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Abstract

As the world’s population grows to a projected 11.2 billion by 2100, the number of people liv-

ing in low-lying areas exposed to coastal hazards is projected to increase. Critical infrastruc-

ture and valuable assets continue to be placed in vulnerable areas, and in recent years,

millions of people have been displaced by natural hazards. Impacts from coastal hazards

depend on the number of people, value of assets, and presence of critical resources in

harm’s way. Risks related to natural hazards are determined by a complex interaction

between physical hazards, the vulnerability of a society or social-ecological system and its

exposure to such hazards. Moreover, these risks are amplified by challenging socioeco-

nomic dynamics, including poorly planned urban development, income inequality, and pov-

erty. This study employs a combination of machine learning clustering techniques (Self

Organizing Maps and K-Means) and a spatial index, to assess coastal risks in Latin America

and the Caribbean (LAC) on a comparative scale. The proposed method meets multiple

objectives, including the identification of hotspots and key drivers of coastal risk, and the

ability to process large-volume multidimensional and multivariate datasets, effectively

reducing sixteen variables related to coastal hazards, geographic exposure, and socioeco-

nomic vulnerability, into a single index. Our results demonstrate that in LAC, more than

500,000 people live in areas where coastal hazards, exposure (of people, assets and eco-

systems) and poverty converge, creating the ideal conditions for a perfect storm. Hotspot

locations of coastal risk, identified by the proposed Comparative Coastal Risk Index (CCRI),

contain more than 300,00 people and include: El Oro, Ecuador; Sinaloa, Mexico; Usulutan,

El Salvador; and Chiapas, Mexico. Our results provide important insights into potential

adaptation alternatives that could reduce the impacts of future hazards. Effective adaptation

options must not only focus on developing coastal defenses, but also on improving practices

and policies related to urban development, agricultural land use, and conservation, as well

as ameliorating socioeconomic conditions.
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Introduction

Backing away from estimates from less than a decade ago, the United Nations now predicts

that the world population is unlikely to stabilize by the end of the century. The global popula-

tion, currently at 7.46 billion, is increasing by nearly 230,000 people every day, at a growth rate

of 1.18% per year [1]. In the next 15 years, the global population is expected to grow by an

additional 1 billion, reaching 11.2 billion people by 2100 [1]. Concurrently, the number of peo-

ple living in low elevation coastal areas, exposed to natural hazards, continues to increase [2].

There is a clear trend of coastal populations growing globally, with an estimated 230% increase

(from 2000 to 2030) in the size of urban areas within the Low Elevation Coastal Zone (LECZ)

—defined as “the contiguous area along the coast that is less than 10 meters above sea level”,

and which accounts for only 2% of the planet’s total land area [3,4]. Moreover, critical infra-

structure and valuable assets continue to be placed in areas exposed to coastal hazards [5].

In 2013, almost 22 million people were displaced by extreme weather events across the

globe, with 37 events displacing at least 100,000 people each [5]. All but one of the top 15 larg-

est displacements were related to typhoons or floods, with at least three million people dis-

placed from coastal areas [6]. In 2012, more than 30 million people were displaced worldwide

by disasters related to climate and weather events [6]. From 1995 to 2015, worldwide losses

resulting from minor but recurrent natural hazards, including flash floods, landslides, and

storms, reached $94 billion [7].

Natural events are not the only reason why disasters occur. Disaster risk is defined by a

complex interaction between physical hazards and the vulnerability of a society or social-eco-

logical system, and its exposure to such hazards [8]. The disaster risk-poverty nexus has been

well documented [8–12]; Poor communities, which have limited or no access to insurance, are

usually less resilient to disasters and suffer a disproportionate share of losses resulting from

such events [9]. Furthermore, the occurrence of disasters reduces income and consumption

levels, further aggravating poverty [9].

Social, political and economic conditions are often ignored determining factors for the

consequences of the onset of disasters [13–16]. Coastal risks are amplified by challenging

socioeconomic dynamics, including poorly planned urban development, income inequality,

and poverty [17]. Lack of access to critical resources including food, fresh water, shelter,

medicine and evacuation routes, can greatly intensify the damaging effects of coastal hazards

[16]. Finally, income inequality is frequently associated with larger damage [18]. Inequality

increases poverty and creates processes of social and political exclusion, possibly resulting in

social instability, reduced accountability and enabling corruption [18].

There is a well-documented need for studies that explicitly integrate exposure and vulnera-

bility to coastal hazards, disaster risk management, and adaptation [19,20]. Further, multidisci-

plinary approaches are an effective way to evaluate and solve complex environmental and

social problems [20–24].

Previous research addressed the exposure of critical resources to coastal hazards in Latin

America and the Caribbean (LAC). In 2011, the Economic Commission for Latin America

and the Caribbean (ECLAC) published an assessment of the risks and impacts of climate

change in coastal areas of LAC [25]. The 2011 study produced a comprehensive high-resolu-

tion database containing more than 15,000 coastal segments of roughly 5km by 10km length

each. Individual coastal segments contain multiple attributes related to natural hazards (e.g.

significant wave height, storm surge, and wind) and geographic exposure (e.g. urban and

cropland area, beaches, and ecosystems, critical infrastructure, and Gross Domestic Product

(GDP)). Coastal risks and hotspots were evaluated for flooding and coastal erosion, resulting

from both sea-level rise and extreme weather events. Losada et al. (2013) [26] studied historical
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sea-level rise and extreme sea levels in LAC, while Reguero et al. (2013) [27], and Izaguirre

et al. (2012) [28] described changes in wave conditions in the region. More recently, Reguero

et al. (2015b) [29] assessed the exposure of people, land, and built capital to coastal flooding in

LAC under current and future conditions of sea level rise (SLR), El Niño-induced SLR, and

storms.

