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Abstract

Plants interpret their immediate environment through perception of small molecules.

Microbe-associated molecular patterns (MAMPs) such as flagellin and chitin are likely to be

more abundant in the rhizosphere than plant-derived damage-associated molecular pat-

terns (DAMPs). We investigated how the Arabidopsis thaliana root interprets MAMPs and

DAMPs as danger signals. We monitored root development during exposure to increasing

concentrations of the MAMPs flg22 and the chitin heptamer as well as of the DAMP AtPep1.

The tissue-specific expression of defence-related genes in roots was analysed using a

toolkit of promoter::YFPN lines reporting jasmonic acid (JA)-, salicylic acid (SA)-, ethylene

(ET)- and reactive oxygen species (ROS)- dependent signalling. Finally, marker responses

were analysed during invasion by the root pathogen Fusarium oxysporum. The DAMP

AtPep1 triggered a stronger activation of the defence markers compared to flg22 and the

chitin heptamer. In contrast to the tested MAMPs, AtPep1 induced SA- and JA-signalling

markers in the root and caused a severe inhibition of root growth. Fungal attack resulted in

a strong activation of defence genes in tissues close to the invading fungal hyphae. The

results collectively suggest that AtPep1 presents a stronger danger signal to the Arabidopsis

root than the MAMPs flg22 and chitin heptamer.

Introduction

Roots engage in diverse interactions with their biotic environment, some being mutually benefi-

cial (e.g. symbioses) while others are detrimental to the plant but serve the microorganism (e.g.

plant diseases) [1,2]. Besides these opposing cases, there appear to be a number of seemingly

neutral associations whose exact impact on the partners has still to be identified. Following

rapid advances in large-scale sequencing techniques, the microbial communities inhabiting the
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phyllo- and rhizosphere of plants have gained particular attention in recent years [3,4]. The root

microbiome not only influences nutrient availability and thus plant development, it also affects

plant immunity towards root and shoot pathogens [5].

In the rhizosphere, roots are in permanent contact with an immense number of microorgan-

isms of variable composition, many of which are bacteria and fungi [6]. The elicitors flagellin

and chitin, representing contact with bacterial and fungal microbes, are perceived by pattern

recognition receptors (PRRs) of the plant. The perception of microbe-associated molecular pat-

terns (MAMPs) leads to a series of downstream events including the generation of reactive oxy-

gen species (ROS), the phosphorylation of mitogen-activated kinases (MAP kinases) as well as

transcriptional reprogramming, culminating in pattern-triggered immunity (PTI) [7,8]. The

phytohormones salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) are central regulators

of plant immunity and orchestrate local as well as systemic immune responses in a complex net-

work of synergistic and antagonistic interactions [9–11].

PTI responses were first studied in leaves but have also been reported in roots [12–16]. In

the natural environment of roots, flagellin and chitin are assumed to be omnipresent mole-

cules and are also components of organisms neutral or even beneficial towards plants, raising

the question if these molecules are likely to function as a general signal of danger for the root.

Opposed to non-self molecules such as flagellin, a class of endogenous elicitors known as dam-

age-associated molecular patterns (DAMPs) is generated when plant tissue is damaged [7,17].

For example, microbial enzymes can release fragments of the plant cell wall such as oligogalac-

turonides, which entail signalling events similar to those described after MAMP recognition

and can protect Arabidopsis leaves against fungal infection [18].

Another class of endogenous elicitors is composed of small peptides and has been termed

Peps (plant elicitor peptides) [19,20]. The first member of the Pep family, AtPep1, was isolated

from Arabidopsis leaf tissue and consists of the 23 C-terminal amino acids of its precursor

PROPEP1 [21]. The leucine-rich repeat receptor-like kinases AtPEPR1 and AtPEPR2 were

demonstrated to mediate Pep-dependent responses [22,23]. The 8 PROPEP genes identified in

Arabidopsis differ with respect to their tissue-specific expression patterns as well as regarding

the subcellular localization of the encoded proteins [24]. PROPEP genes are present in many

angiosperms, amongst them important crops such as maize, rice and potato, but the corre-

sponding Peps are usually not recognized between different plant families [25]. Pep-dependent

signalling increases host resistance towards bacterial or fungal pathogens and protects the

plant against herbivores [26–29]. In addition to their role in plant immunity there is increasing

evidence that Peps also have developmental functions in plants [24,30,31].

