95.8)

Smoking status Current or ex-smoker 22 (45.8)

Never smoker 26 (54.2)

ECOG PSa 0 1 (2.1)

1 33 (68.8)

2 2 (4.2)

Extrathoracic metastasis Absent 17 (35.4)

Present 31 (64.6)

Tumor diameter at baseline (mm)b 30.5 (10.0–78.2)

Tumor diameter at first follow-up (mm)b 22.4 (6.2–64.6)

Sensitizing EGFR mutation Exon 18 G719 1 (2.1)

Exon 19 deletion 18 (37.5)

Exon 21 L858R 29 (60.4)

EGFR TKI Gefitinib 46 (95.8)

Erlotinib 2 (4.2)

Treatment response at first follow-up Responder 25 (52.1)

Non-responder 23 (47.9)

Progression-free survival (month)c 9.7 (5.0–13.8)

Note: Unless otherwise specified, data are numbers of patients (with percentages in parentheses).
aData were not available in 12 patients.
bData are median (with range of data in parentheses).
cData are median (with interquartile range in parentheses).

ECOG PS, Eastern Cooperative Oncology Group Performance Status Score; EGFR, epidermal growth

factor receptor; TKI, tyrosine kinase inhibitors

https://doi.org/10.1371/journal.pone.0187500.t001
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drawing on each axial slice of CT images to include the entire tumor volume. Segmentation

was performed for a dominant measurable lung lesion (one lesion per patient).

After nodule segmentation, radiomic features were extracted automatically from the soft-

ware program. We obtained a total of 37 features. The features types were: 1) first-order statis-

tics based features (15 features), 2) size and shape features (8 features), 3) gray-level co-

occurrence matrix (GLCM) based features (5 features), 4) gray-level run-length matrix

(GLRL) based feature (1 feature), and 5) wavelet transformed GLRL features (8 features)

(Table 2).

Exclusion of unstable features

Nodule segmentation was initially performed by one radiologist (H.K. with 7 years of experi-

ence in chest CT) and one CT technician (M.L. with 5 years of research experience in chest

CT) for the independent, solid-pulmonary nodule CT datatset to evaluate the inter-reader var-

iability of radiomic features and to identify any unstable features for exclusion. ICCs were cal-

culated based on the two sets of radiomic features from each observer. Features with inter-

reader ICC<0.9 were excluded from further analysis.

After exclusion of unstable features, a radiologist (H.K.) conducted segmentation for the

EGFR TKI patient CT dataset for the following analysis.

Statistical analysis

Radiomic features were extracted from both baseline and first follow-up CT scans. Then, the

percentage change of radiomic features between baseline and first follow-up was calculated as

follows:

Percentage change of feature A ¼
½baseline CT feature A � f irst follow � up CT feature A�

baseline CT feature A

Therefore, a total of three radiomic feature sets (baseline, first follow-up after TKI, and per-

centage change) were acquired for each patient.

With the radiomic features, the pairwise Pearson correlation coefficient was calculated and

features with a correlation coefficient of>0.95 were grouped together. This procedure was

performed three times with baseline CT features, first follow-up CT features, and percentage

features, respectively. Based on the univariate Cox proportional hazards regression analysis, a

feature with the smallest P-value was selected from each group. Dichotomized radiomic fea-

tures were used as input variables to the Cox regression analysis. Dichotomization with

Table 2. Extracted radiomic features.

Group Feature No.

First-order statistics mean, standard deviation, variance, skewness, kurtosis, entropy,

homogeneity, energy, C5, C10, C25, C50, C75, C90, C95

15

Size and shape volume, effective diameter, surface area, sphericity, discrete compactness,

shape compactness 1, shape compactness 2, roundness

8

GLCM moments, angular second moment, inverse difference moment, contrast,

entropy

5

GLRL Grey-level nonuniformity 1

Wavelet

transformation

decompositions of grey-level nonuniformity 8

C5, C10, . . ., C95, percentile value of the cumulative histogram; GLCM, gray-level co-occurrence matrix;

GLRL, gray-level run-length matrix

https://doi.org/10.1371/journal.pone.0187500.t002
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optimal cutoff was determined, which showed the most significant split at log-rank test [27].

After dimensionality reduction, the P-values of remnant features were adjusted for multiple

comparisons using the Benjamini-Hochberg method. We chose the top four features, based on

the corrected P-value, to limit the possibility of over-fitting (according to the Harrell guideline

that the number of observations should exceed the number of selected features by, at least, a

factor of ten) [28]. These features were used as input variables into the multivariate Cox regres-

sion analysis with backward stepwise selection. Independent predictors of PFS were identified

from multivariate Cox regression analysis and hazards ratio (HR) and a 95% confidence inter-

val (CI) was determined. Concordance index and its 95% CI were calculated.

