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Abstract

Theoretical models of populations and swarms typically start with the assumption that the

motion of agents is governed by the local stimuli. However, an intelligent agent, with some

understanding of the laws that govern its habitat, can anticipate the future, and make predic-

tions to gather resources more efficiently. Here we study a specific model of this kind, where

agents aim to maximize their consumption of a diffusing resource, by attempting to predict

the future of a resource field and the actions of other agents. Once the agents make a

prediction, they are attracted to move towards regions that have, and will have, denser

resources. We find that the further the agents attempt to see into the future, the more their

attempts at prediction fail, and the less resources they consume. We also study the case

where predictive agents compete against non-predictive agents and find the predictors per-

form better than the non-predictors only when their relative numbers are very small. We con-

clude that predictivity pays off either when the predictors do not see too far into the future or

the number of predictors is small.

Introduction

One of the steadfast pillars of science is the notion of causality, that the past determines the

future. However, the fact that the world can be correctly modeled leads to an interesting com-

plication: a intelligent system can understand the laws governing its world, infer the outcomes

of available choices, and decide how to behave in the present according to a predicted future.

Many-body physics has extended its applicability from equilibrium systems [1] to externally

driven systems [2, 3], to self-driven systems [4–6]. Can we extend this domain further, from

describing passive, reactive and active states of matter, towards “intelligent” or “predictive”

states of matter? Are there general laws and constraints govern these states?

Predictivity plays an important role in various social and biological systems. One example

is a walking crowd. It has been found that walking people choose paths that will not result in a

collision within the next few seconds [7]. A second familiar predictive system is the stock mar-

ket. Since price changes are driven by the amount of surprise created by financial news, in

order to beat the returns of others, investors must predict both the news and the reaction of

others to the news [8–10]. It is well known in the economics literature that prediction and

strategy anticipation can have complex effects and induce volatility in markets [11]. Another

example of predictivity is the pursuit-evasion problem. As in the former two examples, an

intelligent agent, for example a prey, must base its motion not only on a predicted future, but
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also on the predicted future of another predictor, say, a predator. Scientific models describing

social systems can couple to and modify their subjects too. Depending on the nature of the

constituent agents, this can lead to either the failure or reinforcement of the model prediction

[12].

The field of differential game theory aids in describing systems in which strategy and antici-

pation plays an important role [13, 14]. There is an emerging literature on multiplayer differ-

ential games [15]. However, classical differential game theory is typically concerned with a

finite number of discrete actors (typically two) instead of a continuous distribution of actors

or a very large number of actors. Furthermore, these games are typically formulated solely in

terms of schematic payoff matrices rather than taking into account realistic physical interac-

tions and environments.

Here we study the implications of predictivity on the properties of an active swarm. In our

model, agents in the swarm attempt to predict the future, and aim to maximize their consump-

tion of a diffusing resource by being attracted to regions of the space with high resource con-

centration in the present as well as the projected future. We find that attempting to predict the

future makes the agents’ predictions unreliable. Furthermore, their success, as measured in

terms of resource consumption, also decreases. Next, we study how a predictive population

behaves when mixed with a non-predictive population that is competing for the same

resource. In this case, we find that predictive agents outperform the non-predictive agents

only when they constitute a minority of the total population. In this case, seeing further into

the future allows the predictive agents to consume more of the resource. However, increasing

the number of predictive agents in the population decreases both the prediction quality and

the resource consumption of the predictors.

While our model is couched in a biological setting (e.g. describing agents consuming

resources), is not intended to recreate the exact behavior of any specific biological system.

Instead, we are interested in the theoretical constraints on prediction-making when predictors

are coupled to the system they aim to predict [12], especially when there are multiple predic-

tors involved.

The idea of acting in the present to maximize entropy over an entire path in the next time τ
is studied in [16], and is qualitatively similar to what we will discuss in this work, where agents

aim to maximize their resource consumption over their trajectory in the next time τ. A major

difference is that in [16], the maximized quantity is statistical path entropy, based on macro-

state probabilities, whereas in our case, we will have agents attempting to maximize their con-

sumption of a resource. No calculation of or reference to probabilities is necessary.