While the studies above address important knowledge needs, they do not incorporate

important drivers of risk, such as poverty and inequality. Building on the works from ECLAC

(2011) [25], Losada et al. (2013) [26], Reguero et al. (2015a, 2015b) [29,30], and based on the

methods developed by Camus et al. (2011) [31], and Ramos et al. (2012) [32], we present a

method that identifies critical drivers of coastal risks and isolates hotspots of coastal vulnerabil-

ity. The aim of this study is to develop a Comparative Coastal Risk Index (CCRI) by combining

multiple variables related to the three dimensions of risk (coastal hazards, geographic expo-

sure, and socioeconomic vulnerability) into a single value.

Study region—Latin America and the Caribbean

The total population in the LAC region in 2014 was approximately 623 million people (with an

annual growth rate of 1.1% between 2010 and 2015) [33]. The GDP in LAC in 2014 was

approximately $5.7 trillion. Brazil, Mexico and Argentina had the highest GDPs in 2014 ($2.4

trillion, $1.2 trillion and $0.5 trillion, respectively) [34]. In Colombia, Venezuela, Costa Rica,

El Salvador, and Panama, more than 30% of the total population is located in the LECZ [35].

In 2000, roughly 32.2 million people lived in the LECZ in LAC [36,37].

This study focuses on coastal areas (i.e. under 10m in elevation and within 5km of the

coast) of LAC, and includes more than 13,000 unique coastal segments covering more than

59,000km of coastline. The study area includes a total population of almost 23 million people

in 26 countries, and is bounded by Mexico (north and west), Chile (south), and Brazil (east).

Despite recent advances in promoting economic and social development, efforts in LAC

have failed to significantly reduce poverty [38]. There is a large number of people in the region

with no access to basic services including water and sanitation [38], a situation that greatly

increases the vulnerability of coastal populations to natural hazards.

From 1972 to 2010, 88 natural disasters caused nearly 310,000 deaths and 236 billion dollars

in damages (2015 dollars) in LAC [39]. During the same period, 63 meteorological events

caused roughly $118 billion in damages [39]. Storms and hurricanes were responsible for 40

disasters, resulting in 50.2% of all deaths, and almost 40% of total damages [39]; in 1998, a sin-

gle event, Hurricane Mitch, caused more than 23,000 deaths in Central America. From 1972 to

2010, El Niño and La Niña events caused 17 disasters in the region, resulting in approximately

50% of all damages and 4.1% of all deaths [39].

Methods and materials

a) Methodology

This study employs a combination of machine learning clustering techniques (Self Organizing

Maps (SOM) and K-Means) and a spatial index, to classify and rank coastal areas according to

coastal risk. Hazards, exposure, and vulnerability data were combined to calculate a compara-

tive coastal risk index (CCRI).

The benefits of clustering the data before applying an index are multiple. The categorization

of multivariate datasets according to similar attributes simplifies the analysis; SOM provide

intuitive visualization of results, greatly facilitating the analysis of multivariate sets in a two

dimensional plane. Further, the clustering analysis produces risk profiles across the region

allowing areas of similar risk profiles to be easily identified; the most relevant variables of

Comparative Coastal Risk Index (CCRI) for Latin America and the Caribbean
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hazards, exposure, and vulnerability can be traced back from the final risk index, to individual

clusters. Finally, clustering techniques allow the analysis of large datasets at a low computa-

tional cost.

The benefits of the proposed approach include: (i) the identification of hotspots and key

drivers of coastal risk; (ii) the ability to process large-volume multidimensional and multivari-

ate datasets, effectively reducing sixteen variables related to coastal hazards, geographic expo-

sure, and socioeconomic vulnerability, into a single index; and (iii), clustering of coastal areas

according to similar attributes, where consistent risk reduction strategies may be applied to

minimize future risk.

An overview of the three methodological steps is shown in Fig 1. First, variables within

each risk dimension (hazards, exposure, and vulnerability) were clustered. Second, individual

scores for each risk dimension were calculated. Finally, a Comparative Risk Index (CCRI) was

calculated.

Within the context of this study, risk is defined as the geometric mean between the individ-

ual scores describing various degrees of hazards, exposure, and vulnerability. Areas with higher

individual scores receive a higher comparative risk index value. For this first implementation

of CCRI, an equal weights approach was chosen. However, future applications may consider

different weighting scenarios.

b) Data

The methodology leverages several datasets, including the ones published by Reguero et al.

(2013 and 2015a, 2015b) [27,29], Losada et al. (2013) [26], Izaguirre et al. (2013) [40], and

ECLAC (2011) [41]. Several new attributes were appended to the original datasets, including:

cumulated cyclone winds (used as a proxy for hurricanes), GDP, Gini coefficient of inequality,

and Infant Mortality Rates (IMR). A description of the individual variables used in each score

follows:

Coastal hazards. Coastal hazards may be related to extreme weather events (e.g. storm

surge and winds from tropical storms), or to higher-frequency, low intensity events (e.g. sea

level rise due to El Niño events) [16,42,43]. Table 1 contains a description of the coastal haz-

ards variables included in the study.

Geographic exposure. Geographic exposure is defined as the presence (of people, ecosys-

tems, infrastructure, and assets) in places that could be adversely affected by physical hazards

[20]. The variables included in this study representing exposure are: coastal population, GDP,

urban area, cropland and various ecosystems.