Along with the radiomic model for PFS prediction, we investigated the discriminative

power of conventional clinical factors for risk stratification in advanced adenocarcinoma

patients. ECOG PS was not included in the regression analysis as it was missing in 12 patients.

Tumor stage was also excluded (as most patients (95.8%) were stage IV). Age was dichoto-

mized with optimal cutoff. With variables exhibited a P-value of<0.20 at univariate analysis, a

multivariate Cox regression analysis was conducted with backward stepwise selection.

Finally, we aimed to compare the incremental value of radiomic features against the con-

ventional clinical factors. Therefore, we built a combined model incorporating both radiomic

features and clinical factors. We assessed the performance of the model with concordance

index and compared it with the radiomic model and clinical-factor model. Comparison of

concordance indices was assessed by means of bootstrapping, with 1,000 repetitions and

paired t-tests, performed among values.

Statistical analyses were performed using SPSS 19.0 (IBM SPSS Statistics, Armonk, NY,

USA) and R software, version 3.2.2 (http://www.R-project.org). Survival analyses were per-

formed with survival package and bootstrapping was executed with boot package in R. A P-

value <0.05 was considered as statistical significance.

Results

Clinical characteristics and PFS

There was no significant difference in age between male and female participants (P = 0.992).

The median PFS was 9.7 months (range, 0.3–29.4 months; interquartile range, 5.0–13.8

months). There were 25 (52.1%) responders and 23 (47.9%) nonresponders at first follow-up

CT.

Feature selection

Six features [kurtosis, skewness, wavelet grey-level nonuniformity HHL (high- or low-pass fil-

ter along x-, y-, and z-direction), fifth percentile of the cumulative histogram (C5), standard

deviation and variance] with inter-reader ICC <0.9 (based on the independent, solid-pulmo-

nary nodule CT dataset) were removed. Then, a pairwise Pearson correlation coefficient was

calculated and a univariate Cox regression analysis was performed with the remaining 31 fea-

tures. Six features were further excluded from the baseline CT features (C10, C25, C50, C90,

effective diameter, and wavelet grey-level nonuniformity LHL), eight features were excluded

from the first follow-up CT features (mean, C25, C50, C90, volume, effective diameter, surface

area, and wavelet grey-level nonuniformity LHL), and two features (volume and effective

diameter) were removed from the percentage features. The P-values of the remnant features

were adjusted for multiple comparisons using the Benjamini–Hochberg procedure. After cor-

rection, 19 features showed a P-value smaller than 0.01 (Table 3). Among them, 11 features

were extracted from the first follow-up CT and eight features were extracted from the baseline

CT.
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The final top four features were discrete compactness, roundness, grey-level nonuniformity,

and GLCM contrast which were all extracted from the first follow-up CT (Fig 2). The optimal

cutoff values used to dichotomize these four features were 0.0487 [hazard ratio (HR): 4.13;

95% CI: 2.13, 7.99, P<0.001] for discrete compactness, 0.7817 (HR: 5.41; 95% CI: 2.45, 11.96,

P<0.001) for roundness, 31.93 (HR: 4.23; 95% CI: 2.19, 8.18, P<0.001) for grey-level nonuni-

formity, and 6066 (HR: 0.27; 95% CI: 0.14, 0.52, P<0.001) for GLCM contrast.

Multivariate Cox regression analysis

A multivariate Cox regression analysis performed with the four features indicated that round-

ness (HR: 3.91; 95% CI: 1.72, 8.90; P = 0.001) and grey-level nonuniformity (HR: 3.60; 95% CI:

1.80, 7.18; P<0.001) were independent predictors of PFS (Fig 3). The concordance index of

the radiomic model was 0.73 (95% CI: 0.65, 0.82).

The Cox regression analysis was also performed, with clinical factors and treatment

response according to RECIST 1.1, on the first follow-up. The optimal cutoff value for age

dichotomization was 70.5 (HR: 1.68; 95% CI: 0.86, 3.27, P = 0.120). A multivariate Cox regres-

sion analysis revealed that patient age (HR: 2.11; 95% CI: 1.01, 4.39; P = 0.046), baseline tumor

diameter (HR: 1.03; 95% CI: 1.01, 1.05; P = 0.002), and treatment response (HR: 0.46; 95% CI:

0.24, 0.87; P = 0.017) were independent clinical predictors. The concordance index of the clini-

cal-factors model was 0.69 (95% CI: 0.60, 0.79) and was significantly lower than that of the

radiomic model (P<0.001).

Table 3. Univariate Cox regression analysis of 19 radiomic features.

