
RESEARCH ARTICLE

Switching and optimizing control for coal

flotation process based on a hybrid model

Zhiyong Dong, Ranfeng Wang*, Minqiang Fan, Xiang Fu

College of Mining Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China

* wrf197010@126.com

Abstract

Flotation is an important part of coal preparation, and the flotation column is widely applied

as efficient flotation equipment. This process is complex and affected by many factors, with

the froth depth and reagent dosage being two of the most important and frequently manipu-

lated variables. This paper proposes a new method of switching and optimizing control for

the coal flotation process. A hybrid model is built and evaluated using industrial data. First,

wavelet analysis and principal component analysis (PCA) are applied for signal pre-pro-

cessing. Second, a control model for optimizing the set point of the froth depth is constructed

based on fuzzy control, and a control model is designed to optimize the reagent dosages

based on expert system. Finally, the least squares-support vector machine (LS-SVM) is

used to identify the operating conditions of the flotation process and to select one of the two

models (froth depth or reagent dosage) for subsequent operation according to the condition

parameters. The hybrid model is developed and evaluated on an industrial coal flotation col-

umn and exhibits satisfactory performance.

Introduction

In the process of coal preparation, flotation is used to separate the ash-forming mineral matter

and the carbonaceous materials of fine coal below 0.5 mm in size [1,2]. This process is widely

applied in countries such as China, USA, Australia, Canada and India [3]. Flotation columns

are extensively studied and used as an efficient coal flotation equipment due to many advan-

tages, including the simplicity of construction, lack of moving parts, and low energy consump-

tion, among others. [4]. According to the different structures and separation principles,

flotation columns mainly include the Leeds column, Microcel column, packed column, Flo-

taire column, hydrochem column, Jameson column and cyclonic micro-bubble column [5].

Over the past two decades, increasing attention has been focused on research on intelligent

control of the flotation process. Supervisory control and multivariate projection methods have

been successively applied to flotation columns [6]. Ou et al. described a multiple input/multi-

ple output (MIMO) control system using a method that combined PID and fuzzy control for

the flotation column in which the two output variables were the aeration rate and pulp level

[7]. Mohanty used an artificial neural network to achieve predictive control of the flotation

pulp level [8]. Maldonado et al. used a combined PI and multivariable predictive control
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strategy to control the flotation column [9]. Karelovic et al. proposed a framework for predic-

tive control of a hybrid model in mineral processing [10], and Putz and Cipriano applied the

hybrid model predictive control to flotation circuits, demonstrating performance superior to

that of conventional schemes [11]. Xie et al. proposed an integrated control strategy for reagent

addition, and the model included an estimator of the feed grade based on probabilistic support

vector regression, a preset controller based on the operational pattern method, and a feedback

controller based on the fuzzy control system [12]. These studies indicate that hybrid control

methods are suitable and effective for optimization of the flotation process.

Cubillos and Lima showed that reagent dosage and pulp level are two primary variables

manipulated in the flotation process [13]. These two variables are also the most frequently

adjusted in the industrial coal flotation process and directly affect the quality of flotation prod-

ucts. Expert systems and fuzzy supervisors have proven to be practical and excellent tools for

complex processes [14]. A hybrid system combining expert systems and fuzzy controllers has

been used at the El Teniente Concentrator and the Salvador Concentrator [15], and a feedfor-

ward and feedback expert system (FFFBES) that combines a feedforward action with classical

feedback expert control was successfully implemented in an experimental flotation circuit

[16]. The research presented in this work uses fuzzy control for set-point optimization of the

froth depth and the expert system for set-point optimization of the reagent addition.

