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Abstract

Arginine vasopressin (AVP), a hormone secreted by the posterior pituitary, plays a vital role

in maintaining vasomotor tone during acute blood loss. We hypothesized that decompen-

sated hemorrhagic shock is associated with decreased AVP stores and supplementation

during resuscitation would improve both blood pressure and renal function. Using a decom-

pensated hemorrhagic shock model, male Long-Evans rats were bled to mean arterial blood

pressure (MAP) of 40mmHg and maintained until the MAP could not be sustained without

fluid. Once 40% of the shed volume was returned in lactated Ringer’s (Severe Shock), ani-

mals were resuscitated over 60 minutes with 4x the shed volume in lactated Ringer’s (LR) or

the same fluids with AVP (0.5 units/kg+ 0.03 units/kg/min). Animals (n = 6-9/group) were

sacrificed before hemorrhage (Sham), at Severe Shock, following resuscitation (60R, 60R

with AVP) or 18 hours post-resuscitation (18hr, 18hr with AVP). Blood samples were taken

to measure AVP levels and renal function. Pituitaries were harvested and assayed for AVP.

Kidney samples were taken to assess mitochondrial function, histology, and oxidative dam-

age. Baseline pituitary AVP stores (30,364 ± 5311 pg/mg) decreased with severe shock and

were significantly depressed post-resuscitation (13,910 ± 3016 pg/ml. p<0.05) and at 18hr

(15,592 ±1169 pg/ml, p<0.05). Resuscitation with LR+AVP led to higher serum AVP levels

at 60R (31±8 vs 79±12; p<0.01) with an improved MAP both at 60R (125±3 vs 77±7mmHg;

p<0.01) and 18hr (82±6 vs 69±5mmHg;p<0.05). AVP supplementation preserved complex I

respiratory capacity at 60R and both complex I and II function at 18hr (p<0.05). AVP was

also associated with decreased reactive oxygen species at 60R (856±67 vs 622±48F RFU)

and significantly decreased oxidative damage as measured by mitochondrial lipid peroxida-

tion (0.9±0.1 vs 1.7±0.1 fold change, p<0.01) and nitrosylation (0.9±0.1 vs 1.4±0.2 fold

change, p<0.05). With AVP, renal damage was mitigated at 60R and histologic architecture

was conserved at 18 hours. In conclusion, pituitary and serum AVP levels decrease during

severe hemorrhage and may contribute to the development of decompensated hemorrhagic
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shock. Supplementing exogenous AVP during resuscitation improves blood pressure, pre-

serves renal mitochondrial function, and mitigates acute kidney injury.

Introduction

Nearly 130,000 people die of unintentional injury annually in the United States.[1] Of those

who survive the initial trauma, hemorrhagic shock accounts for the majority of potentially pre-

ventable deaths.[2] Although intense vasoconstriction is the normal response to hemorrhagic

shock, it cannot be maintained indefinitely. With prolonged hemorrhagic shock, intense vaso-

constriction will progress to vasodilation and catecholamine-resistant cardiovascular collapse.

[3, 4] Identifying strategies to prevent or treat this state of “decompensated shock” could be

lifesaving.

Recently, arginine vasopressin (AVP) has been investigated as an adjunct during the resus-

citation of severe trauma.[5–10] Secreted by the posterior pituitary in response to hypotension,

AVP is essential for maintaining vasomotor tone during hemorrhagic shock. In animals lack-

ing AVP, even minor blood loss results in significant hypotension and low levels during pro-

longed hemorrhagic shock have been associated with the development of catecholamine-

resistant hypotension.[11–15] Clinically, severely injured trauma patients demonstrate a high

incidence of AVP deficiency with an increased need for vasopressor support, blood product

transfusions and prolonged ICU care.[9, 16, 17]

In addition to its vasopressor effects, AVP influences cellular metabolism and may improve

mitochondrial function.[18, 19] When cells are treated in vitro, AVP appears to modulate the

formation of NADH, activate mitochondrial ATP synthesis and inhibit apoptosis.[20–23] The

in vivo impact of AVP on mitochondrial function and cell survival following hemorrhagic

shock, however, is unknown.

