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Abstract

In maize (Zea mays), leaf senescence acts as a nutrient recycling process involved in pro-

teins, lipids, and nucleic acids degradation and transport to the developing sink. However,

the molecular mechanisms of pre-maturation associated with pollination-prevention remain

unclear in maize. To explore global gene expression changes during the onset and progres-

sion of senescence in maize, the inbred line 08LF, with severe early senescence caused by

pollination prevention, was selected. Phenotypic observation showed that the onset of leaf

senescence of 08LF plants occurred approximately 14 days after silking (DAS) by pollination

prevention. Transcriptional profiling analysis of the leaf at six developmental stages during

induced senescence revealed that a total of 5,432 differentially expressed genes (DEGs)

were identified, including 2314 up-regulated genes and 1925 down-regulated genes. Func-

tional annotation showed that the up-regulated genes were mainly enriched in multi-organism

process and nitrogen compound transport, whereas down-regulated genes were involved in

photosynthesis. Expression patterns and pathway enrichment analyses of early-senescence

related genes indicated that these DEGs are involved in complex regulatory networks, espe-

cially in the jasmonic acid pathway. In addition, transcription factors from several families

were detected, particularly the CO-like, NAC, ERF, GRAS, WRKY and ZF-HD families, sug-

gesting that these transcription factors might play important roles in driving leaf senescence

in maize as a result of pollination-prevention.

Introduction

Maize (Zea mays L.), similar to other flowering plants, undergoes a series of distinct growth

phases starting from germination, juvenile and adult vegetative phases, flowering, and repro-

duction, and ultimately to senescence [1]. Senescence is a major concern in the field of agricul-

ture [2], as it often invariably occurs based on the effects of external stressors and internal
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factors, including metabolic changes, hormonal levels, and environmental stimuli [3–5]. Leaf

senescence involves changes in leaf coloration and is considered as a distinct visual phenome-

non of plant life cycles [6]. Leaf senescence comprises various physiological processes, includ-

ing chlorophyll breakdown, termination of photosynthesis, degradation of proteins and

nucleic acids, transport of catabolites and nutrients, and responses to cell death [6–8]. Over

the last decade, rapid chlorophyll degradation has been identified as one of the earliest events

initiated in the chloroplast during green organ senescence [9,10], and the resulting green-

bleaching phenotype is often considered as the visual marker of senescence and maturation

[11,12]. Although the major Chl catabolic genes (NYC1, NOL, HCAR, PPH, PAO, RCCR and

NYEs/SGRs) have been identified in Arabidopsis [12–14], their functional regulation has not

been thoroughly explored in maize.

In recent years, several senescence-associated genes (SAGs) have been identified in various

species at the transcriptional level [5,8,15–17]. Early senescence has been induced in the inbred

maize line B73 by preventing pollination [18]. Furthermore, with advancements in genome

sequencing and global gene expression profiling tools, several studies have evaluated global

transcriptomic reprogramming during natural and induced senescence [15,19,20]. Transcrip-

tional and metabolic changes associated with early senescence were evaluated in B73 by micro-

array analysis [21], which indicated that the sugars play a major role in senescence initiated by

pollination prevention. Gene Ontology (GO) analysis together with expressional profiling of

senescence-related genes from different species has been conducted. In Arabidopsis, SAGs

identified by various microarray studies are enriched in metabolic processes, carbohydrate

synthesis and photosynthesis [15,22]. However, only a few senescence-initiation genes (SIGs)

have been reported in maize, except for some putative senescence regulatory genes (i.e.,

ZmNYE1, ZmORE1, ZmWRKY53, and ZmPIFs) [23]. Furthermore, phytohormones, including

abscisic acid, ethylene, auxin, jasmonic acid and cytokinin, have been extensively studied as

these play various roles in a wide range of biological processes in plants [6,24–27]. Neverthe-

less, in maize, most of the underlying mechanisms of leaf senescence remain unclear, and a

better understanding of the leaf senescence process in this species is really imperative.

In this study, the maize inbred line 08LF was derived from American germplasm with a

good lodging-resistance, high yield, high grain dehydration rate and mechanical harvesting

suitability, as well as more prominent premature-senescence and breeding significance. The

maize inbred line 08LF was used in this study as the target model plant because of its distinct

early-senescence phenotype during pollination-prevention. By analyzing changes in chloro-

phyll content and identifying DEGs using RNA-Seq and bioinformatics analysis, a total of

5,432 DEGs were identified. Pathway enrichment of DEGs in each expression pattern revealed

a complex regulatory network, including various senescence-initiation genes, specific tran-

script factors, and hormones, which provides an enhanced understanding of the complex

molecular processes associated with the onset of the leaf senescence in maize during pollina-

tion-prevention.

Materials and methods

Plant materials, growing conditions, and sampling details

To identify the genes involved in early leaf senescence, the maize inbred line 08LF, which is

known to undergo early leaf senescence when prevented from pollinating during maize breed-

ing, was used in this study. In the summer of 2014, 08LF plants were planted at the farms of

Henan Agricultural University (Zhengzhou, China; E113˚42’, N34˚48’), where the average

temperature is 14.3˚C and the average rainfall is 640.9 mm per year. The 08LF line was manu-

ally planted in rows 4-m-long row with a plant spacing of 66 and 30 cm for each field plot.

Transcriptome analysis of maize during leaf senescence initiation by pollination-prevention
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Three fields plot were designed with 20 rows for further investigation (S1 Fig). The primary as

well as subsequent ears of the experimental plants were protected with shoot bags prior to silk

emergence and were checked every day to record the silking date. Six days after silking (DAS),

the shoot bags were removed, and the control plants were allowed to undergo open pollination.

The ear leaves of three biological replicates of pollinatied and non-pollinated plants were collected

at 9:00 am at 6, 10, 14, 18, 21, and 24 DAS. Then, the middle region of the ear leaves was carefully

collected by cutting with a knife, rapidly frozen in liquid nitrogen, and then stored in a -80˚C

freezer. To verify the stability of the observed phenotype, the chlorophyll content of the middle

region of ear leaves from Xingyang (China; E113˚35’, N34˚79’) and Sanya (China; E109˚35’,

N18˚29’) was measured in 2013, and those from Zhengzhou in 2014. Two-way ANOVA followed

by a post-hoc test was performed using SPASS software to explore the effect of the environment.