An ecosystems category was included to reflect the valuable (and often overlooked) services

that ecosystems provide. As an example, wetlands and mangroves provide valuable services to

neighboring communities in the form of coastal protection, enhancement of fisheries, water

filtration, sediment trapping, and many others [45]. As ecosystems are impacted by the onset

of coastal hazards, however, their value to coastal communities is diminished, hence their

inclusion in the exposure category.

The following ecosystems were included in this study: beaches, mangroves, estuaries,

marshes, grasslands, deciduous, mixed and conifer forests, and deserts [26]. Ecosystems data

were summarized into three components: (i) beach area; (ii) wetlands (sum of saltmarshes

and estuaries); and (iii), coastal forests (sum of mangroves, grasslands, deciduous, and mixed

forests).

Table 2 contains a description of the geographic exposure variables included in the study.

Socioeconomic vulnerability. Within the context of this study, socioeconomic vulnera-

bility is described in terms of the ability of a coastal community to cope with and adapt to a

Comparative Coastal Risk Index (CCRI) for Latin America and the Caribbean
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Fig 1. Methods flow chart.

https://doi.org/10.1371/journal.pone.0187011.g001
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coastal hazard that may impact livelihoods and well-being [47]. Poverty and welfare are com-

mon indicators of socioeconomic vulnerability, and can be evaluated by proxy variables

[48,49]. Vulnerability variables used in this study, namely: Infant Mortality Rate (IMR), Child

Malnutrition, GDP, and Income Inequality, are commonly accepted indicators of socioeco-

nomic vulnerability and poverty [48–50]. Table 3 contains a list of the socioeconomic vulnera-

bility variables included in the study.

c) Clustering analysis

Clustering techniques were used to investigate how coastal areas in the LAC region may be

grouped according to similar characteristics of hazards, exposure, and vulnerability. We follow

the techniques and recommendations from Camus et al. (2011, and 2016) [31,54], Ramos et al.

(2012) [32], and Rueda et al. (2017) [55]. Clustering, in this context, means partitioning of

each dataset into smaller groups of similar characteristics. Two clustering algorithms were

applied in two subsequent steps. First, the Self-Organizing Maps (SOM) algorithm was applied

to distribute 13,426 study units into 100 maps. Second, the K-Means algorithm was applied to

further group the 100 resulting SOM maps into 9 clusters (S1 Appendix). The application of

two abstraction levels proved more consistent than applying either one independently, con-

firming the findings from Vesanto and Alhoniemi (2000) [56]. Recent studies applied similar

methods of data classification in various research fields [31,57–60].

One of the limitations of the used algorithms is that they do not propose an optimal number

of clusters. Therefore, it was necessary to test multiple values for each abstraction level (SOM

and K-Means), until it was possible to validate that the resulting clusters indeed consisted of

Table 1. Coastal hazards variables.

Coastal Hazards Score

Components

Data Source Resolution (degrees of

Latitude or km)

Period of

Data

Unit

Wave Energy Reguero et al. (2015a) [30] 0.25˚ (Caribbean)

0.50˚ remaining areas

1948–2008 W/m2

Storm Surge 99% (m) Losada et al. (2013) [26] 0.25˚ (Caribbean)

0.50˚ remaining areas

1948–2010 m

El Nino 1997–1998 (m) Losada et al. (2013) [26] 0.50˚ 1997–1998 m

Significant Wave Height Ratio (HS

12 / HS mean)

Reguero et al. (2013 and 2015b) [27,29] 0.25˚ (Caribbean)

0.50˚ remaining areas

1948–2008 ratio

Cumulated Tropical Cyclone

Winds

Global Risk Data Platform, United Nations Environment

Programme (UNEP), [44]

2km 1975–2007 km (km/

h*h)

https://doi.org/10.1371/journal.pone.0187011.t001

Table 2. Geographic exposure variables.

Exposure Score

Components

Data Source Resolution Date Unit / Year

Coastal Population Reguero et al. (2015b) [29] 1km2 2000 Number of People

% Urban Coverage ECLAC (2011) [46] 5km 2000? Ratio

% Crop Coverage ECLAC (2011) [46] 5km 2011 Ratio

Beach area ECLAC (2011) [46] 5km 2011 Km (km2/km)

Coastal Forests area ECLAC (2011) [46] 5km 2011 Km (km2/km)

Wetlands area ECLAC (2011) [46] 5km 2011 Km (km2/km)

Per Capita GDP (average) Global Risk Data Platform, UNEP

[44]

(see S2 Appendix for additional

sources)

30 arc second resolution, roughly 1

km2
2000 USD (year 2000, extrapolated to

2010)

https://doi.org/10.1371/journal.pone.0187011.t002
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locations with similar features. Several attempts were made to adjust the best number of final

clusters (from 2 to 25), with 9 clusters best representing the data. As an index is introduced in

the analysis, the issue of the number of clusters is greatly minimized, as similar clusters receive

similar values for the final index.

Data transformation and normalization. The exposure dataset contains a significant

number of coastal segments with no population or GDP (values equal 0), resulting in a highly-

skewed distribution. To improve the distribution, the Box-Cox transformation (Eq 1) was

applied to the relevant variables.

x0 l ¼
ðxl � 1Þ

l
ð1Þ

Subsequently, all variables were then transformed to range from 0 to 1. This step ensures

that all variables have equal weight in the clustering analysis.

Maximum dissimilarity initialization. The Maximum Dissimilarity algorithm was used

to pre-select the most distinct values within the dataset as the initial centers for each cluster,

ensuring that the resulting clusters are as diverse as possible. [31,61].