Although both the froth depth and reagent dosage significantly influence the result of flota-

tion, these variables are typically not adjusted simultaneously due to the coupling between var-

iables and the hysteresis of the flotation process. For coal preparation plants that contain a

distributed control system (DCS), operators typically determine which variable must be

adjusted in real time and change the set point according to observation and experience. In the

actual operation process, with the aim of ensuring product quality, we prefer to reduce the

reagent dosage rather than adjust the froth depth, and we prefer to adjust the froth depth

rather than increase the dosage. The coordinated adjustment of these two variables is the key

to ensuring the quality of the flotation products and reducing the costs. To select an appropri-

ate controller within a reasonable time frame, the hybrid model should be able to execute a rea-

sonable and timely switch of the controllers using auxiliary variables. Thus, controllers for

different manipulated variables are used according to different condition parameters. In this

case, the determination of switching points is critical.

The support vector machine (SVM) proposed by Vapnik [17] has been widely developed in

pattern recognition, image classification, regression prediction and other fields [18,19]. In the

least squares-support vector machine (LS-SVM), the equality constraints are used to replace

the inequality constraints of SVM [20]; thus, the computational complexity is reduced, and the

calculation speed is greatly accelerated. Therefore, the LS-SVM modeling method can meet

the actual requirements of the industrial process. In the work presented, the LS-SVM is used

in identification and classification of the operating conditions of the floatation process, and a

selection is made between control of the froth depth or reagent addition.

In the process of modeling, data pre-processing plays an important role in the accuracy of

the model. In this research, the modeling data are obtained from sensors in the actual indus-

trial process such that the measurement inevitably contains a certain amount of outliers and

noise. The accuracy and reliability of the data can be guaranteed by filtering. Wavelet filtering,

which is conducted in many fields and offers favorable results [21,22], is adopted in this study.

In addition, principal component analysis (PCA) is widely applied to extract features and

reduce dimensions [23,24]. Because many variables affect the flotation process, it is challenging

to estimate which features are more sensitive to the model identification results. Therefore, in

this study, PCA is used to fuse the original features and extract the more sensitive features for

use as the input of the LS-SVM.

Optimizing control for coal flotation process
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The remainder of this paper is organized as follows. The coal flotation process is described

in Section 2, and the modeling approaches are introduced in Section 3. In Section 4, we report

the results of the experiments and evaluation of the proposed model. Section 5 presents the

conclusions of this research. The structure of the proposed hybrid model is shown in Fig 1.

Process description

For research on switching and optimizing control for the coal flotation process, we chose a

coal preparation plant that uses a cyclonic micro-bubble flotation column (abbreviated as

FCMC), which was developed and patented by Liu, J. T. [25] and is widely used in Chinese

coal preparation plants. A schematic illustration of the flotation column is shown in Fig 2 [2].

The FCMC flotation column is divided into three working zones: the froth zone, collection

zone and scavenging zone. The washing device and overflow groove are located on the top of

the column. The inlet is located at approximately one third of the column height. The concen-

trate is discharged from the overflow groove, and the tailings are discharged from the under-

flow port. The circulation pump is connected to the air bubble generator and is situated

outside the column body. When the circulating pump jets the slurry, the bubble generator

inhales air and mixes it with the frother in the coal slurry. A large number of micro-bubbles

are released in the pressure-reduction process. Micro-bubbles enter the column along the tan-

gential direction and move rotationally under centrifugal force. The bubbles and mineralized

gas-solid floccules move upward through the rotational flow center and enter the collection

zone. The unmineralized tailings move downward and discharge through the underflow. The

reverse movements of the feed and air bubbles promote the mineralization and formation of

gas-solid floccules.

The process of FCMC flotation column has the following main effect factors: column

height, particle size distribution, feed ash content, concentration, flow rate, gas holdup, wash

Fig 1. Structure of the proposed hybrid model.