Materials and methods

The model

We study the properties of a population nð~r; tÞ where every agent aims to maximize its con-

sumption of a resource �ð~r ; tÞ. We assume that ϕ diffuses, and is absorbed by the agents

according to the standard diffusion equation

d�
dt
¼ Dr2� � g� � nð~r; tÞ: ð1Þ

Secondly, we assume that every agent knows this equation, can solve it to predict the future

of ϕ, and will be attracted to regions of space where ϕ will be large. The motion of the agents is

governed by a nonlocal integral equation that requires the current motion of the agent to be

consistent with the future that stems from its actions. For the sake of simplicity, we assume

that the predictive agents move with a velocity~vð~r; tÞ ¼ cû of constant magnitude c. Thus, the
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predictive aspect of the agents come into play only through their selection of swimming direc-

tion, ûðtÞ ¼ ~M=jMj. The swimming direction at time t is determined by the resource distribu-

tion ϕ between the present, t, and a future time t+τ,

~Mð~r ; tÞ ¼
Zt

0

dt0
Z

0<j~r 0 � ~r j<c�t0

d2~r 0 � �ð~r 0; t þ t0Þŵð~r 0 � ~rÞFðRÞ ð2Þ

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð~r0 � ~rÞ2 þ l � t02
q

, and ŵð~rÞ ¼~r=j~r j is a unit vector and F(R) is a force scaling,

taken to be 1/R2 (we show in the Appendix that the exact form of F(R) is not important when τ
is “small enough” in the sense that the form of F comes in as a correction to ~M at Oðt2Þ).

Throughout we use the numerical values c = 1, λ = 1.

In summary, agents estimate the resource distribution τ ahead, and experience a force

towards areas of high resource concentration both within a spatial and temporal neighbor-

hood. Note that the limits of the second integral ensure that agents who predict τ ahead of

time are attracted only to the resources in regions to which they can travel within τ. These

regions constitute a “light cone”, the slope and height of which defined by c and τ. We refer to

τ as the predictivity of the agents.

The assumption of constant velocity is not a strong one, since an agent can still effectively

slow down by going back and forth. However they cannot exceed a maximum speed c. We

have required that all agents move at a constant velocity so we can fairly compare them to gra-

dient climbing, non-predictive agents. We imagine that the agents discern which direction

maximizes their resource consumption, and then move in that direction as quickly as they can.

Assigning predictive and non-predictive agents the same maximum velocity also allows us to

discern the effects of prediction making. Note that the interaction between agents is indirect:

agents are influenced by other agents only through estimating their influence on the resource

field. In this sense, the resource field can be thought to mediate interactions between agents in

a non-local fashion.

Iterative solution scheme

As our equations are analytically intractable, we solve them numerically through an agent-

based simulation. This simulation should be thought as a procedure carried out by individual

agents, in order to decide where to move. In the simulations, each agent is represented by a

point in a unit square with periodic boundary conditions. Our default time step is dt = 0.001,

and the simulation lasts for t = 1. In each simulation, the initial distribution of the agents is

uniformly random. See the section “Technical Details” for additional information about the

simulator and numerical methods. Our source code can be found online [17].

We solve (1) and (2) on behalf of the agents, using an iterative scheme. To initialize the pro-

cess, agents first consider what would happen if others simply ascend gradients of the resource

field while consuming it as they move. This yields a zeroth order estimate for the trajectory

r(1)(x, t) of the agents and a zeroth order estimate of what the resource evolution is, ϕ(1)(x, t).
The agents then set to carry out a more accurate calculation. They “reset” all the agents and the

resource field to their original state, and then calculate the trajectory r(2)(x, t) of agents accord-

ing to Eq 2 using ϕ(1)(x, t) as an input. As agents move, they consume the resource, the evolu-

tion of which constitutes the next order estimation, ϕ(2)(x, t), which will be used to estimate

r(3)(x, t). They continue this procedure, obtaining at the end of each iteration a new guess for

the time evolution of the resource distribution. Throughout, we refer to the index i of ϕ(i) and

r(i) as the “(solution) iteration” coordinate and can be thought as an internal degree of freedom
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of agents. We call the number of times this iterative process is carried out the number of solu-
tion iterations the agents use.

Note that by using the actual simulated data of the agents’ motion and the resulting

resource distribution, we are assuming that the predictive agents are completely aware of what

is happening across all space. Furthermore, in simulations where we explore the dynamics of a

mixture of predicting and non-predicting (i.e. gradient ascending) agents, we assume that the

predictive agents are aware of who is predictive and who is not.

We study and report (a) the convergence of the predictive process of the agents, and (b)

how well the iterative solution performs, defined in terms of how much resource the agents

consume when traversing the solutions they obtain.

If the solutions r(i)(t) converge with i (or fluctuate with small amplitude), then this means

that an agent can exactly (or approximately) predict the future. If the iteration diverges or

fluctuates with a large amplitude, the agent cannot make a self-consistent prediction. Conver-

gence and self-consistency are proxies for measuring how well the agents are able to predict

the future.

In our simulations, agents’ solutions never converge exactly. Nevertheless, if an agent finds

a path that is “approximately correct”, then we can say it is making an accurate prediction.

Since successive iterations of path finding can be interpreted as a process of guessing and

checking what one’s path should be, self-consistency corresponds to agents being able to make

more accurate predictions. In other words, a convergent trajectory implies that agents are ful-

filling the model and have a correct prediction of the future.