First clustering step–Self-Organizing Maps (SOM). The SOM algorithm [62] facilitates

the visualization of high-dimensional data by converting nonlinear statistical relationships

between multiple dimensions into simple geometric shapes, usually a simple grid of nodes.

SOM compresses information but retains the most important relationships of the original data

elements. Formally, SOM is the nonlinear mapping of high-dimensional input data into a lin-

ear array. Each map unit produced represents a vector, comprised of as many columns as the

original dataset (i.e. each hazards, exposure, and vulnerability attributes). The most commonly

used SOM output is a topological representation of the data, where each cell represents a clus-

ter and contains a number of data entries, or samples, associated with it. All samples within a

cell are similar, and also similar to samples in adjacent cells, while samples assigned to distant

cells are less similar. A probability matrix is also produced, which represents the number of

records belonging to each cluster. SOM reduced the dimensionality of each data set into a sin-

gle value for each cluster.

Hazards, exposure, and vulnerability data were clustered independently. Several attempts

were made to perform a single cluster analysis utilizing a single database containing all vari-

ables. However, clustering results, based on 16 variables, proved to be too complex and cum-

bersome to be analyzed.

Second clustering step–K-Means algorithm. As a second clustering step, the K-Means

algorithm was applied to further reduce the 100 SOM groups (resulting from the first cluster-

ing step) into 9 clusters. This step was repeated for each category (hazards, exposure, and vul-

nerability), independently. Using K-means to assign each one of the 100 SOM groups into 9

Table 3. Socioeconomic vulnerability variables.

Vulnerability Variable Data Sources Resolution Period Unit

Gini coefficient The Standardized World Income Inequality Database [51]

(see S2 Appendix for additional sources)

National 1995–

2012

N/A

Child Malnutrition Rate

(%)

SEDAC [52]

(see S2 Appendix for other sources)

Subnational 1990–

2000

%

Infant Mortality Rate (%) SEDAC Center for International Earth Science Information Network (CIESIN)

[53]

(see S2 Appendix for additional sources)

Subnational 2000 number of

deaths

Per Capita GDP (average) Global Risk Data Platform, (UNEP) [44]

(see S2 Appendix for additional sources)

Subnational 2010 USD

https://doi.org/10.1371/journal.pone.0187011.t003
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clusters provides additional benefits. It provides a smaller number of clusters, and the ability

to compare similar values that were placed further apart in the SOM maps. K-means cluster

centers (mean values) represent prototypes for the records belonging to it. Individual SOM

groups were assigned to the prototypes with the closest mean value in a two-step iterative way.

On each step, the algorithm calculates a mean value for each cluster, based on the values of the

points belonging to it. In a second step, individual points are reassigned to the cluster with the

closest value [63]. Values within clusters are more similar, and closer in value to the cluster’s

mean value, than other clusters. This process is repeated until points no longer jump between

clusters. In this study, the process was repeated 100 times. Several numbers of K-Means clus-

ters were evaluated (from 3 to 25) with the best results achieved with 9 clusters.

Hazards, exposure, and vulnerability scores. The next step in the analysis was to assign

individual scores to the 9 clusters (for each category), and rank them by intensity. Scores were

calculated according the equations described below, and variables within each score were

equally weighted.

The rationale behind developing these scores is that areas where more than one variable is

present receive a higher score than areas where only one, or no variables are present (e.g. areas

impacted by both high wave energy and tropical storm winds would be ranked higher than

areas only affected by one of these hazards).

Once scores were calculated, each one of the 9 clusters within each category (hazards, expo-

sure, and vulnerability), was ranked from 1 to 5 (with 1 representing the lowest severity, and 5

representing the highest severity).

One limitation of this approach is the assumption that that the impacts from individual haz-

ards are equal in severity. As an example, we assume that elevated sea levels during an El Niño

event have the same impact as areas of high accumulated winds. This assumption is adequate

for the objectives and spatial scale of the current analysis, and illustrates a basic implementa-

tion of the proposed approach. However, it may not be adequate for other applications of this

method, or the selection of local risk reduction strategies. Moreover, the proposed index is not

meant to represent a definite result, but rather a starting point, showcasing the benefits of the

method presented here. However, the model is flexible, and different weights can be easily

assigned to specific variables within the model, making it suitable to be used by diverse stake-

holders. Future applications of this model should ensure that each variable receives the appro-

priate weight that represents the study’s objectives.

Coastal hazards score. An overall coastal hazards score was calculated by summing up

the values of individual hazard variables at each coastal segment (Eq 2). Variables included in

the hazards score are: waves (average between significant weight height ratio, and wave

energy), storm surge, wind, and El Niño. Hazards scores for the 9 clusters were ranked from 1

to 5 (low to high), according to severity.

Coastal Hazards Score ðHSÞ ¼Wavesþ Storm SurgeþWind þ El Ni~no ð2Þ

Geographic exposure score. An overall Exposure Score was calculated by summing up

the values of individual exposure variables for each coastal segment. Variables included in the

exposure score are: coastal population, GDP, cropland ratio, urban ratio, and coastal ecosys-

tems. Exposure scores for the 9 clusters were ranked from 1 to 5 (low to high) according to

severity (Eq 3).