Chlorophyll content and photosynthetic maximum quantum yield

measurement

To assess dynamic alterations in morphology, we measured the chlorophyll concentration of

the collected ear leaves using a soil plant analysis development (SPAD) meter (SPAD-502Plus,

Konica Minolta, Tokyo, Japan) and a Dual-PAM 100 chlorophyll fluorimeter according to

Gnanasekaran et al [28]. SPAD values and the photosynthetic maximum quantum yield (Fv/

Fm) of the ear leaves from three biological replicates of 08LF pollinated (FP) and 08LF no-pol-

linated plants (FNP) were measured at 8:30 am at 6, 10, 14, 18, 21, 24, and 27 DAS. SPAD read-

ings were collected from three ear leaf regions: (a) The top part of the leaf, (b) the middle part

of the leaf, and (c) 10-cm away from the leaf base. By contrast, Fv/Fm values were only col-

lected in the middle part of the leaves. Ten plants per plot were examined as the one biological

replicate, and the average values were calculated from three biological replicates.

Determination of plant hormone

A second batch of samples consisting of five plants per replicate was collected as described for

RNA-Seq analysis during the leaf senescence process, using three biological replicates for each

stage (6, 10, 14, 18, and 21 DAS), and stored at -80˚C until further analysis for the respective phy-

tohormones JA. The endogenous JA levels of ear leaves and kernels were measured using the

enzyme-linked immunosorbent assay (icELISA) described by Wang et al.[8] and Ouyang et al.

[29]. The concentrations of phytohormone were then calculated according to Weiler et al. [30].

Transcriptomic sequencing

RNA was extracted from the middle part of the leaves located near the ear using an RNA Pre-

pure Plant Kit (TIANGEN, Beijing, China). At each time point (6, 10, 14, 18, 21, and 24 DAS

for the PNP plants and 10, and 24 DAS for the FP plants), five plants were mixed for each bio-

logical replicate, and three biological replicates were used for RNA-Seq analysis. Libraries of

each RNA sample were constructed using Illumina Truseq RNA Sample Prep kits (Illumina,

Santiago, CA, USA). Single-end sequencing was performed in an Illumina HiSeq2000

sequencer. The entire original sequence data in fastq format were deposited in the NCBI Short

Read Archive under Accession Numbers PRJNA347500 and SRP091292.

Identification and functional analysis of DEGs

Principal component analysis (PCA) was performed using the expression data of genes identi-

fied by RNA-Seq at different developmental periods of FP and FNP plants and using Omic-

Share tools, a free online platform for data analysis (www.omicshare.com/tools), using default
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parameters. Variables (each sample at each time point for both genotypes) were centered and

then normalized. The generated data were then compressed to produce two novel independent

variables, which were respectively designated as principal components (PC1 and PC2) and

determined to be orthogonal to each other.

An in-house Perl script was employed to remove paired-end reads that consisted of>5%

ambiguous residues (Ns), in addition to those showing >10% bases and with a Phred quality

score of<20 [17]. DEGs identification was performed as described elsewhere [31]. The

remaining high-quality reads from each sample were then mapped to the maize cv. B73

RefGen_V3 genomic DNA sequence (http://www.maizegdb.org) using Tophat software

(v2.0.6). Cuffdiff (v2.0.1) was then run using default parameters to estimate changes in expres-

sion as well as the associated q-values (the p-values were adjusted using a false discovery rate)

of each gene [32]. Finally, the genes assigned significance in the result files were identified as

DEGs.

Functional analysis was performed using Gene Ontology (http://www.geneontology.org/)

and WEGO (http://wego.genomics.org.cn/). The Cytoscape (v3.0.2) plugin ClueGO + Cluepe-

dia v2.1.3 [33,34] was employed for gene function enrichment analysis [35] of the identified

DEGs in the FNP plants, specific up- and down-regulated genes in FNP plants. GO term

fusion and restriction with P< 0.05 were employed, which integrate GO categories and create

a functionally organized GO category network based on overlap between different GO catego-

ries and significance. The intervals of each GO level were set at a min level = 5 and a max

level = 11, and a 2 gene minimum per category as described by Ku et al.[36] Analysis was con-

ducted using a right-sided hypergeometric test for enrichment based on the ClueGO Zea Mays
L. reference genome.

Clustering of DEG expression patterns and transcription factors (TF)

enrichment analysis

All these DEGs were functionally annotated and classified into hierarchical categories using

the MapMan functional classification system [37]; then, significantly over-represented func-

tional categories were identified based on Fisher’s exact test according to a previous publish

[38]. In order to define the dynamic patterns of DEGs expression with leaf development,

SOTA (self-organization tree algorithm) clustering based on Pearson’s correlation in the MEV

program [39] was used to group DEGs. Clusters in heat-maps were generated by arbitrarily

setting a distance threshold (hierarchical clustering) by using MEV program. Transcription

factor annotation for the maize genome was acquired from the plant transcription factor data-

base (PlantTFDB v2.0) [40]. A total of 334 TFs belonging to 43 families were analyzed. The

numbers of TFs in each comparison were recorded for Fisher’s Exact Test (Fisher test function

in the R package). The numbers of TFs in each family in the maize genome were used as back-

ground values. The p values were corrected for the number of clusters tested using FDR. Cor-

rected p values<0.05 were considered significantly enriched.