https://doi.org/10.1371/journal.pone.0186553.g001
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water rate, reagent dosage, and froth depth (pulp level) [26,27]. Every factor has a certain effect

on the quality of the coal flotation products (ash content and recovery). The gas holdup is

determined by the frother dosage and the circulating pulp pressure [28]. The particle size com-

positions differ between coal flotation and ore floatation, and the fine particle content of coal

flotation is less than that of ore floatation. Additionally, according to the manufacturer’s

instructions, under the premise of the product quality is qualified, as little wash water as possi-

ble should be used and even without use of wash water. Therefore, the wash water rate is not

considered in this paper. Reasonable reagent addition can promote the separation of useful

minerals and gangue by improving the hydrophobicity of the minerals [29]. The froth depth

also plays an important role. In a flotation column, the particles collide with the bubbles and

adhere to them in the collection zone. The froth zone is composed of the bubbles that adhere

to particles. By increasing the collection zone, the pulp level can increase the probability that

particles stick to the bubbles, thus improving the recovery of the concentrate. In contrast, by

increasing the froth zone, the froth depth can enhance the secondary enrichment of froth flota-

tion, thus improving the grade of the concentrate. In this research, the froth depth and reagent

addition are selected as the two manipulated variables. In the process of coal flotation, the

Fig 2. Schematic illustration of the FCMC flotation column [2].

https://doi.org/10.1371/journal.pone.0186553.g002
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main process variables include disturbance variables, manipulated variables, and controlled

variables, as listed in Table 1.

Hybrid model establishment

In this work, we define two different control levels in automatic control of the flotation col-

umn, namely, stable control and optimizing control. The purpose of stable control is to ensure

that the flotation column operates in a stable state under the fixed parameters and obtains sta-

ble and qualified products. Stable control is the basic requirement of flotation column automa-

tion. Based on stable control, optimization control can be applied to adjust the set points of the

main manipulated variables according to different flotation processes. Under the premise of

ensuring qualified products, the cost consumption is maintained at the lowest value.

Optimizing control model for froth depth based on fuzzy control

In the coal slime flotation process, the froth depth (pulp level) is one of the most frequently

adjusted variables and has a significant influence on the performance of the flotation process.

The froth depth measurement method is shown in Fig 3. An ultrasonic liquid-level sensor is

installed on the top of the tailing tank, a floating ball is connected to the flat plate through a

connecting rod, and these items are fixed on the tailing tank through the mounting rack. The

froth depth and pulp level are calculated according to Eqs 1 and 2.

h1 ¼ h3 þ h4 þ h5 ð1Þ

h2 ¼ h0 � h1 ð2Þ

where h0 represents the flotation column height, h1 represents the froth depth, h2 represents

the pulp level, h3 represents the vertical distance between the probe of the ultrasonic liquid-

level sensor and the overflow weir of the flotation column, h4 is the sensor measurement value,

and h5 is the vertical distance between the liquid surface and the flat.

In the process of stability control of froth depth, the measured value of the froth depth is

compared with the set point, and after PID calculation, the valve opening is output to control

the tailing discharge rate. Based on stability control [30], the froth depth set-point optimizing

control model is designed based on fuzzy control. The formula for the dynamic balance of the

liquid level in the container can be expressed as in Eq 3.

ROC ¼ Qin � Qout ð3Þ

where Qin represents the liquid inflow per unit time, Qout represents the liquid outflow per

unit time, and ROC represents the rate of change of liquid storage in a container. In this coal

Table 1. Process variables in the proposed hybrid model.

Variable type Name

Disturbance variables Feed concentration

Feed flow rate

Circulating pulp pressure

Manipulated variables Collector dosage

Frother dosage

Froth depth

Controlled variables Ash content of clean coal

Recovery rate of clean coal

https://doi.org/10.1371/journal.pone.0186553.t001
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flotation process, the feed flow has a significant influence on the froth depth. The deviation of

the feed flow and the rate of change of deviation are used as the input of the fuzzy controller,

and the froth depth is the output. "E" represents the deviation of feed flow, "EC" represents the

rate of change of deviation, and "D" represents the froth depth. Fuzzy sets of E, EC and D are

described as {NB, NM, NS, ZO, PS, PM, PB}, where "NB" means negative big, "NM" means

negative medium, "NS" means negative small, "ZO" means zero, "PS" means positive small,

"PM" means positive medium, and "PB" means positive big.