We hypothesized that hemorrhagic shock results in decreased pituitary AVP stores and

exogenous supplementation during resuscitation would improve both blood pressure and

organ function. Given the kidney is the most common organ to fail following hemorrhagic

shock, we elected to investigate the impact of vasopressin on renal function.[24]

Methods

Experimental protocol

All animal procedures were approved by the Institutional Animal Care and Use Committee

of the University of Pennsylvania and in accordance with the guidelines established by the

National Institutes of Health. Male Long-Evans rats (250–300 g) were housed in a facility with

constant temperature and humidity with a 12-hour light/dark cycle. Animals were allowed to

acclimate at least 2 days before surgery and given access to food and water ad libitum. Using a

well-validated decompensated hemorrhagic shock model [25], rats were anesthetized using

vaporized isoflurane (2–4%) by mask and underwent placement of femoral vascular catheters

(PE50, Braintree Scientific, Inc., Brain-tree, MA). Mean arterial pressure (MAP) was recorded

throughout the experimental protocol (Digi-Med Signal Analyzers, Louisville, KY, USA). A

5-cm midline laparotomy was performed to simulate soft tissue trauma. All surgical sites were

bathed in 1% lidocaine and closed in layers. Animals received 0.25% buprenorphine (0.05mg/

kg, subcutaneously). Animals were then placed in a plexiglass restraining apparatus and

allowed to emerge from anesthesia. Full recovery from anesthesia with normalization of blood

pressure and return of motor function took approximately 30 minutes.

Resuscitation with AVP preserves renal cellular function following hemorrhagic shock
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After full reversal of anesthesia and 30 minutes of hemodynamic stability, animals were ran-

domized to 1 of 4 groups: Sham, Severe Shock, and Resuscitation with either lactated Ringer’s

(LR) or LR + vasopressin (AVP, 0.5 units/kg units + 0.03 units/kg/min). All animals, except

Shams, were passively bled via the femoral artery and maintained at a MAP of 40 ± 5 mmHg.

When the blood pressure could no longer be maintained without fluid infusion (Decompensa-

tion), a MAP of 40 mmHg was sustained by incrementally infusing 0.2 cc boluses of LR. Ani-

mals were considered to be in Severe Shock when 40% of the total shed volume had been

returned in the form of LR boluses. Animals were then resuscitated with four times the shed

volume in LR with or without AVP (0.05 units/kg + 0.03 units/kg/min) over 60 minutes and

followed for an additional 18 hours (Fig 1A). The use of a crystalloid only resuscitation has

been used extensively in hemorrhagic shock models and avoids the potential transfusion of

vasoactive substances, hormones, and cytokines found in the blood shed during hemorrhagic

shock.[26–29] Animals (n = 6–9 per group) were anesthetized using isoflurane (2–4%) by

mask at each time point (Sham, Severe Shock, 60 minutes (60R) and 18 hours post-resuscita-

tion (18hr). A blood sample was assayed for arterial blood gases, lactate, hemoglobin, glucose,

blood urea nitrogen (BUN) and electrolytes (i-STAT, Abbot Point of Care Inc., Princeton, NJ).

Serum osmolality was calculated from i-STAT values (Osmolality = (2�Na) + BUN/2.8 + glu-

cose /18). Serum creatinine was determined using a Vitros 350 blood biochemistry analyser

(Ortho Clinical Diagnostics, Rochester, NY). Serum neutrophil gelatinase-associated lipocalin

(NGAL) levels were measured post hoc by ELISA (Abcam, Cambridge, MA) according to the

manufacturer’s directions. Bilateral kidneys were rapidly harvested following blood sampling.

Animals were then euthanized using intravenous pentobarbital (150mg/kg) and immediately

decapitated for pituitary extraction.

In a separate set of experiments, other adrenergic agonists were used during resuscitation

as a control for the potential effect of vasopressin on mean arterial blood pressure. Animals

(n = 3/group) were given increasing infusion of norepinephrine (3 and then 6 μg/kg/min) or

epinephrine (1.2 and then 2.4 μg/kg/min) in addition to LR (4X the shed volume) during

resuscitation.

Vasopressin measurements

Whole pituitaries were immediately weighed and frozen in liquid nitrogen for storage. Frozen

samples were homogenized in Walsh and Niall’s medium (15% trifluoroacetic Acid (TFA), 1%

NaCl, and 5% formic Acid in 1M HCL) and stored at 4˚C overnight. The sample was then fil-

tered through glass wool 3 times and centrifuged at 15,000g for 20 minutes. The supernatant

was passed through an acetonitrile/TFA prepared Sep-Pack C 18 column twice. AVP was

eluted from the column using 5 ml of 80% acetonitrile and 0.1% TFA. After removing the ace-

tonitrile under liquid nitrogen, the sample was desiccated under vacuum. Samples were recon-

stituted with assay buffer and the AVP concentration determined using a commercially

available kit according to the manufacturer’s instructions (Arg8-Vasopressin ELISA, Enzo Life