Geographic Exposure Score ðESÞ
¼ Coastal Populationþ GDPþ Cropland Ratioþ Urban Ratioþ Ecosystems ð3Þ

Comparative Coastal Risk Index (CCRI) for Latin America and the Caribbean
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Ecosystems data were summarized into three components: (i) beach area; (ii) wetlands

(sum of saltmarshes and estuaries); and (iii), coastal forests (sum of mangroves, grasslands,

deciduous, and mixed forests). First, linear densities were calculated for each attribute by

dividing the total areal coverage of the respective attribute (e.g. total area of coastal forests in

the segment, in km2) by the length of each segment (in km). As an example, the linear density

of forests was calculated by dividing the total area of coastal forests in each coastal segment, by

the length of the respective segment. Second, the linear densities of beaches, coastal forests and

wetlands were averaged into a broader ecosystems category, calculated for each coastal seg-

ment (Eq 4).

Ecosystems ¼ ðBeach Linear Density þ Coastal Forests Linear Density
þWetlands Linear DensityÞ=3 ð4Þ

Socioeconomic vulnerability score. An overall vulnerability score was calculated by sum-

ming up the values of individual vulnerability variables for each coastal segment. The following

variables were included in the vulnerability score: a social welfare function (SWF), IMR, and

malnutrition (Eq 5). Vulnerability score scores for the 9 clusters were ranked from 1 to 5 (low

to high) according to severity.

A social welfare function (SWF), which combines GDP and the Gini coefficient was used in

the vulnerability score, as it better describes aggregated income and its distribution [64,65] (Eq

6). Areas with higher value of SWF are wealthier, therefor less vulnerable than areas with low

values of SWF. Given the inverse relationship between SWF and socioeconomic vulnerability,

SWF is negative.

Socioeconomic Vulnerability Score ðVSÞ ¼ IMRþMalnutritionþ SWF ð5Þ

SWF ¼ � ðGDP � ð1 � Gini indexÞÞ ð6Þ

Comparative Coastal Risk Index (CCRI)

Finally, the CCRI was calculated as the geometric mean of the hazards, exposure, and vulnera-

bility scores, for each coastal segment. CCRI values range from 1 to 5 (Eq 7).

Comparative Coastal Risk Index ðCCRIÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðHS � ES � VSÞ3

p
ð7Þ

Results and discussion

The results from this first implementation of CCRI in LAC, which are based on an equal

weights approach, are meant to illustrate different kinds of analysis that this method can sup-

port. Values described as “high”, “large”, or “low” and “small” are relative to values from other

areas in the study region. Nevertheless, they may still be considered higher or lower when

compared with other regions of the planet not included in the study.

The following section describes the resulting clusters for each category of CCRI. The 13,426

original coastal segments were reduced to 9 hazards clusters (H1 to H9), 9 exposure clusters

(E1 to E9), and 9 vulnerability clusters (V1 to V9).

Coastal hazards–Clusters and scores

First, coastal hazards data were clustered according to characteristics of: waves, storm surge,

wind, and El Niño induced sea level changes. The waves component, was calculated as the

Comparative Coastal Risk Index (CCRI) for Latin America and the Caribbean
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average of Significant Wave Height and Wave Energy variables, after they were scaled from 0

to 1. Second, hazards scores were calculated (Eq 2), and range from 1 to 5, with 5 being the

most severe. Clusters H1 and H8 received the maximum hazards score, and are characterized

by El Niño induced sea levels, and strong cumulated winds, respectively (Table 4).

As previously discussed, one of the benefits of applying clustering techniques, prior to the

index calculation, is that drivers of coastal risks can be traced back to individual clusters for

each category (hazards, exposure, and vulnerability).

The spatial distribution of the hazards clusters (Fig 2) is consistent with recent studies of

coastal hazards in the LAC region [26,27,41].

Geographic exposure–Clusters and scores

First, geographic exposure data were clustered according to characteristics of: coastal popula-

tion, GDP, urbanization, cropland, and ecosystems. Second, exposure scores were calculated

(Eq 3), and range from 1 to 5, with 5 indicating the highest geographic exposure levels. Geo-

graphic exposure clusters are not as geographically concentrated as the coastal hazards dis-

cussed above. Clusters E1, E8, and E6 received the maximum exposure score. These three

clusters include coastal segments with large population. However, E1 includes large urban

areas while E8 and E6 are characterized by a more significant presence of ecosystems and crop-

lands, respectively (Table 5, and Fig 3).

Socioeconomic vulnerability–Clusters and scores

First, socioeconomic vulnerability data were clustered according to characteristics of: GDP,

Inequality, IMR, and malnutrition. Second, vulnerability scores were calculated as the sum of

SWF, IMR, and malnutrition (Eq 4), and range from 1 to 5, with 5 indicating the highest socio-

economic vulnerability. Clusters V1, V9 received the maximum vulnerability score, with high

IRM, malnutrition, and low social welfare (Table 6, and Fig 4).

Comparative Coastal Risk Index (CCRI)–Equal weights scenario

Our results show that nearly 1.79 million people live in areas of high or very high CCRI (4.6 or

5, respectively) in LAC. This number represents almost 8% of the 23 million people population

in the study area. Roughly 560,000 people live in areas of maximum CCRI value equal 5. These

are areas where the maximum scores for hazards, exposure, and vulnerability (all equal 5)

Table 4. Coastal hazards clusters (sorted by hazards score).