Analysis

We performed a large number of simulations to determine if and how well predictive solutions

converge and how predictive agents perform when competing against non-predictive (τ = 0)

agents. In every simulation, there were N = 5000 total agents. The consumption rate of the

agents was taken to be γ = 1, and the diffusion rate was D = 0.01.

We investigated two initial conditions for the resource distribution. The first initial condi-

tion consists of two resource peaks of different magnitude (a larger Gaussian peak in the center

and a smaller Gaussian peak to its left). The second is a random distribution (Perlin noise) of

resources. Fig 1 shows these initial conditions.

We also ran a set of simulations where predictive agents compete against non-predictive

agents, which travel at the same velocity, c. The non-predictive agents simply ascend the

resource gradient, i.e. moving in the direction ofr�ð~r; tÞ. It is straightforward to show (cf.

Appendix) that in the limit τ! 0, predictive agents behave exactly like gradient-ascending,

non-predictive agents.

Instead of recording the absolute amount of resources consumed, we obtain a “consump-

tion factor” Cp and Cg for the predictive and gradient agents respectively, which we define as

the fraction of the total resources consumed by a population (of predictive agents or gradient

agents) divided by what fraction of the total agents the population is. To be specific, the con-

sumption factors (CF) Cp, Cg of the predictive and gradient ascending (non-predictive) agents

are,

Cp;g ¼
Rp;g=Rtot

Np;g=Ntot
ð3Þ

where Rp and Rg are the amounts of resources consumed, Np and Ng are the numbers of predic-

tive and gradient agents, and Rtot is the total amount of resources available for consumption.

The consumption factor allows us to easily compare how well the agents do relative to each
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other, and simply reduces to the fraction of the total resources consumed when one of Np or

Ng is zero.

We also tracked the difference between agents’ paths at different iterations. This difference,

for the kth agent between the mth and nth iteration is given by

lðm;nÞk ¼
1

T

ZT

0

dtð~r ðkÞm ðtÞ � ~r
ðkÞ
n ðtÞÞ

2

0

@

1

A

1=2

: ð4Þ

We then average of this quantity over all agents to determine the average L2 path difference

between these iterations. If this quantity is small, then agents are, on average, following the

same path both iterations. This L2 path difference quantifies how much on average the agents’

solutions are changing between solution iterations. We will use it to measure the average dif-

ference between consecutive solution iterations, i.e. L2 ¼ 1

S�N

PS
m¼1

PN
k¼1

lðm;mþ1Þ

k . L measures

how well the solutions of agents converge. In all plots the sample standard deviations are dis-

played as shaded regions around the curves in each figure.

Results

Predictive population

We first address how well a population consisting solely of predictive agents performs. We

found, counterintuitively, that predictivity is detrimental to consumption success. Specifically,

we observed that as the predictivity increases the consumption factor decreases and fluctuates

with larger amplitude (Fig 2A). We measured the average L2 path difference between consecu-

tive solution iterations, and found it to increase with predictivity. It is also clear from Fig 2B

that the consumption factor decreases sharply with increasing predictivity. This indicates that

agents are not successfully converging to solutions, except perhaps for very small values of

Fig 1. Examples of initial resource. (Color Online) Fig 1 A (Left) Randomly distributed (Perlin Noise) initial resource distribution. Fig 1 B

(Right) The two peaks initial resource distribution.

https://doi.org/10.1371/journal.pone.0186785.g001
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predictivity. More importantly, it is also clear that the agents’ consumption factor dramatically

decreases with predictivity.

Mixed population

The second question we addressed is how well predictive agents perform relative to non-pre-

dictive agents when they are mixed together. We ran simulations where the total number of

agents are kept constant while the fraction of predictive agents is varied, and measured the

solution convergence and resource acquisition success. For each measured quantity we col-

lected, we plot the average value and the sample standard deviation.

While running simulations of agents on the two peaks resource, we noticed that the perfor-

mance of the agents depends strongly on the initial positions of the agents, especially when

there are very few of them. This is because agents that are close to the peaks will have higher

likelihood of consuming a larger amount of resource compared to agents far away from the

peaks, regardless of the predictivity of the agents. Thus, to decouple the effects of predictivity

from the initial condition, we measured the average improvement in consumption factor due

to predictivity, i.e. the consumption factor after a large number of iterations (averaged over a

large number of time steps) minus the consumption factor at the first iteration. Since all agents

behave as gradient agents in the first iteration, this quantity measures how well predictive

agents do compared to how well they would have done had they all been gradient agents.

The difference between these two measures can be seen in Fig 3. In Fig 3A we show a plot

of consumption factor vs. number of predictive agents. While it is clear that predictive agents

do better in small numbers, it is also clear from the standard deviation window that initial

conditions play a significant role in how well agents perform. In contrast, when we plot the

improvement of consumption factor due to predicting ahead, as in Fig 3B, the behavior has a

much smaller variance.