Sciences, UK)

Blood samples were collected into chilled EDTA tubes containing aprotonin (500 KIU/ml)

and immediately centrifuged at 1,600g for 15 minutes. Plasma was stored at -70˚C until sam-

ples could be processed as a single group. AVP was extracted from the plasma after thawing on

ice by adding 2X the volume of ice-cold acetone. After vortexing, samples were centrifuged at

12,000g for 20 minutes. The supernatant was combined with 5X the volume of ice-cold petro-

leum ether and centrifuged at 10,000g for 10 minutes. The ether layer was discarded and the

aqueous protein layer was desiccated under vacuum. As above, assay buffer was added, and the
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AVP concentration was measured using the Arg8-Vasopressin ELISA kit (Enzo Life Sciences,

UK).

Isolation of mitochondria

Whole kidneys (4–6 g) were excised and processed immediately at each time point. After

quickly dissecting away connective tissue and fat, samples were weighed and immersed in ice-

cold mitochondrial isolation buffer (MIB) (210 mM mannitol, 70 mM sucrose, 10 mM

HEPES, 1 mM EDTA with final pH adjusted to 7.2 using KOH and supplemented with 0.5%

fatty acid-free BSA). Kidneys were diced and homogenized with an additional 10 volumes (wt/

vol) of MIB with 5% BSA using Potter Elvehjem homogenizer and a loose-fitting Teflon pestle.

Fig 1. Resuscitation with AVP restores the mean arterial blood pressure. (A) Male Long Evans rats were anesthetized with isoflurane (4%) followed

by vascular line placement and laparotomy to simulate soft tissue injury. After complete emergence from anesthesia, awake animals were passively bled

to a mean arterial pressure (MAP) of 40 ± 5 mmHg. When animals could no longer maintain a MAP of 40 mmHg without fluid (Decompensation), they were

given incremental 0.2 cc boluses of lactated Ringer’s (LR) until 40% of the shed volume was returned (Severe Shock). Animals were resuscitated over 60

minutes with 4X the shed volume in LR and either arginine vasopressin (AVP: 0.5 U/kg + 0.03 U/kg/hr) or placebo. Animals were sacrificed at Baseline

(Sham n = 9/group), Decompensation (n = 9/group), Severe Shock (n = 9/group), following resuscitation (60R, n = 9/group) and 18 hours post resuscitation

(n = 6/group). An additional group of animals were treated with increasing doses of norepinephrine (3 and then 6 ug/kg/min) or epinephrine (1.2 and then

2.4 ug/kg/min). (B) Blood pressure tracings of a representative animal from each group are depicted. Black arrows depict the time vasopressors were

initiated, and then increased. (C) The mean arterial blood pressure (MAP) at each time point was recorded. Data were analyzed using one-way ANOVA

with a post hoc Tukey’s test. Values are means ± SEM. AVP treated vs. other treatment groups; * p<0.05, ***p<0.001.

https://doi.org/10.1371/journal.pone.0186339.g001
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Mitochondrial isolation was performed using differential centrifugation as previously

described.[30] The homogenate was centrifuged for 10 minutes at 1000g (4˚C). The superna-

tant was collected and recentrifuged for 10 minutes at 9,600g. The pellet was resuspended in

15 ml MIB without BSA and centrifuged for an additional 10 minutes at 9,600g for further

mitochondrial purification. The final mitochondrial pellet was resuspended in MIB and pro-

tein concentration was determined spectrophotometrically using the Biuret method with BSA

as standard.

Mitochondrial complex I (CI) and complex II (CII) respiratory capacity

Isolated mitochondria (1mg) were resuspended in respiration media (1 ml, 110mM mannitol,

0.5mM EGTA, 3mM MgCl2, 20mM taurine 10mM KH2PO4, 60mM K lactobionate, 0.3mM

DTT, and 0.1% BSA (fatty acid free), adjusted to pH of 7.1 with KOH. Oxygen consumption

was measured using a thermostatically regulated Clark oxygen electrode at 30˚C (Hansatech

Instruments, Norfolk, UK). Following stabilization (3–5 minutes), real-time oxygen concen-

tration and flux data were collected continuously. After the basal respiration rate was recorded,

complex I (CI)-dependent mitochondrial respiration was induced by adding 10 mM gluta-

mate, 5 mM malate and 1 mM ADP.[31]