Cluster % of Coastal

Segments

Coastal Length

(km)

Coastal

Population

Most Relevant Attribute Top 3 Affected Countries (by

population)

Hazards

Score

H1 16% 10,312 2.2 million Strong El Niño Mexico, Ecuador, Peru 5

H8 7% 4,673 1.0 million Strong winds Puerto Rico, Mexico, and Caribbean 5

H3 7% 3,628 3.3 million High Waves Argentina, Uruguay, Brazil 4

H4 8% 4,985 0.6 million Moderate El Niño Peru, Puerto Rico and the

Dominican Republic

3

H6 11% 5,184 27,000 Moderate Waves Chile and Mexico 3

H5 9% 4,147 3.4 million Weak Storm Surge Brazil, Argentina, and Chile 2

H7 10% 6,213 2.1 million Moderate winds and weak

El Niño

Cuba, Dominican Republic, and Haiti 2

H9 8% 5,043 2.0 million Small waves and Weak El

Niño

Mexico, Cuba and Haiti 2

H2 24% 15,119 8.3 million Weak El Niño Brazil, Venezuela, Colombia 1

https://doi.org/10.1371/journal.pone.0187011.t004
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coexist. Areas with the second highest CCRI value (i.e. 4.6), include a coastal population of 1.2

million people.

Brazil, the largest country in the study region, also contains the largest coastal population,

more than 8.6 million people. Mexico and Argentina have the second and third largest coastal

populations (2.9, and 2.7 million people, respectively). However, the largest populations in

Fig 2. Coastal hazards scores.

https://doi.org/10.1371/journal.pone.0187011.g002
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areas of maximum CCRI (equal to 5) are in Ecuador (222,404 people), Mexico (130,810 peo-

ple), and El Salvador (91,965 people).

The total coastal population in LAC in areas of maximum CCRI, (more than 566,000 peo-

ple) are spread in 223 coastal segments, across 29 provinces in seven countries: Ecuador,

Mexico, El Salvador, Honduras, Nicaragua, Guatemala, and Peru. Ecuador, Mexico, El Salva-

dor and Honduras hold 87% of the total coastal population (494,330 people) and 80% of the

number of coastal segments (179 segments) in areas of maximum CCRI. The 29 provinces in

areas of maximum CCRI are located in countries in Northern, Central, and South America,

facing the Pacific Ocean.

The roughly 560,000 people in areas of maximum CCRI values are distributed as follows:

The majority (98.8%, or almost 560,000 people) belong to cluster H1, characterized by El Niño

induced sea levels. Roughly 66% (372,000 people), belong to exposure cluster E6, characterized

by large population and ecosystems. Roughly 32% belong to areas in cluster E8, characterized

by large population, ecosystems and croplands; and 2.3% live in areas assigned to cluster E1,

characterized by large population, GDP, and urban areas. Finally, 68.1% of the coastal popula-

tion belong to cluster V9 (386,000 people), and almost 32% in cluster V1 (181.000 people).

Both V1, and V9 clusters are characterized by high IMR, malnutrition, and low SWF. Cluster

V1, however, has the highest IMR in the study (62 deaths per 1,000 births on average).

See Fig 5, and Table 7, for a geographic distribution of CCRI in LAC.

Hotspots (areas of maximum CCRI = 5)

Our results show that 55% of the coastal population (more than 310,000 people) living in areas

of maximum CCRI, are concentrated in four provinces: El Oro, Ecuador; Sinaloa and Chiapas,

Mexico; and Usulutan, El Salvador (Fig 6).

El Oro, Ecuador: flood events are a yearly occurrence in El Oro, and are usually intensified

during strong El Niño events [66]. The 1997/1998 El Niño resulted in major economic and

social impacts to the province, severely damaging more than 2,000 residences [66], and result-

ing in almost 300 cases of Malaria and 200 cases of Dengue fever [67]. During the 1982/1983

El Niño, infant mortality rates in flood affected areas in El Oro increased 16% (from 52 to 65

per thousand live births) [67].

Table 5. Geographic exposure clusters (sorted by exposure score).

Cluster % of Coastal

Segments

Coastal Length

(km)

Coastal

Population

Most Relevant Attribute Top 3 Affected Countries (by

population)

Exposure

Score

E1 2% 1,410 km 8.0 million Largest population, GDP, and

urban areas

Brazil, Argentina, Mexico 5

E8 4% 2,706 km 2.9 million Large population, ecosystems

and croplands

Brazil, Colombia, and Ecuador 5

E6 7% 4,818 km 2.3 million Large population and

ecosystems

Mexico, Brazil, and Guyana 5

E4 16% 9,821 km 6.1 million Large population and croplands Brazil, Mexico, Cuba 4

E7 13% 8,247 km 1.6 million Croplands and moderate GDP Haiti, Dominican Republic, and

Brazil

3

E9 25% 15,220 km 1.5 million Moderate GPD Brazil, Mexico, and Chile 2

E5 7% 4,477 km 0.5 million Moderate GDP; ecosystems Peru, Venezuela, and Colombia 2

E3 5% 2,685 km 0 Moderate croplands and GDP Trinidad Tobago, Mexico, and

Haiti

2

E2 20% 9,921 km 1,780 Low presence of all variables Cuba, Mexico and Belize 1

https://doi.org/10.1371/journal.pone.0187011.t005
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Sinaloa, Mexico: in 2013, Hurricane Manuel made landfall in Sinaloa, with wind speeds

reaching 150km/h [68]. The Hurricane caused more than $4 billion in damages, and 123

deaths in Mexico [69]. In the fishing village of Yameto, Sinaloa, a coastal segment classified

with high CCRI (score equal to 4.6), 60 families were evacuated during the hurricane [70]. In

2014, almost 40% of the population of Sinaloa were living in poverty [71].

Fig 3. Exposure scores.

https://doi.org/10.1371/journal.pone.0187011.g003
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Chiapas, Mexico: the 1997/1998 El Niño resulted in more than 200 deaths and caused

severe damages to more than 15 coastal counties in Chiapas, isolating nearly 500,000 people

for several days [72]. Infant mortality rates in Chiapas, were three times higher than the Mexi-

can average in 2010 [73]. More recently, in 2014, 76.2% of the population of Chiapas lived

below the poverty line, and 31.8% of the population lived in extreme poverty [71].