Quantitative real-time PCR (qPCR) validation

Total RNA was extracted from FP and FNP ear leaves and grains using TRIzol (Invitrogen,

Carlsbad, CA, USA), following the manufacturer’s instructions. Samples from three biological

replicates were collected. The integrity of RNA samples was verified using 1% agarose gel elec-

trophoresis. Reverse transcription (RT) reactions using the RNA that was extracted from the

three independent biological samples was then performed using HiScript Q RT SuperMix for

qPCR (Vazyme, China) with a final volume of 20 μL, according to the manufacturer’s instruc-

tions. Real-time PCR was performed by using a LightCycler1 480II Real-Time PCR detection

Transcriptome analysis of maize during leaf senescence initiation by pollination-prevention
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system (Roche) with SYBR Green Ⅰ. Each reaction included 0.5 μL of the RT reaction product,

0.6 μL of each primer (forward and reverse), 1 μL of 20× SYBR Green Ⅰ dye, 12.5 μL of a premix

(BioTeke, China), and 9.8 μL of nuclease-free water. All qRT-PCR reactions were performed in a

96-well plate at 95˚C for 3 min, followed by 40 cycles under the following conditions: 95˚C for 10

s, 60˚C for 20 s, and a final extension at 72˚C for 20 s. All reactions were performed in triplicate.

The 18S gene was used as the endogenous control. The specificity of each primer pair was verified

by agarose gel electrophoresis and melting curve analysis. The relative abundance of each cDNA

was calculated by a comparative CT method (-ΔΔCT) using the formula 2−ΔΔCT [41].

Results

Characterization of leaf senescence in inbred line 08LF

To characterize the growth of 08LF, we compared the phenotypes of 08LF, Zong 3, 87–1,

Mo17, PH4CV, PH6WC, Chang 7–2, Zheng 58, HCL645 and B73 under pollination preven-

tion. 08LF showed earlier and faster leaf senescence than the HCL645 line and B73 lines,

whereas the other inbred lines remained green in color (S2A and S2B Fig). For further investi-

gation of premature leaf senescence in the inbred line 08LF, phenotypes of the ears leaves and

the upper leaves of FP and FNP plants were observed in the field at 6, 10, 14, 18, 21, 24, and 27

DAS. Two-way ANOVA followed by a post-hoc test was performed to explore the effect of the

surrounding environment by measuring the chlorophyll content of the middle region of ear

leaves from Xingyang and Sanya in 2013, and Zhengzhou in 2014 (S1 Table). The result

showed that the variation between these environments was not significant (p> 0.05), which

indicated that the phenotypes observed in the same period were not affected by the environ-

ment (S1A and S1B Table). From 6 to 21 DAS, the leaves of FP plants remained green. How-

ever, the leaf veins of the FNP plants showed a slight red coloration starting at 18 DAS, and the

top region of the leaves lost its green color at 21 DAS, whereas the leaves of the FP plants

showed a slight green color at 24 DAS. From 27 DAS, the FNP plants showed signs of wilting,

whereas all the leaves of the FP plants remained green (Fig 1). In addition, more extensive yel-

lowing of the top section of the leaves from FNP plants was observed from 14 DAS (Fig 2A), in

the middle part from 18 DAS (Fig 2B), and in the basal region from 21 DAS (Fig 2C). Degrada-

tion of chlorophyll is one of the earliest events of induced senescence [21]. However, the FP

plants only showed a relatively slight reduction in the chlorophyll content at the same stages.

These results indicated that leaf senescence in the FNP plants occurred earlier than that in the

FP plants, and the samples collected at various time points probably reflect the progression of

leaf senescence and can be used for the identification of SIGs.

Fig 1. Phenotypes of maize ear leaves and upper leaves during leaf senescence development after

silking. Each sample was randomly selected from uniform plants.

https://doi.org/10.1371/journal.pone.0185838.g001
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Identification of DEGs at various time points using RNA-Seq analysis

To examine the transcriptomic changes associated with induced senescence, eight libraries were

sequenced using the Illumina deep-sequencing technique, representing time points of 10 and

24 DAS for the FP plants and 6, 10, 14, 18, 21, and 24 DAS for the FNP plants. Three biological

replicates for each time point were used for the analysis. A total of 8~10 million raw reads were

obtained from each library (SRA submission numbers: PRJNA347500 and SRP091292). After

filtering out the low-quantity reads, clean reads (more than 91%) were generated for each sam-

ple. The clean reads were then aligned to the maize B73 genome (RefGen_V3); approximately

80% of these are unique reads that can be mapped (Table 1).

PCA of various biological replicates indicated that the replicates and the sequencing plat-

form were highly reproducible (S3A Fig). In addition, the results of PCA analysis results also

indicated that the transcriptomic pattern of the leaves from both FP and FNP plants was

apparently similar at 14 DAS, and subsequently diverged at 18 DAS. These observations are

coincident with the occurrence of senescence in leaves at 18 DAS (Fig 1).

Putative DEGs were selected based on the following two parameters: a) the average fold-

change (> 2) in at least one-time point and b) the FDR was < 0.001. Accordingly, a total of

6,715 and 1,610 DEGs were identified in FNP and FP plants, respectively. Fig 3 shows that

approximately 1,283 DEGs genes were shared by these two materials. The present study

focused on DEGs associated with non-pollination-related senescence; therefore, 5,432 DEGs

were used in the subsequent identification of genes involved in leaf senescence. Among these,

1,925 DEGs were detected to be down-regulated and 2,314 were upregulated in the FNP plants

(S3B Fig). These results indicated that the inbred line 08LF exhibited normal senescence, and

may present a relatively different regulatory mechanism when prevented from pollinating.

Functional classification of DEGs

To facilitate better understanding of the biological networks of the specific up- and down regu-

lated DEGs, the functional enrichments were performed using the Cytoscape plug-in Cluego +

Cluepedia based on biological processes as described by Wu et al.[42]. As shown in Fig 4A,

the specific upregulated genes in the FNP plants were enriched in various processes, such as

multi-organism process, nitrogen compound transport, response to endogenous stimulus, and

glycolipid transport. However, the specific downregulated genes were enriched in photosynthe-

sis, cellular homeostasis, protein processing in the endoplasmic reticulum and the alpha-amino

acid metabolic process (Fig 4B). These results indicate that either up- or down-regulated DEGs

identified in the FNP plants are present in different functional pathways involved in regulating

leaf senescence by pollination preventing.