In a separate experiment, isolated mitochondria (1mg) were resuspended in respiration

media and placed in the Hansatech instrument as described. Following stabilization, the basal

respiration rate was recorded and complex II (CII)-dependent mitochondrial respiration was

induced by adding rotenone (0.5μM), a selective CI inhibitor, 1 mM ADP and succinate

(10mM).[31]

Electron transfer from complex I (CI) to complex III (CIII)

Mitochondrial CI to CIII electron flow activity was measured in isolated mitochondrial sam-

ples as rotenone-sensitive NADH:cytochrome c reductase activity. Briefly, mitochondria were

subjected to 2 freeze-thaw cycles (-70˚C to 4˚C) in order to break the membranes, 50 μg of

mitochondria were added to a cuvette containing 50 μM oxidized cytochrome c as the final

electron acceptor, 1 mM KCN, 1 μM rotenone, and 100 mM potassium phosphate (pH 7.2) in

a thermocontrolled spectrophotometer (Hitachi U-2810, Singapore) at 30˚C. A baseline of

absorbance at 550 nm was recorded, and the reaction was initiated with 0.2 mM NADH as the

electron donor. The increase in absorbance, corresponding to cytochrome c reduction, was

continuously recorded.[32]

Total production of mitochondrial-derived reactive oxygen species

(ROS)

To analyze the total production of ROS, isolated mitochondria (10 μg) were suspended in 1 ml

of buffer (250 mM sucrose, 20 mM 3-[N-morpholino] butane sulfonic acid, 10 mMTris-base,

100 μMPi [K], 0.5 mM Mg2+, pH 7.0; 30˚C) containing CI substrates (malate/glutamate, 2.5/

2.5 mM) with 10 μM H2DCFDA. Antimycin A (an inhibitor of CIII; 0.5 μM) was added to

allow the production of ROS. After incubation at 30˚C for 1 hour, the fluorescent signal from

dichlorofluorescein (DCF; excitation 488 nm, emission 525 nm) was detected and quantified

using a Modulus Microplate Reader (Turner Biosystems, Sunnyvale, CA).[31]

Measure of mitochondrial permeability transition (MPT)

As previously described calcium uptake in freshly isolated kidney mitochondria was measured

as an indicator of the susceptibility to undergo MPT.[33] Mitochondria (0.5mg) were
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suspended in potassium chloride (KCl) media (125 mM KCl, 2 mM K2HPO4, 1 mM MgCl2,

and 20 mM HEPES, pH 7.0) containing 0.1 μM Calcium green-5N (a fluorescent calcium indi-

cator dye), 5 mM succinate, 4 μM rotenone, 0.5 μM oligomycin and 0.2 mM ADP (37˚C).

Fluorescence was continuously monitored at using a Perkin-Elmer LS-3 fluorescence spec-

trometer equipped with a stirring device with the excitation and emission set at 506 nm and

532 nm respectively. Measurement of mitochondrial Ca2+ uptake was measured by succes-

sively adding known amounts of CaCl2 to the medium containing mitochondria until there

was a burst of Calcium green-5N signal.

Protein 4-hydroxynonenal and 3-nitrotyrosine analysis

Overall tissue damage by reactive oxygen and nitrogen species was assessed by measuring 4-

hydroxynonenal and 3-nitrotyrosine using Western blot (Abcam, Cambridge, MA). Briefly,

kidney protein lysates extracted in RIPA buffer (20 μg) were loaded in a 4–12% polyacrylamide

gel and separated by electrophoresis (Invitrogen, San Diego, CA). Proteins were transferred

onto a nitrocellulose membrane (Bio-Rad, Richmond, CA). After the membranes were

blocked for 1 hour at room temperature (10 mmol/L Tris, 150 mmol/L NaCl, and 0.05%

Tween-20 supplemented with 5% dry milk), they were incubated with the respective primary

antibodies at 1:1000 dilution overnight at 4˚C. After washing, membranes were incubated with

peroxidase- linked donkey anti-rabbit or sheep anti-mouse IgG secondary antibodies (Amer-

sham, Buckinghamshire, UK) at 1:5,000 dilution for 1 hour at room temperature. Signals were

developed by enhanced chemiluminescence (PerkinElmer Life Sciences, Boston, MA). Blots

were subsequently stripped and reblotted with VDAC (Abcam, Cambridge, MA) as a loading

control. Bands were scanned, quantified by densitometry and normalized to VDAC controls

using ImageJ software (National Institutes of Health, Bethesda, MD).