Usulutan, El Salvador: roughly 66% of all disasters in El Salvador, between 1990 and 2014,

were related to floods and tropical storms [74]. In 2009, in the Usulutan province, where 75%

of all coastal segments were classified as very high CCRI (scores equal to 5), 37.4% of the popu-

lation lived below the poverty line, and 11.6% lived in extreme poverty [75]. More than 3,200

houses in the province were destroyed during the 1987/1988 El Niño [76].

Ranked by coastal population, the analysis below focuses on the four areas above, where the

three dimensions of coastal risk (hazards, exposure, and vulnerability) have maximum scores

(equal to 5).

1. El Oro, Ecuador. Ecuador contains the largest coastal population in the study area with

CCRI index value equal 5 (222,404 people). El Oro, the southernmost coastal Province of

Ecuador, contains almost 30% of that population (164,623 people), concentrated in six coastal

segments. The most relevant drivers of coastal risk in El Oro are:

• Hazards: all six coastal segments in El Oro belong to cluster H1, with El Niño as the main

driver of coastal hazards;

• Exposure: five coastal segments belong to cluster E8, characterized by large population, eco-

systems and croplands; one coastal segment belongs to cluster E6, characterized by large

population and ecosystems.

• Vulnerability: five coastal segments belong to cluster V9, and one coastal segment belongs

to cluster V1. Both V1 and V9 clusters are characterized by high IMR (35 deaths per thou-

sand births), high malnutrition rates (14.8%), and low SWF. However, cluster V1 has much

lower SWF values than V9.

Table 6. Socioeconomic vulnerability clusters (sorted by vulnerability score).

Cluster % of Coastal

Segments

Coastal Length

(km)

Coastal

Population

Most Relevant Attributes Top Countries Affected (by

population)

Vulnerability

Score

V1 10% 6,491 5 million Highest IMR and malnutrition;

low SWF

Haiti, Brazil, and Honduras 5

V9 13% 8,324 1.6 million High IMR and malnutrition; low

SWF

Mexico, Guyana, and Ecuador 5

V3 14% 8,784 7.7 million High IMR and malnutrition; low

SWF

Brazil, Mexico, and Colombia 4

V7 15% 8,567 521,000 High malnutrition; medium IMR;

low SWF

Mexico, Argentina and Peru 4

V8 2% 1,285 84,000 Medium malnutrition and IMR;

low SWF

Brazil, Colombia, and Panama 4

V4 13% 7,561 4.7 million Medium malnutrition; low IMR;

high SWF

Argentina, Mexico, and

Uruguay

3

V5 6% 3,123 1 million Low malnutrition and IMR; low

SWF

Peru, Chile and Brazil 2

V2 14% 6,690 14,741 Low malnutrition and IMR; low

SWF

Chile, Peru and Brazil 1

V6 14% 8,479 2.2 million Medium malnutrition; low IMR;

highest SWF

Cuba, and Venezuela 1

https://doi.org/10.1371/journal.pone.0187011.t006
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2. Sinaloa, Mexico. Mexico contains the second largest coastal population in the study

area with maximum CCRI value of 5 (132,274 people). The state of Sinaloa, on the Gulf of Cal-

ifornia, contains roughly 39% of that total (51,936 people) concentrated in 24 coastal segments.

The most relevant drivers of coastal risk in Sinaloa are:

Fig 4. Socioeconomic vulnerability scores.

https://doi.org/10.1371/journal.pone.0187011.g004
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• Hazards: All 24 coastal segments in Sinaloa belong to cluster H1, with El Niño as the main

driver of coastal hazards.

• Exposure: 21 coastal segments belong to cluster E6, characterized by large population and

ecosystems; the 3 remaining coastal segments belong to cluster E1, characterized by large

population, GDP, and urban areas.

Fig 5. Comparative Coastal Risk Index (CCRI).

https://doi.org/10.1371/journal.pone.0187011.g005
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• Vulnerability: All 24 coastal segments in Sinaloa belong to cluster V9, characterized by high

IMR (24.3 deaths per thousand births), high malnutrition rate (7.5%), and low SWF values.

3. Usulutan, El Salvador. El Salvador contains the third largest coastal population in the

study area with maximum CCRI value of 5 (90,965 people). The province of Usulutan, in the

southeast region of El Salvador (facing the Pacific Ocean), contains 57% of that population

(51,404 people), concentrated in 12 coastal segments. The most relevant drivers of coastal risk

in Usulutan are:

Table 7. Coastal population living in areas of maximum CCRI (value of 5).

Country Locality Coastal Population

Ecuador El Oro 164,623

Esmeraldas 38,170

Manabi 17,442

Guayas 2,169

Total Ecuador 222,404

Mexico Sinaloa 51,936

Chiapas 44,709

Nayarit 17,262

Oaxaca 10,564

Guerrero 6,339

Tamaulipas 1,464

Total Mexico 132,274

El Salvador Usulutan 51,404

La Paz 17,641

La Union 11,092

Ahuachapan 8,569

Sonsonate 2,259

Total El Salvador 90,965

Honduras Choluteca 22,905

Valle 20,683

Gracias a Dios 4,858

Colon 241

Total Honduras 48,687

Nicaragua Chinandega 35,988

Carazo 714

Zelaya 184

Total Nicaragua 36,886

Guatemala Santa Rosa 13,377

Escuintla 10,172

Jutiapa 3,935

Retalhuleu 1,856

Total Guatemala 29,340

Peru Piura 3,794

Ancash 2,059

La Libertad 319

Total Peru 6,172

Grand Total 566,728

https://doi.org/10.1371/journal.pone.0187011.t007
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• Hazards: All 12 coastal segments in Usulutan belong to cluster H1, characterized by El Niño

as the main driver of coastal hazards.