The triangle function is selected as the membership function. The Barycenter method is

used in defuzzification. The fuzzy rules are designed according to the following ideas: When

the E is PB and the EC is PB, this state indicates that the feed flow increases significantly. At

Fig 3. Schematic diagram of the froth depth measurement.

https://doi.org/10.1371/journal.pone.0186553.g003
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this time, the froth depth set point should be increased, and the pulp level must be decreased,

thus reducing the overflow velocity of the froth, enhancing the secondary enrichment, and

ensuring the concentrate grade. Furthermore, improvement in the tailing discharge rate can

guarantee the treatment capacity of the flotation column. Otherwise, when the E is NB and the

EC is NB, this state indicates that the feed flow decreases significantly, and at this point, the

froth depth set point should be decreased and the pulp level increased to supply additional

time for particles to adhere to the bubbles, thus improving the recovery of the concentrate.

Ultimately, the concentrate grade is improved. Accordingly, the fuzzy rules are designed as

shown in Table 2.

The fuzzy control rule set can be described using fuzzy relation matrix A:

A ¼
S

Ei � ECj � Dk ð4Þ

At point n,

D ¼ ðEn�ECnÞ � A ð5Þ

Optimizing control model of reagent dosage based on expert system

The main coal flotation reagents are the collector and frother. In general, experienced opera-

tors are often able to adjust the reagent dosage in a timely manner according to their own

experience. Thus, in this research, the expert system is based on operator experience and

expert advice. Production rules of the type "if A and B, then C" are used to establish the expert

rule base. The expert rules are shown below.

Rule 1: IF Q< Q1 AND C< C1, THEN Qc = Qc 1 AND Qf = Qf 1

. . .. . .

Rule j: IF Q < Q1 AND Cj-1 < C< Cj, THEN Qc = Qc j AND Qf = Qf j

. . .. . .

Rule n + 1: IF Q< Q1 AND Cn< C, THEN Qc = Qc n + 1 AND Qf = Qf n + 1

. . .. . .

Rule i�(n + 1): IF Qi-1 < Q< Qi AND Cn < C, THEN Qc = Qc i�(n + 1) AND Qf = Q i�(n + 1)

. . .. . .

Rule (i-1)�(n + 1)+j: IF Qi-1 < Q < Qi AND Cj-1 < C< Cj,THEN Qc = Qc (i-1)�(n + 1)+j AND

Qf = Q(i-1)�(n + 1)+j

Table 2. Fuzzy rules of froth depth control.

D EC

NB NM NS ZO PS PM PB

E NB NB NB NM NM NM ZO ZO

NM NB NM NM NM NS ZO ZO

NS NM NM NS NS ZO PS PS

ZO NM NM NS ZO PS PM PM

PS NS NS ZO PS PM PM PM

PM ZO ZO PS PS PM PB PB

PB ZO ZO PS PM PM PB PB

https://doi.org/10.1371/journal.pone.0186553.t002
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Rule (m + 1)�(n + 1): IF Q > Qm AND C> Cn, THEN Qc = Qc (m + 1)�(n + 1) AND Qf =

Qf (m + 1)�(n + 1)

where "m", ’’n", "Qi", "Qj", "Qc", and "Qf" are determined by experienced operators and experts,

and i = 1,. . .,m; j = 1,. . .,n. When the feed flow rate and concentration change, the collector

and frother dosages are automatically adjusted according to the expert rules.

Switching mechanism

The operating parameters of the complex production process are often coupled, and simulta-

neous adjustment of the manipulated variables tends to reduce the stability and cause oscilla-

tion of the system. Different factors are crucial at different times; thus, reasonable adjustment

of a manipulated variable at the correct time is highly important to maintaining the proper

function of the flotation process and ensuring the quality of the product. In a practical produc-

tion process, operators tend to adjust the individual manipulated variable (reagent dosage or

froth depth), and after observing the adjustment effect, they adjust another variable if neces-

sary. However, operators rarely adjust two variables simultaneously. The coordinated adjust-

ment of the two variables is the key to ensuring the quality of the flotation products and

reducing the costs.