Leaf senescence dynamics of FNP plants at various time points under

pollination-prevention

The DEGs in leaves of the FNP plants at various time points were identified using Pearson’s

correlation, which generated four general temporal gene expression patterns during senes-

cence (Fig 5A), and MapMan annotation was used to assign genes into functional categories

for each cluster to identify the pathway divergence during the leaf senescence process. As

shown in Fig 5, the genes in the C1 cluster had peak expression around 14DAS, after which leaf

yellowing was more extensively observed in the top section of the leaves from FNP. However,

the expression of these genes in the C1 cluster consistently decreased in their expression until

24 DAS. The most significantly enriched functional categories in this cluster were the jasmonate

mechanism, protein synthesis, redox, the Calvin cycle, light reactions and photorespiration of

Transcriptome analysis of maize during leaf senescence initiation by pollination-prevention
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photosynthesis (Fig 5B). The C2 cluster had a similar expression pattern as C1; however, the

genes in this cluster showed higher expression at later period of maturity (24 DAS). The

enriched categories in this cluster are involved in redox, abiotic stress, transport, secondary

Fig 2. Chlorophyll contents in the leaves of FNP and FP plants during senescence. (A-C) Chlorophyll

levels decreased over time in both treatments at different rates. The data were derived from three biological

replicates; five plants were mixed to form one biological replicate, and the standard deviation is plotted. The

bar represents the mean ± SE, n� 8. *, p < 0.05; **, p < 0.01; and ***, p < 0.001.

https://doi.org/10.1371/journal.pone.0185838.g002
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metabolism, the synthesis of amino acids metabolism and major CHO metabolism. The expres-

sion of genes in the C3 cluster gradually increased until 24 DAS, which was predicated to be

associated with the mechanism of early senescence, since the enriched categories in this cluster

included hormone metabolism-related genes, such as ethylene and JA metabolism, followed by

Table 1. Overview of the sequencing reads obtained from each sample.

Sample rawdata_count count_

after_qfilter

reads_keep% mapped_reads mapped% Unique_

mappled_reads

Unique_ mappled_reads

%

6DASN_r1 7975845 7834130 98.22 7143579 91.19 5649510 79.09

6DASN_r2 9193409 9019453 98.11 8246352 91.43 6726028 81.56

6DASN_r3 7758852 7591747 97.85 6973570 91.86 5744227 82.37

10DASN_r1 7442024 7291875 97.98 6731287 92.31 5480898 81.42

10DASN_r2 9376032 9181843 97.93 8479906 92.36 7106564 83.80

14DASN_r1 7309638 7172950 98.13 6539700 91.17 5201404 79.54

14DASN_r2 9131516 8960615 98.13 8152781 90.98 6614386 81.13

14DASN_r3 8093502 7922126 97.88 7209648 91.01 5824748 80.79

18DASN_r1 8385772 8229490 98.14 7541812 91.64 6252230 82.90

18DASN_r2 8806960 8617639 97.85 7918925 91.89 6604132 83.40

18DASN_r3 7917699 7740348 97.76 7123355 92.03 5895384 82.76

21DASN_r1 7590268 7437514 97.99 6794370 91.35 5563658 81.89

21DASN_r2 7860744 7698098 97.93 7018891 91.18 5801329 82.65

21DASN_r3 11024139 10794584 97.92 9832230 91.08 8365402 85.08

24DASN_r1 9382351 9163732 97.67 8367413 91.31 7079381 84.61

24DASN_r2 8201533 8054678 98.21 7433771 92.29 6190232 83.27

10DAS_r1 7941949 7777455 97.93 7134198 91.73 5833995 81.78

10DAS_r2 8834814 8644115 97.84 7960889 92.10 6607957 83.01

24DAS_r1 8599542 8432296 98.06 7728019 91.65 6398312 82.79

24DAS_r2 9545411 9339804 97.85 8557539 91.62 7181523 83.92

24DAS_r1 8206919 8027609 97.82 7381500 91.95 6095486 82.58

DAS, indicateds the number of days after silking that the pollinated plants were collected; DASN, indicates the number of days after the no-pollinated plants

were harvested; The replicates are defined as r1, r2, and r3, respectively.

https://doi.org/10.1371/journal.pone.0185838.t001

Fig 3. Venn diagram of DEGs identified in FNP and FP plants. The differentially expressed genes shared

between FNP and FP plants. Red numbers indicate the gene identified in FP from 6 to 24 DAS; numbers of

differentially expressed genes in FNP plants from 6 to 24 DAS are shown in blue.

https://doi.org/10.1371/journal.pone.0185838.g003
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abiotic stress, protein degradation, TCA, and secondary metabolism of isoprenoids. In addition,

the enriched categories in this cluster also included genes involved in transporting sugars,

amino acids, peptides and oligopeptides, as well as genes involved in the carbon concentrating

mechanism of photosynthesis, misc, N-metabolism, and nucleotide metabolism degradation.

The expression of genes in cluster C4 remained relatively high between 6 and 10 DAS, and then

decreased from 14 DAS to 24 DAS; this cluster included enriched genes that play roles in RNA

regulation of transcription, posttranslational protein modification and signaling-related genes.

Taken together, the DEGs in clusters C1 to C4 clusters revealed that the major biochemical

shifts in the leaf senescence process are produced partially by highly dynamic, coordinated and

localized transitions in mRNA abundance, and pollination prevention affectes gene expression

during leaf development.

Hormone related transcription factors during leaf senescence under

pollination-prevention

The analysis of gene patterns and pathways revealed that DEGs were significantly enriched in

photosynthesis mechanisms in the C1 cluster, whereas DEGs were mostly enriched in

Fig 4. GO enrichment analysis involved in biological processes. Specific up- and downregulated DEGs

of FNP plants were analyzed using the Cytoscape plug-in ClueGo + Cluepedia to detect statistically enriched

GO categories relative to the ClueGO maize reference genome involved in biological processes (BP). (a)

ClueGO plot in GO_BP for specific upregulated genes. (b) ClueGO plot in GO_BP for specific down-regulated

genes. Nodes indicate a specific GO term and are clustered based on similarities in their associated proteins.