• Exposure: All the 12 coastal segments in Usulutan belong to cluster E6, characterized by

large population and ecosystems.

Fig 6. Hotspots of coastal risk.

https://doi.org/10.1371/journal.pone.0187011.g006
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• Vulnerability: All 12 coastal segments in Usulutan belong to cluster V9, characterized by

high infant mortality rate (31.2 per thousand births), high malnutrition rate (11.3%), and

low SWF values.

4. Chiapas, Mexico. The state of Chiapas, on the shoreline of the Gulf of California, con-

tains 35 coastal segments with 44,709 people living in areas of maximum CCRI. This repre-

sents roughly 33.8% of the total population in maximum CCRI areas in Mexico. The most

relevant drivers of coastal risk in Chiapas are:

• Hazards: All 35 coastal segments in Chiapas belong to cluster H1, characterized by El Niño

as the main driver of coastal hazards;

• Exposure: All 35 coastal segments belong to cluster E6, characterized by large population

and ecosystems;

• Vulnerability: All 35 coastal segments in Chiapas belong to cluster V9, characterized by

high infant mortality rate (31.9 deaths per thousand births), high malnutrition rate (7.5%),

and low SWF values.

Discussion

As coastal populations increase around the globe, the combination of coastal hazards, geo-

graphic exposure and socioeconomic vulnerability can greatly intensify coastal risks. In a vicious

cycle, the occurrence of disasters leads to a reduction of income and consumption levels, aggra-

vating poverty, and limiting the population’s ability to minimize and cope with future impacts.

Our results show that in LAC, more than 500,000 people live in areas of maximum CCRI,

with more than 310,000 people concentrated in four hotspot locations: El Oro, Ecuador; Sina-

loa and Chiapas, Mexico; and Usulutan, El Salvador (Fig 6). These are communities where

scarce critical resources are consistently placed in hazards prone areas further exacerbating

risks and impacts from coastal hazards.

Notably, some areas considered hotspots of coastal exposure in previous studies, including

a number of Caribbean islands, and Rio de La Plata [16,29], do not peak within CCRI. Several

areas of the Caribbean received maximum hazards scores (e.g. The Bahamas) and maximum

vulnerability scores (i.e. Haiti). However, except for very few coastal areas (e.g. Havana, Cuba),

exposure scores in The Caribbean ranged from 2 to 3, driving lower CCRI values. Similarly,

coastal segments in the Rio de la Plata region received maximum coastal hazards scores, but

did not receive highest vulnerability and hazards scores, resulting in CCRI values from 2.9 to

4.3. Nevertheless, coastal risk affects areas beyond those where CCRI equals 5. Particularly,

areas where CCRI values are equal or greater than 4 include an additional 1.6 million people,

and should also be prioritized. Such areas did not peak in the CCRI index due to the variables

selected and the equal weight scheme utilized in the calculations. If variables are substituted, or

if individual scores are weighted differently, the results are likely to change.

While the impacts from climate change are not part of the scope of the present study, it is

important to acknowledge that they pose additional threats to coastal areas [20]. Climate

change impacts, including more frequent high-intensity storms, higher sea-levels, and more

severe floods will pose additional challenges to coastal communities [4,26,77]. Global sea-level

rise projections for the year 2100 range from 81cm to 179cm, which will lead to more frequent

and widespread coastal flooding [78–81]. Nuisance floods–minor, recurrent flooding that

takes place at high tide–already cause frequent road closures, overwhelm storm water drainage,

having a non-linear impact on critical infrastructure [82,83].
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Despite recent efforts to assess coastal risks in a multidisciplinary way, further research is

still needed. The methods proposed here can be enhanced by the introduction of temporal var-

iability via the addition of future projections (e.g. population growth, land use, and hazards

projections). Additionally, a panel of experts could be convened to review the input variables

and weighting of CCRI. Finally, higher resolution, small scale studies, focused on coastal risk

reduction are needed.

The techniques employed here provide a robust toolset to identify patterns through multi-

variate and complex datasets. The benefits of the proposed approach are multiple and include:

reduction of multiple independent variables into a single coastal risk index; the identification

of major drivers of coastal risk and related hotspots; the ability to identify coastal areas seemly

unrelated, but facing very similar challenges and may benefit from future collaborations to

reduce coastal risk.

Moreover, the current study can inform coastal policies. Coastal risks reduction and adap-

tation efforts must not only focus on developing coastal defenses, but also on improving prac-

tices and policies related to urban development and zoning, agriculture, and conservation, as

well as on ameliorating socioeconomic conditions. Policies including restoration and preserva-

tion of natural habitat, and agricultural practices, should also be considered. As an example,

the conservation and restoration of coastal habitats, which may act as coastal defenses to natu-

ral hazards, can also improve fisheries, positively impacting the livelihoods of local fishing

communities reducing their vulnerability.

The implementation of a sisters-city like approach (where cities, or provinces, form part-

nerships to promote cultural and commercial ties) should also be considered. Coastal commu-

nities of similar coastal risk profiles, can greatly benefit by an exchange of experiences and

lessons learned from past disasters, coastal adaptation projects, and coping mechanisms.
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