In this work, we consider a group of data that, as a whole, describes an operating condition,

namely a pattern. The process parameters that describe the current state of the process are gen-

erally divided into condition parameters and decision parameters. The parameter of the cur-

rent production process that can be measured x = {x1,x2,. . .,xi} is defined as the condition

parameter, and the parameter of the corresponding operating condition category y = {+1, −1}

is defined as the decision parameter.

In this paper, the hybrid model can select different controllers according to different oper-

ating conditions (condition parameters), which are described above. The controller switching

mechanism is converted into a supervised classification problem, and the LS-SVM is used to

solve this problem.

The training set is S:

S : fðxi;yiÞ; xi 2 R
n; yi 2 f� 1;þ1g; ; i ¼ 1; 2; . . .Ng ð6Þ

where {xi} indicates the input vector and y2{−1,+1} represents the corresponding output

vector.

The discriminant function is described as follows:

gðxÞ ¼ oT � x þ b ð7Þ

The optimal classification hyperplane must meet the condition that |g(x)|�1. Thus,

(
o � xi þ b � þ1 ; if yi ¼ þ1

o � xi þ b � � 1 ; if yi ¼ � 1
i ¼ 1; 2; . . .N ð8Þ

The classification decision function can be expressed as follows:

f ðxiÞ ¼ sgnðoT � ;ðxiÞ þ bÞ ð9Þ

where F(�) is a nonlinear function that maps the input vector to the high-dimensional feature

space, xi is the support vector, ω is the weight vector, and b is a constant. Thus, the LS-SVM
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classification in the feature space can be converted into an optimization problem:

(
Min ; o; eð Þ ¼

1

2
oToþ

g

2

PN
i¼1
e2

i

yiðoT � ;ðxiÞ þ bÞ ¼ 1 � ei; i ¼ 1; 2; . . . ; N
ð10Þ

where F(ω,e) is the objective function, γ is the penalty factor, and ei is the slack variable.

To solve the above problems, the Lagrange multiplier αi is introduced, and the constrained

problem is transformed into an unconstrained problem:

Lðo; b; e; aÞ ¼ ;ðo; eÞ �
PN

i¼1
aiðyiðo

T � ;ðxiÞ þ bÞ þ ei � 1Þ ð11Þ

According to the KTT condition of optimal system theory, the following equations apply:

w ¼
PN

i¼1
aiyiφðxiÞ;

PN
i¼1

aiyi ¼ 0; ai ¼ gei ð12Þ

Thus, the linear equations are obtained as follows:

0 YT

Y Oþ g� 1I

" #
b

a

" #

¼
0

�1

" #

ð13Þ

where Y = [y1,���,yN], ī = [1,���,1], αi = [α1, α2,���, αN], and Oil = yiylF(xi)TF(xl), (i,l, = 1,���,N).

We define K(x,xi) = F(x)TF(xi), i = 1,���,N. K(x,xi) to represent the kernel function, and the

classification decision function is obtained as follows:

f ðxÞ ¼ sgnð
PN

i¼1
aiyiKðx; xiÞ þ bÞ ð14Þ

The selection of the kernel function is critical in the process of LS-SVM modeling. The RBF

has been frequently applied in classification due to its favorable learning ability, excellent non-

linear mapping performance and simple form [31,32]. Therefore, the RBF is selected as the

kernel function of the LS-SVM. The RBF is described as follows:

K x; xið Þ ¼ exp �
ðx � xiÞ

2

2s2

� �

ð15Þ

However, the prediction accuracy of the LS-SVM model is heavily dependent on the selec-

tion of its internal parameters. In this research, the particle swarm optimization (PSO) algo-

rithm [33,34], a random search algorithm based on group collaboration, is used to optimize

the parameters “γ” and “σ2”.

As described above, the computation flowchart of the hybrid model is shown in Fig 4.