Feature Hazard ratio Confidence interval P-value

Lower Upper

Discrete compactness_FU 4.13 2.13 7.99 0.001

Roundness_FU 5.51 2.48 12.25 0.001

GLN_FU 4.23 2.19 8.18 0.001

GLCM contrast_FU 0.27 0.14 0.52 0.001

C75_FU 3.9 1.98 7.69 0.001

Compactness1 3.86 1.93 7.72 0.002

Compantness1_FU 3.57 1.85 6.87 0.002

Volume 3.85 1.91 7.77 0.002

LLL_FU 3.27 1.7 6.29 0.003

LLL 3.93 1.82 8.5 0.004

Energy_FU 3.1 1.62 5.94 0.005

GLCM ASM 0.31 0.16 0.62 0.006

GLN 3.37 1.64 6.94 0.006

Discrete compactness 2.79 1.51 5.17 0.006

GLCM contrast 0.32 0.16 0.64 0.006

C10_FU 2.89 1.52 5.5 0.006

GLCM entropy 3.12 1.55 6.25 0.006

GLCM entropy_FU 2.85 1.5 5.41 0.006

C95_FU 3.51 1.6 7.68 0.007

Note: Features with underbar and ‘FU’ denote that those are extracted from the first follow-up CT.

ASM, angular second moment; C10, tenth percentile at cumulative histogram; C75, seventy-fifth percentile at cumulative histogram; C95, ninety-fifth

percentile at cumulative histogram; GLN, grey-level nonuniformity; GLCM, gray-level co-occurrence matrix; LLL, wavelet decomposition of grey-level

nonuniformity with directional filtering with low-pass filter along x-, y- and z-direction

https://doi.org/10.1371/journal.pone.0187500.t003
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Next, we combined the radiomic features with clinical factors to create an integrated pre-

diction model in order to evaluate the incremental value of radiomic features against conven-

tional clinical factors. The concordance index of the combined model was 0.77 (95% CI: 0.67,

0.86), which was significantly higher than those of either the radiomic model or the clinical-

factor model (both P<0.001). The addition of radiomic features to the clinical factors

Fig 2. Graphs of Kaplan-Meier risk groups based on the optimal cutoff of the four radiomic features.

(A) discrete compactness (cutoff: 0.0487), (B) roundness (cutoff: 0.7817), (C) grey-level nonuniformity (cutoff:

31.93), and (D) GLCM contrast (cutoff: 6066). GLCM, gray-level co-occurrence matrix.

https://doi.org/10.1371/journal.pone.0187500.g002

Fig 3. Radiomic features and their association with progression-free survival (PFS). (A) On the baseline CT, roundness of the tumor was 0.7352 and

grey-level nonuniformity was 23.06. (B) On the first follow-up CT (9 weeks later), roundness was 0.7355 (percent change: 0.0422%) and grey-level

nonuniformity decreased to 16.93 (percent change: -26.57%). PFS in this patient was 23.6 months. (C) For this patient, whose PFS was only 1.4 months,

tumor roundness was 0.8591 and grey-level nonuniformity was 24.13 on the baseline CT. (D) On the first follow-up CT (9 weeks later), grey-level

nonuniformity increased to 43.11 (percent change: 78.63%), while the roundness was 0.8040 (percent change: -6.411%).

https://doi.org/10.1371/journal.pone.0187500.g003
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significantly improved the predictive performance of the regression model. Kaplan-Meier

plots of the radiomic model, clinical-factor model, and combined model appear in Fig 4.

Discussion

We have demonstrated that the incorporation of radiomic features along with conventional

clinical factors was superior to the performance of clinical-factors alone model in prediction of

PFS in EGFR-mutant adenocarcinoma patients treated with first-line EGFR TKIs. The radio-

mic features alone also showed a better outcome in PFS estimation than the sole employment

of clinical factors.

Recently, several studies evaluated the prognostic value of radiomic features [5, 11–14, 22,

29, 30]. However, most studies included patient information, such as heterogeneous histology,

stage, and treatment. Our study population consisted of patients with advanced-stage (stage IV

in 46 out of 48 patients) adenocarcinoma with sensitizing EGFR mutations and all of them

were treated with EGFR TKI as their first-line systemic therapy. The development of a model

which enables risk stratification in clinically-similar patients can be very useful for optimizing

treatment plans for individual patients.

It is promising that the radiomic features from the first follow-up CTs promoted PFS pre-

diction. Early prediction of PFS may enable physicians to determine the right time to perform

additional biopsies in order to identify acquired resistance such as T790M mutation for

screening eligible patients for the novel agent [31]. Treatment response according to RECIST

at first follow-up or baseline tumor diameter can also act as indicators in estimating patient

survival [32]. However, we showed that the addition of radiomic features to the clinical factors

(including treatment response) had a higher discriminative power in PFS prediction than the

use of clinical factors alone.