Each node relates to a single GO term and is represented by a specific color according to enrichment

significance (pV = p value). Node size represents the number of proteins that were mapped to each category.

Edge thickness indicates the calculated kappa score, which is based on the number of proteins that are

shared among various terms. Functional groups are indicated by the most significant term relating to the

group. Arrows represent positive regulation.

https://doi.org/10.1371/journal.pone.0185838.g004
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transcription regulation and hormones (especially JA) from cluster C3. Chlorophylls are essen-

tial molecules that harvest solar energy in photosynthetic antenna systems; they are involved

in charge separation and electron transport within reaction centers. Both FP and FNP plants

exhibited an expected decline in the chlorophyll content with leaf growth (Fig 2). Kyoto Ency-

clopedia of Genes and Genomes (KEGG) analysis showed that genes involved in JA metabo-

lism were highlighted in the DEG lists (Fig 5B). Eight JA biosynthesis-related genes, encoding

ten lipoxygenases (LOXs), one allene-oxide cyclase (AOC), three allene oxidase synthases

(AOSs), four acyl-CoA oxidases (ACXs), four enoyl-CoA hydratase/3-hydroxyacyl-CoA dehy-

drogenases (MFP2s), five 12-oxophytodienoate reductases (OPRs), and one jasmonic acid car-

boxyl methyltransferase (JMT) were displayed in the DEG list of the FNP plants. In addition,

the expression of three genes (JAZ1, JAZ2 and JAZ3) involved in the JA signaling pathway

were also significantly differently expressed during leaf senescence process induced by pollina-

tion prevention (Fig 6B). Consistently, the JA content in the FNP plants was significantly

higher than that in the FP plants at 14 DAS (Fig 6C), whereas the Chl content and photosyn-

thetic maximum quantum yield (Fv/Fm) showed decreased expression patterns in the middle

part of leaves from 14 DAS (Figs 2 and 6D). These results indicated that JA-regulated Chl deg-

radation is probably involved in the onset of leaf senescence in FNP maize plants (Fig 6A). In

addition, genes related to other hormones were also found in this study, including auxin, ethyl-

ene and abscisic acid (S2 Table), which showed that the senescence response caused by pollina-

tion-prevention is a complex network involving all kinds of hormones.

As shown in Table 2, a total of 334 TFs from 43 TF families were identified in maize. Six

families were statistically overrepresented during maize leaf senescence, including CO-like,

ERF, GRAS, NAC, WRKY and ZF-HD. Five of the seven CO-like family genes involved in C1

and C4 were downregulated from 14 DAS, whereas the ERF and NAC families were mainly

distributed in C3, and were found to be continually increased throughout all senescence stages.

Most DEGs belong to the GRAS and WRKY families, were expressed in C3 and C4 (Table 2

and S3 Table). These results indicated that the complex regulatory mechanism of early senes-

cence in maize are mediated by the TFs under pollination prevention.

Fig 5. Dynamic transcriptome of the FNP plants during the senescence process. (A) High expression is

indicated by the red color, and low expression is showed in blue. Clusters 1 (C1), 2 (C2), 3 (C3), and 4 (C4)

are indicated by green, blue, red and yellow, respectively, on the left side. (B) Significant pathways are

represented with red color; p value < 0.05. C1, C2, C3 and C4 are shown from left to right side.

https://doi.org/10.1371/journal.pone.0185838.g005
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Validation of DEG expression profiles using RT-qPCR

To further validate the results of our RNA-Seq data, quantitative RT-PCR analysis was con-

ducted using specific primers based on a subset of 18 DEGs (S4 Table) that were identified by

RNA-Seq as being upregulated or downregulated. The results showed that 17 of the DEGs

(94%) showed the same expression profile, whereas we could not assess the expression profile

of one gene due to a reaction failure, which may possibly be caused by a mutation at the site

where our primer annealed. In addition, the expression profiles of the 17 genes were consistent

with our RNA-Seq ratios, with a relative R2 of>0.980 (Fig 7). Our findings thus indicate that

our DEG-based technique for measuring transcript abundance is precise and can be employed

in the analysis of gene expression in an organism that has no available genome information.

Discussion

Senescence, as the final step of plant growth and development, is highly correlated with the

crop yield [43]. Early leaf senescence can generally decrease yield but elevate nitrogen use effi-

ciency under conditions of nitrogen starvation. Delaying leaf senescence may lower nitrogen

use efficiency, but may improve the final yield. Thus, fine-tuning the onset as well as the

Fig 6. JA-related pathways may play key roles in senescence induction. (A) JA synthesis and signaling

pathways with differential expression patterns in FNP plants. (B) Hierarchical clustering of JA-related genes.

The color scale indicates the expression value. (C) Leaf JA contents of FNP and FP plants. (D) Changes in

the photosynthetic maximum quantum yield (Fv/Fm) in the middle section of ear leaves. The data were

derived from five experiments, and the standard deviation has been plotted. The bar represents the

mean ± SE, n� 8. *, p < 0.05; **, p < 0.01; ***, and p < 0.001.

https://doi.org/10.1371/journal.pone.0185838.g006
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Table 2. Number of transcription factors (TFs) identified in FNP plants during the senescence process.