Implementation and evaluation

To validate its efficacy, the hybrid model is applied to an industrial flotation column in the

Xingtai Coal Preparation Plant of Hebei Province, China. The flotation column is used in the

separation of fine coal slime 0–0.25 mm in size. Kerosene is used as collector, and fusel is used

as the frother. The experimental data are generated by the industrial process of the flotation

column.

Signal pre-processing

To eliminate the noise of the sensor in the industrial field and guarantee the quality of the sen-

sor data, wavelet filtering is adopted [35]. In this work, the wavelet analysis method is used to
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filter the sensor signal. Because the signal obtained by the sensor is a discrete signal, the dis-

crete wavelet transform [36] is adopted for signal processing.

The filter results should be evaluated with respect to the optimal filtering effect. In this

work, the root-mean-square error (RMSE), signal-to-noise ratio (SNR) and smoothness are

used.

The RMSE is defined as follows:

RMSE ¼ f½f ðnÞ � f̂ ðnÞ�2=ng
1=2

ð16Þ

where f (n) represents the original signal and ^f(n) represents the signal after de-noising.

The SNR is defined as follows:

SNR ¼ 10Log10ðPs=PzÞ ð17Þ

where PS = [∑f 2(n)] /n represents the original signal power and PS = RMSE2 represents the

noise power.

Fig 4. Computation flowchart of the hybrid model.

https://doi.org/10.1371/journal.pone.0186553.g004
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The smoothness index is defined as follows:

r ¼ f
P

nþ1
½f̂ ðnþ 1Þ � f̂ ðnÞ�2=

P
nþ1
½f ðnþ 1Þ � f ðnÞ�2g ð18Þ

where f (n) represents the original signal and ^f(n) represents the signal after de-noising.

The flotation feed flow rate Q, which is one of the input variables of the LS-SVM identifica-

tion model, is used as an example of the wavelet filtering process. The Daubechies wavelet is

adopted as the wavelet function, and the decomposition scale is 3. In MATLAB, the "wavedec"

function is used in wavelet decomposition, the "Thselect" function is used in threshold selec-

tion, and the "wdencmp" function is used in wavelet reconstruction. Threshold selection plays

an important role in the wavelet filtering process [37]. In this paper, the "rigrsure" rule based

on the unbiased likelihood estimation, the "sqtwolog" rule based on the fixed threshold, the

"heursure" method based on the heuristic threshold selection, and the "minimax" method

based on the minimax principle are adopted as options for comparison in the threshold selec-

tion method to filter the original data. The original data are obtained using an electromagnetic

flowmeter through a continuous sampling process with a sampling time interval of 1 s, yielding

a total of 250 samples.

The filtering results of the four threshold selection methods are shown in Fig 5. The results

indicate that the stability and smoothness of the filtered signal are considerably better and that

certain noise points have been eliminated. The evaluation of the four filter results is shown in

Table 3.

Table 3 illustrates that the minimum RMSE and maximum SNR are obtained when the

threshold selection is based on the "rigrsure" rule. Relative to the other three types of threshold

selection methods, the noise reduction effect of the "rigrsure" rule is the best, and the devia-

tion between the filtered data and original data is minimal. For the smoothness index r, the

smoothness of the data filtered using the "rigrsure" rule is worse than when the "heursure" and

"sqtwolog" rules are used but better than when the "minimax" rule is used. This result suggests

that the wavelet threshold filtering method based on the "rigrsure" rule can capture the general

Fig 5. Comparison of the filtering effect.

https://doi.org/10.1371/journal.pone.0186553.g005
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trend of the original data while retaining more signal details. Considering the above analysis,

the "rigrsure" rule, which is based on the unbiased likelihood estimation, is selected as the

threshold determination method in this research.

Flotation is a complex process with numerous influence variables that are correlated to a

certain degree. It is challenging to estimate which features are more sensitive to the model. To

remove redundant information and reduce the computational complexity of the LS-SVM,

PCA is used to extract features, fuse the correlation between variables and reduce the dimen-

sions of the input data. For a coal preparation plant that washes a single type of coal, it is

assumed that the variety of coal is stable and that the feed properties are therefore constant.