Histology

Kidney tissues at the 18 hour time point were fixed in 4% paraformaldehyde for 24 hours and

then washed in 70% ethanol. Tissues were subsequently embedded in paraffin and sectioned

(5μm) for Haemotoxylin and Eosin (H&E) staining. Histological damage was assessed by an

experienced histopathologist blinded to treatment group. Each slide was evaluated at 50 differ-

ent sections at 10X and quantified using the Endothelial, Glomerular, Tubular, Interstitial

(EGTI) scoring system. The scoring system consists of histological damage in 4 components:

Endothelial, Glomerular, Tubular, and Interstitial and ranges from 0 (no damage) to 14 (severe

damage) (Table 1).

Data analysis

Analyses were performed using SPSS (SPSS Inc., Armonk, NY). Data were analyzed using a

one-way ANOVA with a post hoc Tukey’s test. A Mann Whitney U test was used to analyze

differences in histologic grading at 18 hours. Results are presented as mean ± SEM. A p value

of less than 0.05 was considered statistically significant.

Results

Physiologic and laboratory parameters

Blood pressure was maintained at a fixed MAP of 40 ± 5 mmHg during shock. Resuscitation

with LR alone failed to restore the MAP to pre-shock values. Moreover, addition of increasing

doses of norepinephrine or epinephrine failed to restore the MAP to baseline values at 60R. In

contrast, the use of AVP during resuscitation, significantly improved the MAP at 60R and was
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similar to baseline values. Although the MAP was lower than baseline at 18 hours in both

groups, AVP treated rats had a significantly higher blood pressure at this late time point (Fig

1B and 1C).

As expected, our decompensated hemorrhagic shock model resulted in severe lactic acido-

sis, hyperglycemia, and uremia. Although creatinine increased in both groups, levels were not

elevated above normal values for rats (0.2–0.8 mg/dL) (Table 2). Compared to LR alone, how-

ever, resuscitation with AVP was associated with significantly lower NGAL values at 60R

(273 ± 41 vs. 171 ± 21 ng/ml, p< 0.05) and less lactate production at 18hr (2.2 ± 0.3 vs.
1.0 ± 0.2 mmol/L, p< 0.05).

Pituitary and serum vasopressin levels

Decompensated hemorrhagic shock resulted in a depletion of pituitary AVP stores that contin-

ued to decline and became statistically significant at 18hr (27,688 ± 6732 pg/ml baseline vs.

8888 ± 1169 pg/ml 18hr) (Fig 2A). Serum vasopressin levels peaked at Decompensation, but

decreased thereafter despite persistent hypotension in our control rats (Fig 2B). As expected,

resuscitation with AVP significantly increased serum levels and mitigated the decline in pitui-

tary AVP stores at 60R (Fig 2A and 2B).

Mitochondrial function

Resuscitation with AVP preserved mitochondrial function both acutely and 18 hours post

resuscitation. Following hemorrhagic shock and resuscitation with LR, mitochondrial respira-

tion and electron transfer capability were significantly depressed (Fig 3A–3C). Resuscitation

with AVP, however, completely mitigated the decline in CI-dependent respiration at 60R and

18hr. The AVP treated group also demonstrated improved CII-dependent respiration and

electron transfer capability at 18hr. Given the improved CI function observed with AVP, it was

not surprising that mitochondria harvested from AVP treated animals at 60R had significantly

decreased production of free radical oxygen species (Fig 3D). Lastly, resuscitation with AVP

Table 1. The EGTI histology scoring system.

Tissue component Damage Score

Endothelial No damage 0

Endothelial swelling 1

Endothelial disruption 2

Endothelial loss 3

Glomerular No damage 0

Thickening of Bowman capsule 1

Retraction of glomerular tuft 2

Glomerular fibrosis 3

Tubular No Damage 0

Loss of brush border in < 25% of tubular cells. 1

Loss of brush border in > 25% of tubular cells. Thickened basal membrane. 2

(Plus) Inflammation, cast formation, necrosis in up to 60% of tubular cells 3

(Plus) Necrosis in more than 60% of tubular cells 4

Interstitial No damage 0

Inflammation, hemorrhage, in less than 25% of tissue 1

(Plus) Necrosis in less than 25% of tissue 2

Necrosis up to 60% 3

Necrosis more than 60% 4

https://doi.org/10.1371/journal.pone.0186339.t001
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resulted in improved mitochondrial stability at 18hrs when compared to controls (Fig 3E).

Mitochondria from LR treated animals could only absorb 357 ± 24 nmol Ca2+/mg before

developing MPT, whereas mitochondria from AVP treated animals behaved like Shams and

could tolerate a significantly higher Ca2+ load (406 ± 26 nmol/mg, p< 0.05).