Family C1 C2 C3 C4 Total TFs in maize

AP2 0 1 3 0 4 54

ARF 0 1 3 5 9 62

ARR-B 1 0 0 0 1 13

B3 0 0 0 2 2 77

bHLH 2 0 11 8 21 308

bZIP 1 1 1 9 12 216

C2H2 0 1 2 6 9 179

C3H 2 1 0 1 4 110

CAMTA 0 0 0 1 1 10

CO-like 5a 0 0 2a 7 18

DBB 2 0 0 2 4 20

Dof 1 1 0 1 3 52

E2F/DP 0 0 0 2 2 24

EIL 0 0 0 1 1 9

ERF 0 2 20a 15 37 204

FAR1 0 0 0 2 2 25

G2-like 2 1 2 6 11 89

GATA 1 2 0 6 9 54

GRAS 2 4 9a 4a 19 104

GRF 0 0 0 1 1 32

HB-other 0 0 0 1 1 28

HD-ZIP 1 2 2 3 8 97

HSF 1 4 1 5 11 49

LBD 0 0 0 5 5 60

M-type_MADS 0 2 0 0 2 46

MIKC_MADS 0 0 0 3 3 90

MYB 1 4 8 15 13 203

MYB_related 6 2 0 9 17 169

NAC 0 0 24a 11 35 189

NF-YA 0 3 0 1 4 36

NF-YB 0 1 0 0 1 27

NF-YC 2 2 1 1 6 25

Nin-like 0 0 1 1 2 23

RAV 0 0 0 2 2 3

S1Fa-like 0 0 0 0 0 5

SBP 0 0 1 1 2 55

SRS 0 0 0 1 1 11

TALE 0 1 0 1 2 52

TCP 0 1 0 2 3 52

Trihelix 0 0 3 5 8 57

WOX 1 0 0 0 1 30

WRKY 3 0 20a 20a 43 161

ZF-HD 3a 2 0 0 5 26

Total 37 39 112 161 334 3154

a The overrepresented TF families at a p value < 0.05 (Fisher’s exact test)

https://doi.org/10.1371/journal.pone.0185838.t002
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process of leaf senescence are two of the most critical prerequisites for high crop production.

In our study, genome-wide transcriptional profiling of ear leaves was performed by inhibiting

pollination in the maize inbred line 08LF. By comparing the transcriptomic changes between

FP and FNP plants, we have identified a total of 5,432 DEGs. The different phenotypic charac-

teristics during the senescence process between FP and FNP plants revealed that the onset of

senescence may occurs from 14 DAS in FNP plants. In addition, the functions of various SIGs,
especially transcription factors, and hormones-related genes were reported to play significant

roles in the leaf senescence-initiation process at the transcriptional level. The study provides

an enhanced understanding of the complex molecular processes associated with the onset of

leaf senescence in maize.

Comparative analysis of senescence-induced genes in maize under

pollination prevention relative to other plant species

Maize is a major source of food, feed, and fuel. MAP kinase, homeobox genes, cytokinins, and

nitrogen levels have been reported to be involved in leaf senescence in maize [44–48]. In addi-

tion, removing the maize ears after flowering has been reported to induce the early senescence

of the upper leaves of ears [49]. Recently, Wu et al. utilized the inbred line Yu87-1 to determine

the potential roles of miRNAs as well as their target genes in leaf senescence by using small

RNA deep sequencing technology [50]. Their study identified a total of 16 candidate miRNAs,

which then were used in elucidating the regulatory roles of miRNAs in leaf senescence of

maize. However, the molecular mechanism underlying the regulation of senescence induction

in maize during pollination prevention remains unclear. A previous report showed that pre-

venting pollination in the inbred line B73, which harbors the reference maize genotype, induces

early senescence [18]. Comparison of the expression patterns of genes in plants undergoing

induced and natural senescence showed that sugars play an important role in pollination pre-

vention-induced senescence [21]. Transcriptional analyses of natural leaf senescence in the

maize inbred line Q319 at three phase (mature leaves, early senescent leaves, and later senescent

leaves) were conducted by Zhang et al. [51]; the up-regulated genes at the early senescence stage

Fig 7. Comparison of the expression ratios of some selected genes using RNA-Seq and qRT-PCR.

https://doi.org/10.1371/journal.pone.0185838.g007
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were involved in aromatic amino acid biosynthetic process and transport, cellular polysaccha-

ride biosynthetic process, and cell wall macromolecule catabolic process. By contrast, at the

later senescence stage, up-regulated genes were involved in amino acid metabolism, transport,

apoptosis, and response to stimulus. Comparative analysis indicated that among the 5,432

DEGs identified in the present study, 1,938 (35.68%) DEGs overlapped with those detected in

two previous studies, and 3,494 (64.32%) were specifically identified in this study (S5 Fig). In

our study, the specific up-regulated genes in the FNP plants were enriched in various processes,

such as multi-organism process, nitrogen compound transport, response to endogenous stimu-

lus, and glycolipid transport. These results showed that leaf senescence induced by pollination

prevention was not only involved in the process of natural senescence, such as transport and

response to stimulus, but also implicated in novel functions, such as multi-organism process. In

addition, genes involved in photosynthesis were specifically down-regulated, and a decline in

photosynthetic activity may trigger senescence [52]. Yoshida et al.[53] hypothesized that metab-

olites such as carbohydrates and amino acids may play a role in the induction and in the pro-

gression of senescence. The identified functional enrichment of DEGs will probably provide

new directions in the elucidation of the mechanisms underlying early senescence under pollina-

tion-prevention.

Previous studies were conducted to better understand leaf senescence, e.g., identification

and characterization of various SAGs in addition to senescence-related mutants of different

plant species, which include A. thaliana, Oryza sativa, Medicago truncatula, Gossypium hirsu-
tum L., as well as Sorghum bicolor [54–59]. These efforts contributed to the identification of a

number of transcription factors (i.e., WRKY, NAC, HOMOBOX, and MYB) [60]. With the

development of next-generation high-throughput sequencing, RNA-Seq has been used to

investigate the expression of SAG genes in various plants [61–63]. A study of developmental

leaf senescence in cotton (G. hirsutum L.) revealed that SAGs were functionally enriched in the

processes of auxin metabolism, serine and glycine catabolism, and other carbolic-related activ-

ities. In addition, several WRKY-, ERF-, NAC-associated genes were previously identified

[64]. A survey of leaf senescence has been conducted for switchgrass (Panicum virgatum) to

explore its underlying molecular mechanism, which indicated that transport processes and

NAC transcription factors are enhanced during nutrient remobilization [65]. A comparison of

the results of genomic and RNA-Seq in sorghum (Sorghum bicolor) was conducted and identi-

fied 176 potential markers for monitoring senescence, thereby providing valuable resources

for comparative genomics analyses of leaf senescence [66]; however, the senescence mecha-

nism in maize has not been clearly revealed. In our study, all of these kinds of TFs were identi-

fied, and showed strong similarity to those of Arabidopsis and rice (S2 Table), which indicated

that the relationships between TFs and leaf senescence might be conserved in these species.