Fig 2. Predictive agents. (Color Online) Fig 2 A (Left) The L2 path difference vs. predictivity. Fig 2 B (Right) The difference in consumption

factor vs. agent predictivity. Both plots averaged over 25 runs on a noise resource.

https://doi.org/10.1371/journal.pone.0186785.g002
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We observed that in the limit where there are few predictive agents, the gradient agents are

outperformed by the predictors, as seen in Fig 4A. However, as the number of predictive

agents increases, their advantage is mitigated, and they start performing more poorly then

the gradient agents. There are three noteworthy trends here: first, when there are very few

Fig 3. Comparison of consumption factor and difference in consumption factor. (Color Online) Fig 3 A (Left) Consumption factor vs.

number of predictive agents Fig 3 B (Right) Difference in consumption factor (how much predictivity improves consumption) versus number

of predictive agents. Data was averaged over 200 runs on a two peaks resource, the predictivity of the (predictive) agents was τ = 0.1.

https://doi.org/10.1371/journal.pone.0186785.g003

Fig 4. Difference in consumption rates. (Color Online) Fig 4 A (Left) Predictive agents consume more resources per capita than gradient

agents when there are a small number of them. When there are very few predictive agents, increased predictivity leads to increased

performance. Fig 4 B (Right) When there are few predictors, increased predictivity is beneficial. When a larger fraction of the agents are

predictors, increasing predictivity hurts performance quickly. For both plots, data was averaged over 200 runs on a two-peaks resource.

https://doi.org/10.1371/journal.pone.0186785.g004
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predictors (the left-most region of the graph in Fig 4A), increasing the predictivity increases

performance. Second, the larger the predictivity, the fewer predictive agents suffices for the

predictive population to perform worse than the gradient population. For example, the cross-

over for τ = 0.03 agents is at around 1850 predictive agents, while the crossover for τ = 0.1 is

around 1650. Thirdly, there seems to be a point at around 1400 predictive agents where the

agents of all predictivities do equally well, as shown by all four lines intersecting with one

another. These plots show data with the two-peaks initial condition. The initial condition with

Perlin noise exhibits the same qualitative behavior.

We also determined the consumption factor of the predictive agents as a function of predic-

tivity for different percent-compositions of predictors (Fig 4B). In this case, we observed that

predictivity is beneficial only for small percentages of predictive agents. For example, the 1%

predictive population benefits from all the values of predictivity in the range we plotted, while

the 20% predictive population seems to be helped by having predictivity of up to τ = 0.05 or so.

To determine how much agents’ solutions changed iteration to iteration, we analyzed the

average L2 difference between agents’ paths between iterations. We see in Fig 5A that the L2

path difference increases with predictivity and with the percent of predictive agents in the pop-

ulation. In Fig 5B, we report the L2 path difference for different population percentages as pre-

dictivity is varied. Increasing predictivity still seems to increase the path difference, albeit not

too strongly when predictors are in the vast minority. However, it is clear that populations

with a large fraction of predictors have larger path differences than populations with very

small fraction of predictors.

Effects of noise

Noise can drastically affect the collective behavior of many-body systems. To determine if this

is the case for our model, we introduced Gaussian white noise to the motion of the agents.

Fig 5. L2 path differences. (Color Online) Fig 5 A (Left) The L2 path difference of different predictivity agents, varying what fraction of the

total population is predictive. Note that in contrast to Fig 3, we have plotted the data for fractions from 0 to 1 instead of from 0 to 0.5 (there are

5000 agents total). Fig 5 B (Right) The L2 path difference for different fractions of predictive agents, varying predictivity. For both plots, data

was averaged over 25 runs on a random resource distribution (generated as Perlin Noise).

https://doi.org/10.1371/journal.pone.0186785.g005
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More specifically, after observing that predictors often iterated back and forth between the

same resource peaks crowded by other predictors, at the same time, we asked whether a weak

noise would break this synchrony. We chose a random velocity perturbation of the form

n
ffiffiffiffiffiffiffiffiffi
2Dt�

p
�~vr , where ν is a random value drawn from a normal distribution,~vr is a random

unit vector, Dt ¼
T

6ZpR, and we have chosen η = 1.308 × 10−3 (the viscosity) and R = 0.05. To

observe what effects random perturbations have on the predictors, we ran simulations similar

to those in the preceding section, pitting predictive and non-predictive agents against each

other, this time with finite noise.

In Fig 6, we plot the predictor vs. non-predictor behavior for two different levels of noise,

T = 0.1 and T = 1. We can see that the general behavior of the performance curves is similar

to each other and to that which we observe in the T = 0 case, which we studied in the last sec-

tion. However, the predictive agents do noticeably worse when there is a non-zero noise, as

compared to Fig 4A, while gradient agents do slightly better than they do at zero noise when

there are few predictive agents, and do just as well as before when predictive agents make up a

larger fraction of the system. Thus, we find that noise does not correct the “synchronized poor

choices” of predictors.