Oxidant damage and histology

The use of AVP significantly decreased acute kidney injury as measured by oxidant damage

(Fig 4A and 4B). Both the degree of lipid peroxidation and protein nitration, as measured by

Table 2. Laboratory values.

60R 18Hr

Characteristics Sham Severe Shock Control AVP Control AVP

Lactate (mmol/L) 1.3 ± 0.3 19.0 ± 2.0a 6.8 ± 3.7a 4.9 ± 2.0a 2.2 ± 1.3a,c 1.0 ± 0.2

pH 7.45 ± 0.05 6.95 ± 0.12a 7.35 ± 0.10a 7.37 ± 0.05a 7.42 ± 0.09 7.48 ± 0.04

PO2 (mmHg) 174 ± 42 139 ± 32a 118 ± 35a 107 ± 11a 119 ± 37 95 ± 27

PCO2 (mmHg) 42 ± 5 14 ± 6a 31 ± 9a 34 ± 4a 39 ± 9 35 ± 4a

HCO3- (mmol/L) 30 ± 3 3 ± 1 a 17 ± 6a 19 ± 3a 25 ± 5a 26 ± 2a

Na+ (mmol/L) 136 ± 3 132 ± 4 141 ± 17 136 ± 2 137 ± 4 139 ± 3

Glucose (mg/dL) 219 ± 95 392 ± 110a 201 ± 94 167 ± 55 138 ± 27a 148 ± 15

BUN (mg/dL) 22 ± 4 24 ± 4 25 ± 2 25 ± 5 71 ± 20a 57 ± 32a

Creatinine (mg/dL) 0.29 ± 0.02 0.63 ± 0.03a 0.54 ± 0.03a 0.50 ± 0.02a 0.71 ± 0.09a 0.62 ± 0.05a

Serum Osmolarity 292 ± 2 293 ± 1 303 ± 10 290 ± 2 304 ± 3a 307 ± 5a

NGAL (ng/ml) 30 ± 5 90 ± 15a 273 ± 41a,b 171 ± 21a 690 ± 57a 678 ± 44a

Hemoglobin (g/L) 12.9 ± 1.5 6.0 ± 1.4a 5.0 ± 1.0a 5.6 ± 1.0a 5.1 ± 0.8a 4.9 ± 1a

a p<0.05 vs. Sham
b p<0.05 60R Control vs. AVP
c p<0.05 18Hr control vs AVP

https://doi.org/10.1371/journal.pone.0186339.t002

Fig 2. AVP levels decline despite persistent hypotension following hemorrhagic shock. Pituitary and serum AVP levels were sampled at baseline

(Sham), Severe Shock, after 60 minutes of resuscitation (60R) and at 18 hours post resuscitation (n = 6–7 per time point). (A) Posterior pituitary levels (pg/

ml ± SEM) of AVP decrease during hemorrhagic shock and were significantly depressed at both 60R and at 18 hours. (B) AVP serum levels (pg/ml ± SEM)

appropriately increased but fell significantly following Decompensation. Data were analyzed using one-way ANOVA with a post hoc Tukey’s test. Values

are mean ± SEM. Sham vs. other time points; *p<0.05, **p<0.01,***p<0.001, ****p<0.0001. AVP vs. Control; #p<0.05.

https://doi.org/10.1371/journal.pone.0186339.g002
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Fig 3. AVP supplementation during hemorrhagic shock is associated with improved mitochondrial function. (A) Complex I (CI) and (B)

Complex II (CII) dependent respiratory capacity in isolated intact mitochondria was assessed by respirometry. Resuscitation with lactated Ringer’s

(Control) resulted in impaired CI and CII respiration at 60 minutes and 18 hours. Addition of AVP (0.5u/kg bolus + 0.03u/kg/hr) during resuscitation

Resuscitation with AVP preserves renal cellular function following hemorrhagic shock

PLOS ONE | https://doi.org/10.1371/journal.pone.0186339 October 24, 2017 9 / 16

https://doi.org/10.1371/journal.pone.0186339


antibodies to 4-hydoxynonenal and 3-nitrotyrosine respectively, were significantly higher 60R

in animals treated with only LR. No difference in oxidant damage was noted at 18hrs between

groups and values had returned to baseline. Finally, resuscitation with AVP was associated

with significantly improved histologic architecture at 18hrs using the median EGTI score

(Control; 5 (range 2–6) vs AVP; 2 (range 1–3). p<0.05) (Fig 4C).