As for the radiomic features of our study, roundness is a three-dimensional morphological

index which measures the surface smoothness and structural distortion as the ratio between

the diameters of enclosing, and enclosed, spheres based on surface voxels [33]. We added the

additional component of radial displacement for surface smoothness. Grey-level nonunifor-

mity is a measure of tumor heterogeneity and is calculated with GLRL [11]. It is interesting

that the combination of a morphological index and a texture feature (indicating intratumoral

heterogeneity), which are both beyond the perception of the human eye, can work together as

a prognostic imaging biomarker. A few studies of radiomic analysis showed that the intratu-

moral heterogeneity on imaging yielded prognostic information in NSCLC patients [5, 11–13,

22, 30]. Aerts et al. [11] demonstrated that the performance of radiomic signatures, including

intensity feature, size feature, and texture feature of grey-level nonuniformity was better than

that of TNM staging. Huang et al. [12] also showed that homogeneity, kurtosis, and uniformity

Fig 4. Kaplan-Meier plots demonstrating the performance of each estimation model. Patients were

divided in to low- and high-probability groups for progression-free survival according to the median value of

output from (A) the radiomic model (HR: 5.34, 95% CI: 2.42, 11.76; P<0.001, (B) the clinical-factor model (HR:

2.51, 95% CI: 1.37, 4.59; P = 0.003), and (C) the combined model (HR: 5.49, 95% CI: 2.77, 10.89; P<0.001).

CI, confidence interval; HR, hazard ratio.

https://doi.org/10.1371/journal.pone.0187500.g004
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using a filter method were independent biomarkers for the estimation of disease-free survival

in early stage (I-II) NSCLC. In a study by Fried et al. [13], disease solidity (volume metric) and

GLCM energy were useful for survival prediction in patients with stage III NSCLC. The com-

mon finding in these studies, including our own, was that the incorporation of both radiomic

features and clinical prognostic factors significantly improved the risk stratification of patients

compared with the sole use of the clinical-factors model.

With regard to the NSCLC patients receiving EGFR TKI, Cook et al. [5] performed radio-

mic analysis with PET/CT and revealed that neighborhood gray-tone difference matrix

(NGTDM) contrast at the six-week follow-up, and the percentage change in first-order

entropy, were independently associated with survival. In our study, GLCM contrast was

included in the top four features, but was not an independent predictor of PFS. In addition,

none of the percentage-change features showed statistical significance. The primary difference

between our study and the one conducted by Cook et al. [5] is the imaging modality of choice.

Future prospective studies involving CT features, PET/CT features, and clinical factors are

warranted with large numbers of patients.

We acknowledge a number of limitations to this study. First, we only dealt with a small

number of patients. Thus, a separate independent group of patients for testing (or validation)

was not available. In addition, k-fold and leave-one-out cross validation were not applied to

the study, as such methods yield substantial variability relative to the small sample [34] and

were not considered suitable for the current study population. Instead, we performed boot-

strapping to calculate the concordance index. Furthermore, the exclusion of the major propor-

iton of patients was to the absence of contrast enhanced CT scans. This exclusion criteria

might have induced selection bias as patients with more complicated disease status requiring

detailed evaluation of the mediastinum, vessles, or distant metastatic lesions might be chosen.

Second, CT protocols were heterogeneous with multiple scanners and acquisition settings.

Radiomic features are influenced by both CT scanners [35] and protocols [20, 24, 36, 37].

Therefore, homogeneous and standardized CT acquisition is necessary. However, Aerts et al.

[11] showed that the prognostic performance of radiomic features was reproducible with het-

erogeneous sets of CT images. In fact, the clinical implications of radiomic feature variability

(according to CT scanning) have yet to be determined. The effect of scanning protocols on the

actual performance of radiomic features is an issue for future analysis. Third, we dealt with

only a fraction of radiomic features. A single GLRL-based feature (grey-level nonuniformity)

was calculated based on the study by Aerts et al. [11]. However, filter methods such as Lapla-

cian of Gaussian, or the fractal dimension method, were not tested in the present study. There-

fore, our study results cannot be applied to features obtained through those methods.

In conclusion, radiomic features enable PFS estimation in EGFR-mutant adenocarcinoma

patients treated with first-line EGFR TKIs. Radiomic features combined with clinical factors

provided significant improvements in prognostic performance compared to clinical factors

alone and may contribute to better therapeutic decision making for individual patients in clini-

cal practice.
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