In Fig 7, we plot predictor (panel A) and gradient (panel B) performance curves for fixed

predictivity, τ = 0.03, and various levels of noise. From Fig 7A, we can see that the consump-

tion factor decreases monotonically with noise, when there are few predictors. When there are

more predictive agents, as seen on the right side of the figure, the curves seem to collapse on

one another, indicating that noise does not make a large difference. Note that even a small

non-zero noise has a large difference on performance; the difference in performance between

T = 0 and T = 0.025 is about the same as the difference in performance between T = 0.025 and

T = 1. In Fig 7B, we see the corresponding gradient agent performance curves. We can see that

for the fairly small values of noise that we used, the gradient agents have similar curves. We

have data for several other noise levels (but did not plot them here, to make the figures more

Fig 6. Effects of noise I. (Color Online) Fig 6 A (Left) Predictors vs. gradient agents (non-predictors) when the noise is T = 0.1. Fig 6 B

(Right) Predictors vs. gradient agents (non-predictors) when the noise is T = 1. For both plots, data was averaged over 50 runs on a two

peaks resource.

https://doi.org/10.1371/journal.pone.0186785.g006
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legible), and these curves also show the same behavior, with predictor performance decreasing

with increasing noise strength, and gradient performance remaining at a fairly constant level

(though slightly above the zero noise level).

Discussion

Our results suggest that predictivity, as defined by our model, does not yield success when

there are many predictors. Predictive agents do well only when they are competing against a

much larger number of non-predictive agents. This is because when there are few predictive

agents, they do not affect the system regardless of what actions they take. Thus, they are able to

predict the future relatively self-consistently and reliably, to pick the best option for their

motion without changing the future they are trying to predict. On the other hand, when there

are very many predictive agents, their actions affect the system strongly enough to invalidate

their guess at the resource.

Our study of simulation videos of many-body trajectories corresponding to consecutive

computation iterations reveals the mechanism behind this prediction driven instability: to

maximize resource consumption, agents must move along trajectories that are not only high

in resources, but low in population. Thus, it can be advantageous to move towards lower,

“next best” peaks if these should end up attracting fewer agents. When the density of predictors

is low, they can easily see ahead which lesser peaks will be unpopular, directly move there, and

out-compete every other agent who moves to the same highest peak.

However when the predictors are densely packed, all predictors close to one another will

pick the same “next-best” peaks which they anticipate will be least popular. Since this anticipa-

tion now increases the peak’s future popularity, in the next iteration the predictors will target

yet another peak, or return to an earlier choice.

We have uploaded as supplementary material several videos of the system running. Solution

iterations follow one after another, with the positions and resource resetting and then running

again. The resource is normalized at each time step, with yellow denoting areas of high

Fig 7. Effects of noise II. (Color Online) Fig 7 A (Left) Performance of predictors with τ = 0.03 at various noise levels. Fig 7 B (Right)

Performance of non-predictors (competing agains τ = 0.03 predictors) at various levels of noise. For both plots, data was averaged over 50

runs on a two peaks resource.

https://doi.org/10.1371/journal.pone.0186785.g007
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resource concentration, and blue areas of low resource concentration. The resource is normal-

ized at each frame—since the resource decays exponentially, this allows us to see the relative

abundance of resources for the entire run of the simulation. We denote predictors with purple

points and gradient (non-predictors) agents as green points.

We have two videos of mixed populations, S1 and S2 videos, which show mixed populations

(with 500 predictors with τ = 0.05 and 4500 gradient agents) competing on the two different

resources. While the overall dynamic behavior is very complex, one can observe that as the pre-

dictive iteration proceeds further, a predictor is less likely to occupy the same position as a gra-

dient agent. This indicates that predictive agents have a stronger preference to be at a distance

from other agents than gradient agents do. Also note that as iterations proceed, the motion of

the resources stay unchanged although the exact positions of the agents are different. This is

because of the stability provided by the gradient agents: Since they consume most of the

resources, when there are larger number of them, ϕ(x, t) becomes more deterministic, and

leads the predictive solutions to converge better. While the difference that predictivity makes is

subtle, the predictors get a consumption factor improvement of 0.51% and 0.98% on the noise

and two peaks resource distribution respectively, over the eight solution iterations, and the

consumption factor of the gradient agents decreased respectively by 0.028% and 0.094%.