Expression patterns of SIGs and the TFs enriched during senescence

induction

Several SAGs have been identified in various species at the molecular level; however, no SIGs
have been reported in maize to date. To identify the SIGs under pollination prevention, leaves

from six different developmental stages covering the senescence process were collected and

analyzed at transcriptional level. It was previously reported that the chlorophyll content, mem-

brane ion leakage, and gene expression can be used as senescence markers [5]. In the present

study, the middle region of the leaves started to yellow at around 18 DAS (Fig 1), and the chlo-

rophyll content of leaf tips rapidly decreased from 14 DAS (Fig 2A). These findings, together

with those described by Lin et al.[64], indicated that the initiation of leaf senescence in the

08LF inbred line under our described growth conditions occurs around 14 DAS [64].
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NYE1, LOX2, PHT5, FAAH, ACS2, PAO in Arabidopsis and SAG12 in sorghum were upre-

gulated at the initiation of leaf senescence [67–70]. However, although numerous genes related

to the leaf senescence process were described previously for various plant species, the onset of

premature-senescence in maize remains unknown, especially that induced by pollination pre-

vention. Consequently, the new findings of regulation patterns and functions of DEGs in our

study will provide more evidence to discover new genes related to the onset of early senescence

induced by the pollination prevention. WRKY53 and AtWRKY6 were previously reported as

senescence-associated factors in Arabidopsis [71,72]. WRKY TFs have also been shown to act

downstream of the defense signaling pathways of mitogen-activated protein kinases and are

involved in various JA- and SA-dependent signaling pathways for cellular defense [73]. MYB

transcript factors were reported to be involved in plant growth and development, stress

response, and hormone signaling. Previous reports have shown that mybn mutants display a

delayed-senescence phenotype, whereas the AUX-responsive phenotype is observed in MYBH

over-expression lines, which in turn causes premature leaf senescence as well as the upregula-

tion of leaf senescence marker genes [74], thereby suggesting that MYB genes mediate leaf

senescence through AUX homeostasis. In Arabidopsis, an MYB-related TF, AtMYBL, pro-

motes early leaf senescence. In addition, AtMYB2 inhibits cytokinin-mediated branching to

regulate whole-plant senescence during later stages of development [75], and AUX negatively

regulates local biosynthesis of cytokinins by controlling the expression of isopentenyl transfer-

ase (IPT) genes [76]. In the present study, the MYB family was distributed across all four clus-

ters, whereas the NAC and WRKY TFs were specifically enriched during senescence (Table 2),

thereby suggesting that these TFs contribute to leaf senescence. A number of NAC genes in

Arabidopsis have been reported to be positive regulators of senescence [60]. The abundance of

NAC TFs in C3 was significantly higher than that of the other profiles, which indicates that the

NAC genes in our study underwent sustained unregulated expression, and ultimately, NAC

may induce leaf early senescence. Many of NACs are known to be positive regulators of senes-

cence, which have been reported [77,60,78]. However, Kong et al. [79] showed that although

11 upregulated NAC TFs in the early senescence cotton line were identified, the expression

level of GhNAC6 in the early-senescence cotton line decreased from 65 to 95 days after polli-

nation (DAP), and then increased from 95 until 110 DAP. In our study, except for the NAC

TFs in C3, the NAC TFs in other clusters support Kong’s hypothesis that different NAC TFs

perform different functions during leaf senescence. Further research on functional studies of

leaf senescence-related candidate NAC genes is thus imperative. The present study will lay the

basic foundation for discovering novel SIGs and senescence-related regulatory networks by

verifying the regulation pattern of the senescence-initiation process in the future.

Role of JA during senescence onset in FNP plants

JA has been considered as an inducer of senescence in various plant species [80–86]. Exoge-

nous application of JA resulting in senescence has also been demonstrated [80]. Rubisco acti-

vase (RCA) plays an important role in JA-induced leaf senescence [84]. In Arabidopsis, JA

levels were higher in senescing than in non-senescing leaves, and JA biosynthesis-related genes

were also activated during senescence [80]. Various senescence-associated genes (SAGs) can

also be induced by JA [20,87]. For example, the expression of SENESCENCE4 (SEN4) and

SAG12 was increased after JA treatment in wild-type plants but was severely reduced in the

coi1-2 mutant [88]. Some WRKY TFs were found to be involved in JA-induced senescence.

WRKY70 and WRKY53 function as the node of JA- and SA-mediated signals [89–92], and

WRKY57, a repressor of SEN4 and SAG12, functions as a node of convergence for JA- and

auxin-mediated signaling pathways during JA-induced leaf senescence [27]. miR319-controlled
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TCP4 positively regulates leaf senescence by directly activating the JA biosynthetic gene

LIPOXYGENASE 2 (LOX2) [70]. Previously, JA also have been reported to promote leaf

degreening in other species [85], mechanisms at the molecular level remains unknown in

maize. Rapid Chl degradation is a characteristic event during leaf senescence or maturation;

therefore, understanding the Chl degradation mechanism will contribute to the exploration

of senescence responses. In our study, some core senescence genes formed a complex network

involved in JA biosynthesis and signaling pathways in FNP plants (Fig 6A). The expression of

most of JA biosynthesis related genes (MFP2: GRMZM5G854613,GRMZM2G 459755, GRMZ
M2G106250;AOS: GRMZM2G067225;ACX: GRMZM2G014136,GRMZM2G 002959, GRMZ
M5G862219, GRMZM2G099666; LOX1: GRMZM2G156861, GRMZM2G102760; LOX5: GRM
ZM2G109130; LOX3: GRMZM2G070092;OPR1: GRMZM2G106303) consistently increased

during the senescence process, whereas some of them (LOX5:GRMZM2G040095, LOX2:

GRMZM5G822593;AOS: GRMZM2G033098) showed peak expression around 14 DAS (Fig

6A and 6B, S2 Table). In addition, genes (COI, JAZ, MYC, ANAC, NYE and PAO), that were

previously reported in other species as the JA signaling transport genes [12–14], were associ-

ated with the Chl degradation. In this study, MYC(GRMZM2G001930), ANAC(GRM ZM2G
079632), NYE(GRMZM2G091837), and PAO(GRMZM2G339563) displayed the highest

expression level at 24 DAS, whereas the expression of JAZ (GRMZM2G101769 and GRMZM2
G114681) decreased continually from 10 DAS. Interestingly, the Chl content and photosyn-

thetic maximum quantum yield (Fv/Fm) were decreased from 14 DAS. The JA level in the

FNP plants was much higher than that in the FP plants at 14 DAS (Figs 2, 6C and 6D). This

result indicated that JA is probably required at a high concentration for the onset of the senes-

cence process, and an increase in the JA content might positively regulate maize senescence,

as suggested for other species, through Chl degradation in ear leaves.