Thus, the model input variables are composed predominantly of measurable parameters.

Based on research on the mechanism of the coal slime flotation process and actual production

experience, the primary measurable variables in the separation process of flotation column are

shown in Table 4.

In this research, 100 typical groups of data from the Xingtai Coal Preparation Plant from

September to October 2014 that are filtered by the wavelet are selected. The data are analyzed

by PCA. The variance contribution of each principal component is shown in Table 5. From

Table 5, the cumulative contribution rate of the first four principal components is 95.47%,

which is greater than 85% [38]. Therefore, the first four principal components shown in Fig 6

are selected as the input variables of the LS-SVM model, and the input/output relation can be

expressed as in Eq (19):

y ¼ sgn f ðPC1; PC2; PC3;PC4Þ ð19Þ

Prediction results and discussion

This paper establishes the identification and switching model based on the LS-SVM. The out-

put y2{−1,+1} is the identification result, where “y = +1” represents the froth depth control

model and “y = -1" represents the reagent addition control model. The samples are selected

from the historical operation data. When the froth depth begins to adjust, the current data set

is labeled “+1”, and when the reagent dosage begins to adjust, the current data set is labeled

“-1”. Ultimately, a total of 100 sets of samples are selected. Then, 80 of the sample sets are

Table 3. Evaluation index values of different threshold selection methods.

Threshold selection method Evaluation index

SNR RMSE r

heursure 46.0665 1.9068 0.1117

minimax 47.3643 1.6422 0.2397

rigrsure 47.5049 1.6158 0.1506

sqtwolog 45.8228 1.9611 0.1128

https://doi.org/10.1371/journal.pone.0186553.t003

Table 4. Input variables of PCA.

Variable Name

C Feed concentration

Q Feed flow rate

P Circulating pulp pressure

H Froth depth

Qc Collector dosage

Qf Frother dosage

https://doi.org/10.1371/journal.pone.0186553.t004
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randomly selected as the training set, and the other 20 groups are used as the test set. The train-

ing set and test set are analyzed by PCA, and PC1, PC2, PC3, and PC4 are selected as the input

variables. The data sets are normalized to the range of 0–1 to eliminate the influence of differ-

ent dimensions on the modeling process and increase the convergence rate of the model.

The LS-SVM model parameters are determined by the PSO algorithm, the population size

is set to 20, the maximum number of iterations is set to 200, c1 is set to 1.7, c2 is set to 1.5, the

initial value of the inertia factor ω is set to 1, ωmax is set to 1.2, ωmin is set to 0.8, γmin is set to

0.01, γmax is set to 1,000, σ2
min is set to 0.1, σ2

max is set to 100, and the cross-validation number

is set to 3. The PSO results are shown in Fig 7. The optimized parameter γ is 0.01, and σ2 is

8.6397. The two optimized parameters are used to build the LS-SVM model. After the model is

trained, the test samples are applied in testing, and the results are shown in Fig 8. The 20

groups of test samples are all correctly classified, and the accuracy of classification is 100%.

Table 5. Variance contribution of each principal component.

Principle component Eigenvalue Variance contribution/% Accumulated contribution /%

1 0.1515 40.31 40.31

2 0.1097 29.18 69.49

3 0.0505 13.43 82.92

4 0.0472 12.55 95.47

5 0.0153 4.08 99.54

6 0.0017 0.46 100.00

https://doi.org/10.1371/journal.pone.0186553.t005

Fig 6. Schematic diagram of the principal component contributions.

https://doi.org/10.1371/journal.pone.0186553.g006
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The result shows that the classification model based on the LS-SVM performs well and can be

used to identify the switching time of the control models during the flotation process.

To validate the proposed classification method in this paper, its performance was compared

with that of other methods. The results are shown in Table 6.