We also have two videos of purely predictive agents, S3 and S4 videos. The cause for the

poor performance of the predictors is clear: During the first iteration, the predictors behave

like gradient agents. As iterations proceed, the predictors cluster around where they think the

largest resource peaks will be, and not around lesser peaks. However in the next iteration,

these lesser peaks draw the predictors, since agents prefer to move towards peaks that were less

popular in their previous iteration. This creates even stronger peaks in other places. In the end,

predictors form filaments and clusters that collectively move towards new “wrong” places at

every iteration. In other words, the agents’ predictive solutions are unstable, with small errors

tending to amplify and causing their predictions to be worse.

While our simulated model is one among infinitely many very specific choices of models

one could devise, we anticipate that the qualitative behavior we have observed will hold for all

strongly coupled predictive systems. Specifically, we anticipate that having many predictive

agents competing with each other will make it much harder for any of them to predict the

future, and that competing against a large number of non-predictive agents will allow predic-

tive agents to accurately predict the future without spoiling their own predictions too much.

Our work is a successor to works discussing unpredictability [18] and uncomputability

[19–22] in physics, and the effects of self-coupling [23]. There are systems whose dynamics

cannot be characterized, because doing so would be equivalent to solving the halting problem

for a Turing machine, a task that is undecidable. Deciding whether certain quantum spin sys-

tems on lattices are gapped or gap-less has been shown to be one such problem [19, 20], as has

the long term behavior of some simple physical models [18]. Reference [21] discusses the fact

that some physical systems, such as the aforementioned spin systems, are capable of universal

computation, which implies that some quantities associated with the system cannot be known.

[21] gives examples of simple quantum systems where deciding if the energy spectrum is dis-

crete or continuous is uncomputable, and suggests that since algorithmic information content

is uncomputable, finding the most concise forms of physical laws may not be possible.

Our agents are running into a fundamental computational problem when they attempt to

find solutions to the governing equations (Eqs 1 and 2). A local differential equation (assuming

it is well posed and that there are not to many singularities) can be solved, given a starting

point, by finite-difference-type methods. To solve the equation, one takes small local steps,

calculating a sequence of functions (each a time slice of the solution) where each function

depends on spatio-temporal variables, and the previous function. In other words, the solution
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can be approximated by a primitive recursive function, i.e. ϕ(k, x1, . . ., xn) is defined by

ϕ(0, x1, . . ., xn) = ψ(x1, . . ., xn) and ϕ(k+1, x1, . . .xn) = μ(k, ϕ(k, x1, . . ., xn), x1, . . ., xn) for

some functions μ and ψ [24]. Fixed point theory tells us that the error between our functions

ϕ(k, . . .) and the true solution is bounded and a decreasing function of the step size. Thus, one

can be guaranteed to solve a differential equation of this kind, within a given error tolerance,

in a finite number of steps.

This is not the case with our system. Barring carefully constructed “mild” special cases

(such as ones where the agents start very far apart, or they have very small predictivies), our

equations do not admit solutions that can be obtained recursively. For such “mild” cases that

do yield convergent solutions, the only parts of the future an agent has to take into account are

parts that looks very similar to the current state of the system, so that our equations effectively

become local. However, when the predictivity of the agents start to play an important role, it is

not possible to propagate a non-local system forward in time as one usually does with local sys-

tems. Instead, one must substitute an entire trajectory and verify if it satisfies the equation.

Unfortunately, this is not a very effective solution method, especially when the non-local

system happens to admit chaotic solutions. In this case, a small change between two guessed

solutions can lead to vastly different next guesses. What is worse, even if one finds an accurate,

self-consistent solution at some level of discretization, this need not be a good solution at a dif-

ferent level of discretization.

The crucial question then, is, given an initial guess at the system, will our iterative proce-

dure terminate? We have no way to know beforehand if the procedure will terminate, which,

loosely speaking, is similar to the halting problem, i.e. it is not possible to have an algorithm

that will return whether an input program, together with its initial state, will halt or not [25].

We cannot claim that the difficulties surrounding our chaotic non-local iteration and the

limitations of the halting problem goes beyond a resemblance. First, we do not have any proof

that it is impossible to solve our system in a finite amount of time. One way to do this might be

to showing that the chaotic non-local system at hand is capable of universal computation. Sec-

ondly, we do not know if our solution scheme is the most effective one for the problem at

hand. It may be that there exists an algorithm that can obtain approximate solutions and con-

verges for all possible initial states and parameter values. Lastly, our problem may simply be

ill-posed, in the sense that for certain initial conditions and parameter values, there may not

exist any function that satisfies the equations. The existence and uniqueness of differential

equations is often proved by iteratively defining sequences of functions with decreasing error

and showing that the sequence converges to some function, and that this function fulfills the

differential equation. However, this procedure runs into the same issue of not having a recur-

sive way to construct approximations with decreasing error. Accordingly, if the system is

uncomputable, it may not be possible to prove that there is a solution.