By observing the phenotype of the ears under the pollination-prevention, we found that the

development of ears was apparently different under pollination-prevention compared to the

natural plants (S5 Fig), and we detected the expression of the JA-related genes and the JA con-

tent in the grains (S6 and S7 Figs). Most of the JA biosynthesis genes exhibited higher expres-

sion in the FNP than in the FP plants, but the level of LOX3(GRMZM2G070092 and GRMZM
2G104843) and JAR1(GRMZM2G001421) changed. Previously, ZmLOX3 was shown to serve

asa negative regulator of JA biosynthesis in roots and seed. The lox3 knockout mutant roots

produced elevated basal levels of JA and displayed an increased expression of JA biosynthesis

genes [93], suggesting that LOX3 may suppress the production of JA. The result also indicated

that JA signaling transport genes showed a different expression level in the maize grains of FP

plants, which exhibited a relatively stable change compared with the FNP plants but with

opposite expression of JAZ genes. In addition, the JA content has been reported to be increased

during tomato embryo and seed development [94]. Interestingly, in our study, the content of

JA in FNP was higher with a peak at 18 DAS, than that in FP plants, which exhibited a contin-

ual increase (S7 Fig). These results revealed a very different expression tendency of the JA-

related genes and JA content in grains in comparison with the ear leaves, and JA mediated the

plant senescence in FNP plants needs to be further explored.

Previous studies have reported that the initiation and procession of leaf senescence in plants are

affected by phytohormones [6–8,26], particularly ABA, which is considered to promote senescence,

whereas cytokinin and AUX delay this process. AUX has been reported to be a negative regulator

of leaf senescence [7], but an increase in the auxin content has also been observed during leaf senes-

cence [1]. Other hormones, such as GA3 and ZR, have also been reported to be associated with leaf

senescence process [80,95,26], but the function of GA3 and ZR in senescence is poorly understood,

compared to ABA, JA and cytokinin. In this study, many hormone-related genes were identified;

however, these genes showed different expression patterns (S2 Table), which indicates that the
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regulation of hormone response to the leaf senescence in maize under pollination-prevention is a

complex process. In addition, how these hormone-related genes contribute to the onset of senes-

cence in maize by pollination prevention needs to be addressed in future.

Taken together, our results show that FNP plants undergo senescence earlier compared to

FP plants. Phenotypic analysis, the chlorophyll content, and RNA-Seq data were used to iden-

tify a total of 5,432 DEGs, and GO functions were enriched in the natural senescence-related

processes such as transport and response to stimulus, as well as in several novel functions such

as multi-organism process and photosynthesis. In addition, the expression patterns of all

DEGs were enriched in four clusters. Furthermore, many TFs, and hormone-related genes

were found in each cluster, indicating that these associated genes may be the predicated major

regulatory cues to induce early senescence under pollination-prevention. Through the analysis

of pathway enrichment in each cluster, JA metabolism was predicated as the one of main cues

for the senescence initiation response, and the JA content was higher in FNP than that in FP

plants from 14 DAS. More importantly, exploration of early-senescence in the inbred line

08LF, will provide a theoretical foundation for maize production in understanding the mecha-

nism of premature senescence.

Supporting information

S1 Fig. Diagrams of samples collection of RNA-Seq on the field. Three biological replicates

were independently derived from Sample plot 1, 2, and 3. The sample plots were indicated by

green, and the red for hybrid line.

(TIF)

S2 Fig. Chlorophyll content of the leaves during senescence by pollination -prevention. (A)

Changes in chlorophyll content in 10 elite inbred lines that were prevented from pollinating.

(B) Changes in chlorophyll content in 10 inbred lines under natural pollination. The data are

derived from five experiments and the standard deviation plotted. The bar represents the

mean ± SE, n� 8. �, p< 0.05; ��, p< 0.01; ���, and p< 0.001.

(TIF)

S3 Fig. Bioinformatics analysis of transcriptome sequence data in maize. (A) Pearson’s cor-

relation coefficient between biological replicates. (B) The regulation pattern in FNP plants dur-

ing senescence.

(TIF)

S4 Fig. The overlap of differentially expressed genes during natural leaf senescence and

induced leaf senescence. The green area represents the differentially expressed genes during

natural leaf senescence by Zhang et al. (2014), the blue area represents the differentially

expressed genes in B73 during early leaf senescence induced by prevent pollination by

Sekhon’s et al. (2012), the yellow area represents the differentially expressed genes in this

study. The areas shown in the diagram are not proportional to the number of genes in each

group.

(TIF)

S5 Fig. The phenotypes of maize ear in FNP and FP plants at 7 DAS (left side) and 21 DAS

(right side).

(TIF)

S6 Fig. Expression level of JA-related genes involved in JA synthesis and signaling path-

ways in the grains of FNP and FP plants.
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S7 Fig. The content of JA-me in the grains of FNP and FP plants. The bar represents the

mean ± SE, n� 8.

(TIF)

S1 Table. Two-way ANOVA of the effect of the environment on FP and FNP plants.
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S2 Table. List of JA metabolism-related genes in. Excel file containing a list of alpha-linolenic

acid metabolism-related genes in FNP plants.
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S3 Table. Differentially expressed TFs in each FNP plant cluster.
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S4 Table. Primers used for RT-PCR analyses.
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