Discussion

Hemorrhagic shock is a common, and potentially preventable, cause of death following

trauma. Although hemorrhage control and blood volume replacement are the mainstays of

therapy, targeting the pathophysiology of decompensated shock could lead to improved out-

comes. AVP, a vasoactive hormone that is stored and subsequently secreted from the posterior

pituitary during acute hypotension, plays a critical role in maintaining hemodynamic stability

during hemorrhagic shock.[12] Here, we demonstrate that both pituitary and serum levels of

AVP decrease during decompensated hemorrhagic shock and remain depressed despite per-

sistent hypotension. Moreover, this decline in AVP correlated with the development of cate-

cholamine-resistant shock. Supplementing exogenous AVP during resuscitation significantly

improved blood pressure and renal function immediately post-resuscitation. As such, AVP

may provide a useful adjunct following severe hemorrhagic shock.

The vasopressor effect of posterior pituitary extracts, now known as arginine vasopressin

(AVP), are well known and were first described in 1895.[34] Since then, it has been appreci-

ated that serum AVP levels can increase modestly in response to increased osmolality, but can

rapidly increase 20 to 200 fold in states of shock. Once vasopressin stores have been released,

however, it may take up to 2 hours to synthesize, transfer and subsequently secrete new AVP

protein.[35, 36]

The actions of AVP are mediated by 5 different G-protein coupled receptors (V1, V2, V3,

oxytocin, and purinergic) with different tissue specificity and intracellular pathways.[37] Dur-

ing hemorrhagic shock, V1 receptors, in particular, play a pivotal role in maintaining cardio-

vascular homeostasis. V1 receptors are found primarily on vascular smooth muscle, but are

also expressed in high density in the renal medulla. AVP causes vasoconstriction by increasing

intracellular calcium via the phosphatidyl- inositol-biphosphonate pathway. In the renal

medulla, however, AVP selectively constricts the efferent but not the afferent arterioles, thus

leading to an increase in glomerular filtration.[38]

Although serum AVP levels are initially elevated during shock, levels can fall inappropri-

ately during prolonged shock states and may contribute to the development of decompensated

shock.[11, 13] In our model, we observed that serum AVP levels fell dramatically during

extended hypotension. Importantly, restoring AVP levels during resuscitation returned the

MAP to normal values whereas high-dose catecholamines had no effect on blood pressure.

These data support the concept of relative AVP deficiency in hemorrhagic shock as previously

described by Morales et al. [13] Using a canine model of acute blood loss, these investigators

found that AVP levels fell 10 fold during prolonged hypotension. These inappropriately low

AVP values correlated with the development of refractory hypotension that could only be

preserved CI respiration and improved CII dependent respiration. (C). The electron transport from CI to Complex III (CIII) was measured

spectrophotometrically in isolated mitochondrial membranes. While control animals demonstrated impaired electron transfer, AVP supplementation

preserved CI to CIII electron transfer. (D) The production of radical oxygen species (ROS) in isolated mitochondria was measured using the

fluorescent signal from dichlorofluorescein (DCF). The increase in ROS following resuscitation (60R) was mitigated with AVP. (E) Mitochondrial

stability was assessed by measuring calcium uptake as a marker of mitochondrial permeability transition. At 18 hours post resuscitation, control

mitochondria were less stable than mitochondria isolated from AVP resuscitated animals. N = 6–7 animals per time point. Values are mean ± SEM.

Data were analyzed using one-way ANOVA with a post hoc Tukey’s test. *p<0.05 vs. Sham; #p<0.05 Control vs. AVP treated.

https://doi.org/10.1371/journal.pone.0186339.g003
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rescued with supplemental AVP. Similarly, we also observed the development of catechol-

amine resistance in our model. Although we did not measure AVP at the initiation of shock,

we did observe a 50% reduction in serum AVP levels from the point of Decompensation to

Severe Shock despite persistent hypotension.

Although increased consumption of AVP may contribute to low serum AVP levels in hem-

orrhagic shock; our data supports hypothesis that impaired production may also play a role.

[39] We observed a progressive depletion of pituitary AVP stores with prolonged hemorrhagic

shock that persisted for at least 18 hours post-resuscitation. Importantly, while there was a

trend toward improved pituitary stores with AVP supplementation during resuscitation, this

trend was not maintained 18 hours later.