Conclusion

We have constructed a simple, biologically inspired model in which agents attempt to predict

the future and act on their predictions to determine the best course of action. We find that

convergence of solutions become unlikely with even small amounts of predictivity and that

more predictive agents consume less of the resource when they are competing against a large

number of other predictive agents. In contrast, when small numbers of predictive agents com-

pete against a large number of gradient agents, they outperform the gradient agents (cf. Fig 4)

and gain more from having greater predictivity.

While we used a specific model for our simulations, we expect the predictivity driven insta-

bility to be a general property for a wider class of systems containing strongly coupled
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predictors with conflicting interests. When agents in a system base their actions on their pre-

diction of the future (which itself is affected by those actions), the system should exhibit high

sensitivity to the initial conditions and the temporal sight of agents.

Appendix

Proof that predictive matter reduces to passive matter in the limit τ! 0

We reproduce here, for convenience, Eq 2:

~Mð~r ; tÞ ¼
Zt

0

dt0
Z

0<j~r 0 � ~r j<c�t0

d2~r 0 � �ð~r 0; t þ t0Þŵð~r 0 � ~rÞFðRÞ

and recall that predictive matter moves at a constant velocity c in the direction that ~M points

and non-predictive matter moves at a constant velocity cp in the direction ofr�ð~r; tÞ. We

assume here, as we have throughout the paper, that cp = c. Suppose we take the limit τ! 0.

We will not explicitly write out limτ! 0 in the equations below since the actual procedure for

determining which direction predictive matter should head involves normalizing ~M before

taking the τ! 0 limit. We will be using the fact that we only need to keep terms of first order

in τ.

First, with S�ð~rÞ being the closed �-ball centered at~r , change position variables in the inte-

gration:

~Mð~r; tÞ ¼
Zt

0

dt0
Z

Sc�t0 ð~rÞ

d2~r 0 � �ð~r þ~r 0; t þ t0Þŵð~r 0ÞFðRÞ

where we have shifted our coordinates so R ¼ Rð~r 0; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr0Þ2 þ lðt0Þ2
q

. This makes it easy

to see that ϕ can be expanded as �ð~r þ~r 0; t þ t0Þ ¼ �ð~r ;~tÞ þ~r 0 � r�ð~r; tÞ þ t0 @�
@t þOðt2Þ.

Note that while in general~r 0 would not have to depend on τ, our limits of integration,

j~rj0 < c � t, imply that Oðð~r 0Þ2Þ ¼ Oðt2Þ. Switching to polar coordinates, using

ŵðyÞ ¼ x̂ sin ðyÞ þ ŷ cos ðyÞ, and keeping first order terms in τ, our expression for ~M is

Zt

0

dt0
Zc�t0

0

dr
Z2p

0

dy �ð~r ;~tÞ þ r � ŵðyÞ � r�ð~r ; tÞ þ t0
@�

@t

� �

ŵðyÞFðrÞ

The first term, �ð~r ; t0ÞFðrÞŵðyÞ, and the last term, t0 @�
@t ŵðyÞFðrÞ, depend only on theta for

each fixed r, and integrate to zero in the theta integral. Let us choose our coordinate system so

thatrϕ points in the θ = 0 direction (the ŷ direction). The remaining term does not depend

on t0, so that integral contributes only a factor of τ, which we shall ignore because we only care

about the direction of ~M , not its magnitude.

~Mð~r ; tÞ /
Zc�t0

0

dr
Z2p

0

dyðFðrÞ � r � ŵðyÞ � cos ðyÞ k r�ð~r; tÞ kÞ

~Mð~r; tÞ /k r�ð~r ; tÞ k
Zc�t0

0

drðFðrÞ � rÞ
Z2p

0

dyðŵðyÞ � cos ðyÞÞ

Collective motion of predictive swarms

PLOS ONE | https://doi.org/10.1371/journal.pone.0186785 October 24, 2017 13 / 16

https://doi.org/10.1371/journal.pone.0186785


~Mð~r; tÞ / p k r�ð~r ; tÞ k
Zc�t0

0

drðFðrÞ � rÞ:

Now the remaining integrals are just some real numbers (ignoring the question of conver-

gence, which we will discuss in a moment) and all the vectorial quantities have been found.

We then simply have that

~Mð~r; tÞ /k r�ð~r; tÞ k :

This means predictive agents behave exactly as gradient agents as τ! 0. Note that we have

not appealed at all to the form of F. It is of course possible that
Rc�t0

0

drðFðrÞ � rÞ does not con-

verge. In fact, it would not for our usual force function, F(r) = r−2, which is logarithmically

divergent. In this case, the correct interpretation is to take the principal value of the integral,

i.e. integrating over the annulus A�;c�t0 ð~rÞ, normalizing the vector, and only then taking �! 0.

In this case, the proof is not substantially different. It amounts to changing the lower limit in

the previous r integrals for 0 to �. We get the same result that motion will be in the gradient

direction.