The classification accuracies of the different modeling methods differ considerably. If the

parameters are selected arbitrarily, then the classification accuracy is notably poor. As shown

in the table, the classification accuracy is only 75%, and the result has no predictive value. PSO

is proven as a reasonable method for optimizing the internal parameters of the LS-SVM

model. The noise in the original signal is significantly reduced by the wavelet transform, thus

improving the robustness of the system. Simultaneously, PCA effectively extracts the main fea-

tures and reduces the input dimensions, thereby ensuring identification accuracy. The pro-

posed method in this research is best in terms of accuracy. By comparison, the proposed

method performs effectively in identifying the switching points between different control

models in the flotation process.

Experiment and evaluation

A performance comparison was conducted between the #1 flotation column of the Xingtai

Coal Preparation Plant under the control of the proposed hybrid model and the #2 flotation

column under manual control for a period of 60 days. The two flotation columns were located

in parallel, and their feeds originated from the same feed pipe such that the feed properties

Fig 7. PSO optimization result.

https://doi.org/10.1371/journal.pone.0186553.g007
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were considered completely consistent. Fig 9 shows the actual diagram of the FCMC-4500 flo-

tation column used in the Xingtai Plant.

During the 60 days, samples of clean coal from the flotation were collected every hour, pro-

viding a total of ten samples every day. The daily average ash content and recovery of clean

coal are shown in Figs 10 and 11. The daily consumptions of the frother and collector are

shown in Fig 12. The results show that the average clean coal ash content decreased from

10.21% to 10.17% and that its stability was improved, with a reduction in the standard devia-

tion of the ash from 0.65% to 0.47%. The average clean coal recovery rate increased from

54.06% to 55.04%, and the standard deviation of the recovery was reduced from 3.59% to

2.64%. Furthermore, the average daily consumptions of the frother and collector were reduced

by 14% and 12%, respectively.

Fig 8. PSO-LSSVM classification result.

https://doi.org/10.1371/journal.pone.0186553.g008

Table 6. Comparison of classification accuracy for different models.

Method Classification accuracy/

%

Internal parameters of the LS-SVM model fixed by arbitrary selection 75 (15/20)

Internal parameters of the LS-SVM model fixed by PSO, without wavelet de-

noising and PCA

95 (18/20)

Method proposed in this study 100 (20/20)

https://doi.org/10.1371/journal.pone.0186553.t006
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Conclusions

This paper describes a hybrid model for the coal flotation process. Wavelet analysis and PCA

are used in signal pre-processing. The reagent dosage and froth depth are selected as the two

manipulated variables, and the optimizing control model of froth depth based on fuzzy control

Fig 9. Diagram of the experimental FCMC-4500 flotation column.

https://doi.org/10.1371/journal.pone.0186553.g009

Fig 10. Comparison of clean coal ash content between the #1 and #2 flotation column.

https://doi.org/10.1371/journal.pone.0186553.g010
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Fig 11. Comparison of clean coal recovery between the #1 and #2 flotation column.

https://doi.org/10.1371/journal.pone.0186553.g011

Fig 12. Comparison of reagents consumptions between the #1 and #2 flotation column.

https://doi.org/10.1371/journal.pone.0186553.g012
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and the optimizing control model for reagent addition based on an expert system are estab-

lished. The hybrid model can execute a reasonable and timely switch of the controllers accord-

ing to different condition parameters in the coal flotation process. The LS-SVM is used to

identify the switching points between different control models. The internal parameters are

optimized through PSO. The hybrid model was evaluated at the Xingtai Coal Preparation

Plant. During the evaluation, the average clean coal ash content decreased from 10.21% to

10.17%, and its stability was improved, with a reduction in the standard deviation of the ash

from 0.65% to 0.47%. The average clean coal recovery increased from 54.06% to 55.04%. The

average daily consumptions of the frother and collector were reduced by 14% and 12%, respec-

tively. This research offers an example of a hybrid intelligent control method for coal flotation

columns.
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