Given we could not restore the MAP with other adrenergic agents, we cannot definitively

determine if AVP has direct cellular benefit independent of its impact on blood pressure

shock. Nonetheless, a number of in vitro studies support our findings that AVP positively

impacts mitochondrial function both acutely and at 18 hours post resuscitation. In isolated

hepatocytes, AVP increases cytosolic as well as mitochondrial calcium, which in turn activates

Ca2+ dependent Kreb cycle dehydrogenases and increases the level of NADH.[20, 40] The ele-

vation in NADH stimulates CI dependent respiration.[20] Additionally, because AVP

increases the mitochondrial Ca2+ concentration, there is a shift in the membrane potential that

favors the proton motive force and subsequent ATP production.[21] AVP also decreases apo-

ptosis following anoxia. In isolated hepatocytes, Hoek and colleagues noted that although vaso-

pressin increases intracellular calcium levels, it prevented excessive mitochondrial swelling

and the transition to mitochondrial permeability transition–a Ca2+ mediated event that trig-

gers apoptosis.[22] Similarly, our results demonstrate that AVP supplementation during resus-

citation significantly preserved CI-dependent respiration and electron transfer. The use of

AVP also decreased the generation of mitochondrial ROS, a byproduct of impaired CI activity.

[41] Resuscitation with AVP was also decreased renal oxidant damage as measured by lipid

peroxidation and protein nitrosylation. Lastly, mitochondria isolated from AVP-treated rats

demonstrated increased stability and were less susceptible to mitochondrial permeability tran-

sition. Taken together, the use of AVP during resuscitation appears to prevent the develop-

ment of shock-induced mitochondrial dysfunction.

AVP also significantly ameliorated shock-induced acute kidney injury (AKI) immediately

following resuscitation and resulted in decreased serum neutrophil gelatinase-associated lipo-

calin (NGAL). NGAL is a 25 kDa protein covalently bound to matrix metalloproteinase-9 in

neutrophils that is markedly induced following epithelial injury.

Elevations in NGAL precede changes in serum creatinine and can be used to diagnose AKI

up to 48 hours prior to a clinical change in creatinine or urine output.[42, 43] Interestingly,

although AVP preserved renal architecture at 18 hours, there were no differences between

groups in terms of NGAL or oxidant damage, suggesting that the benefit of supplementing

AVP may be transient. Given the half-life of AVP is only 10–35 minutes [35], it would not be

surprising if the impact of exogenous AVP waned; with low serum levels contributing to the

persistent hypotension we observed at 18 hours.

Fig 4. AVP supplementation during hemorrhagic shock is associated with decreased reactive species damage and

preserved histologic architecture. Kidney protein lystates (20μg) were analyzed by SDS-Page using antibodies directed toward

4-hydroxynonenal (HNE) and 3-nitrotyrosine as a measure of oxidative damage. Kidney samples were sectioned, stained with

hematoxylin and eosin, and imaged at 10X. (A, B) AVP significantly decreased oxidative damage following resuscitation (60R). (C)

AVP also preserved renal architecture with normal glomeruli (depicted by black arrows) observed 18 hours post-resuscitation. N = 6

animals per time point. Values are mean ± SEM. N = 6–7 per time point. Data were analyzed using one-way ANOVA with a post hoc

Tukey’s test. Histologic grading was analyzed using a Mann Whiney U test. *p<0.05 vs. Sham; #p<0.05 Control vs. AVP treated.

https://doi.org/10.1371/journal.pone.0186339.g004
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Although encouraging, our study has several limitations. First, we only investigated the use

of high dose AVP given at a single time point. While high dose vasopressin has been shown to

improve survival in a lethal model of hemorrhagic shock in swine [44, 45], its long-term bene-

fit remains unknown and alternative dosing regimens, including the use of a continuous infu-

sion targeting a physiologic endpoint such as MAP, may provide a better supplementation

strategy. Second, we only evaluated the impact of AVP on one tissue type. Given the variety of

different vasopressin receptors as well as the susceptibility of different tissues to ischemia, it is

possible that AVP may have tissue-specific effects. Finally, despite our attempt to control for

AVP’s vasoconstrictive properties, we were not able to restore a “normal” MAP using either

norepinephrine or epinephrine and, therefore, cannot definitively determine the direct impact

of AVP on cellular function.

Conclusion

Decompensated hemorrhagic shock results in a progressive depletion of pituitary AVP stores,

as well a decline in serum AVP levels. Supplementing exogenous AVP during resuscitation

improves blood pressure, preserves renal mitochondrial function, and mitigates early acute

kidney injury. While further work is needed to determine the optimal dose and timing, AVP

appears to be a beneficial adjunct during the resuscitation of severe shock.

Supporting information

S1 Data. Data supporting the findings reported in this manuscript can be found in the sup-
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