The fact that our expression for ~M does not depend at all on the form of F(r) up to order τ2

tells us that for sufficiently small values of τ, the response of the agents do not depend sensi-

tively on the exact functional form of F.

Technical details

We give some additional details on the technical aspects of our simulator here for the inter-

ested party. The simulator is written in C++ and available for perusal on Github—https://

github.com/nrupprecht/Predict. The most recent version is contained in the folder “Predicti-

veSystem”, while older versions are contained in the folder “_PredictiveSystem.”

Resources are consumed in the following manner: for each bin in the (discretized) resource

field, a tally is made of all the agents whose positions fall within that bin. The density of agents

is calculated, the number of agents in the bin divided by the bin’s area. To ensure the perfor-

mance of the simulation will remain similar with an increasing number of agents, we define a

scaled consumption rate to be γs = γ/Nt where Nt is the total number of agents in the simula-

tion and γ is the externally set consumption rate parameter. This way, increasing the number

of agents has the effect of more closely approximating a continuous distribution of agents, and

the characteristic resource consumption time is independent of the total number of agents,

only depending on γ. The amount of resources in the bin is decreased by ϕt! ϕt − �γsϕt − 1ρ,

and the amount of resources the agents have consumed is increased by �γsϕt−1 Nbin where Nbin

is the total number of agents in the bin. With this setup, the consumption rate of the agents

and behavior of the resource is independent of the field discretization and the number of

agents, and the total reduction in resources over the length of the simulation matches the total

amount consumed by the agents. This process is done separately for predictive and gradient

agents so we can record the consumption of each population independently. Note that since

consumption depends on ϕt−1, which is set, and ϕt is adjusted, no agent consumes any portion

of the resource “before” any other, so the system is fair.

The program can be compiled by either intel icpc compiler or GNU g++ compiler by chang-

ing two lines in the Makefile marked “CHOSE COMPILER.” For intel, use “CC = $(ICC)” and
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“COMP = $(ICOMP)”, for GNU, use “CC = $(GCC)” and “COMP = $(GCOMP).” Currently,

the intel version is faster than the GNU version.

Supporting information

S1 Video. Mixed-noise. The evolution of a system with 500 predictors and 4500 non-predic-

tors on a noise resource. Eight solution iterations are show, one after another. Green dots rep-

resent gradient (non-predictive) agents, purple dots represent predictive agents.

(MOV)

S2 Video. Mixed-two-peaks. The evolution of a system with 500 predictors and 4500 non-pre-

dictors on a two-peaks resource. Eight solution iterations are show, one after another. Green

dots represent gradient (non-predictive) agents, purple dots represent predictive agents.

(MOV)

S3 Video. Predictors-noise. A system of 5000 predictors on a noise resource. Eight solution

iterations are show, one after another. Green dots represent gradient (non-predictive) agents,

purple dots represent predictive agents.

(MOV)

S4 Video. Predictors-two-peaks. A system of 5000 predictors on a two-peaks resource. Eight

solution iterations are show, one after another. Green dots represent gradient (non-predictive)

agents, purple dots represent predictive agents.

(MOV)
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24. Gödel K. On formally undecidable propositions of Principia Mathematica and related systems. Courier

Corporation; 1992.

25. Turing AM. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of

the London mathematical society. 1937; 2(1):230–265. https://doi.org/10.1112/plms/s2-42.1.230

Collective motion of predictive swarms

PLOS ONE | https://doi.org/10.1371/journal.pone.0186785 October 24, 2017 16 / 16

https://doi.org/10.1103/PhysRevLett.115.188302
https://doi.org/10.1103/PhysRevLett.115.188302
http://www.ncbi.nlm.nih.gov/pubmed/26565505
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/PhysRevE.90.013019
https://doi.org/10.1103/PhysRevLett.113.238701
http://www.ncbi.nlm.nih.gov/pubmed/25526171
https://doi.org/10.1016/j.jet.2011.07.001
https://doi.org/10.1371/journal.pone.0020721
http://www.ncbi.nlm.nih.gov/pubmed/21698284
https://doi.org/10.1103/PhysRevLett.110.168702
http://www.ncbi.nlm.nih.gov/pubmed/23679649
https://github.com/nrupprecht/Predict/tree/master/PredictiveSystem
https://doi.org/10.1103/PhysRevLett.64.2354
http://www.ncbi.nlm.nih.gov/pubmed/10041691
https://doi.org/10.1038/nature16059
http://www.ncbi.nlm.nih.gov/pubmed/26659181
https://doi.org/10.1103/PhysRevLett.71.943
http://www.ncbi.nlm.nih.gov/pubmed/10055407
https://doi.org/10.1007/978-3-7091-6597-3_8
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1371/journal.pone.0186785