In the present study, we hypothesize that the presence of a DAMP such as AtPep1 is inter-

preted as a stronger alarm signal by the root when compared to flagellin or chitin because

these MAMPs are an abundant component of the rhizosphere. We analyse early PTI responses,

elicitor-dependent growth inhibition as well as transcriptional regulation of defence genes in

the root following treatment with equimolar concentrations of flg22, the chitin heptamer

(chi7) and AtPep1. In addition we deployed a series of promoter-reporter constructs enabling

precise localization of gene activation to understand which tissues and developmental zones of

the root respond to the stimulus. Defence gene responses are also analysed during infection

with the fungal root pathogen Fusarium oxysporum.

Materials and methods

Plant growth conditions

Plant material used was Arabidopsis thaliana Col-0, the mutants fls2 (SAIL_691C4; for root

growth inhibition) [32], fls2 (SALK_062054C; for MAPK phosphorylation) [33], cerk1-2
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(GABI_096F09) [34], pepr1 pepr2 (SALK_059281 (pepr1) and SALK_098161 (pepr2)) [23] as

well as several transgenic lines that are described below. For ROS measurements and MAP

kinase phosphorylation seeds were surface-sterilized and grown on 0.5x Murashige and Skoog

(MS) basal medium containing 0.5% sucrose and 0.8% agar under a 24 h-photoperiod at 20˚C.

For elicitor treatments of promoter::YFPN lines seeds were surface-sterilized and grown verti-

cally in square petri-dishes on 0.5x Murashige and Skoog (MS) basal medium containing 0.5

g/l MES and 0.8% agar at pH 5.7 at 22˚C day / 18˚C night temperature under 16 h of light. For

root growth inhibition assays and quantitative PCR seeds were surface-sterilized and grown

vertically in square petri-dishes on 0.5x Murashige and Skoog (MS) basal medium containing

0.5 g/l MES and 0.8% agar at pH 5.7 at 22˚C under 12 h of light. For inoculation with Fusarium
oxysporum seeds were surface-sterilized, suspended in 0.2% agar and placed in batches of 10

seeds per well in 12-well plates onto a foam disk floating on 3 ml of liquid 0.5x Murashige and

Skoog (MS) basal medium containing 0.5 g/l MES at pH 5.7 in each well (adapted from [12]).

The 12-well plates were sealed with medical tape and placed in a growth chamber under a pho-

toperiod of 10 h of light (100–150 μmol m-2 s-1) and a day / night temperature of 24˚C / 22˚C

at 60% relative humidity.

Transgenic lines

The promoter regions ofWRKY11 (At4g31550; 1.7 kb),MYB51 (At1g18570; 1.7 kb), ACS6
(At4g11280; 2.1 kb), AOS (At5g42650; 2 kb),HEL/PR4 (At3g04720; 2kb), ZAT12 (At5g59820;

2 kb), PER5 (At1g14550; 2 kb), ICS1 (At1g74710; 2.1 kb) and PR1 (At2g14610; 2.1 kb) were

amplified by PCR from genomic DNA of Col-0 (primers listed in S1 Table) and cloned into

the KpnI site of pGreenII229NLS3xmVenus containing the coding sequence for the YFP

reporter with a nuclear localization signal [35]. The obtained constructs (referred to as pro-
moter::YFPN) were used to transform A. thaliana ecotype Col-0 using Agrobacterium tumefa-
ciens and selected with BASTA. Selection of T2 seedlings on 0.5x MS medium containing 7.5

mg/l BASTA verified that the reporter lines used for subsequent analysis carry a single T-DNA

insertion. Several independent insertion lines were analysed per construct and two to three

lines were chosen for further analysis in the T3 generation. Using at least two reporter lines

per construct increases the biological significance of the analysis, as the activity of a promoter-

reporter construct is known to be dependent on its insertion site. All reporter lines have been

positively tested for their ability to respond to the respective stimuli (e.g. hormones, oxidative

stress; data not shown).

Elicitor treatments

Flg22 peptide was obtained from EZBiolab (Carmell, IN, USA) and AtPep1 was obtained from

Justin Lee (Halle, DE) and EZBiolab. Chitin heptamers were obtained from Elicityl SA

(Crolles, FR). All elicitors were diluted in water and used at a concentration of 100 nM for

microscopic analysis of reporter lines or at 1 μM for ROS measurements and MAP kinase

phosphorylation. For quantitative PCR and root growth inhibition assays we used 10 nM, 100

nM or 1 μM of the respective elicitor. For quantitative PCR, 7 day old seedlings were trans-

ferred into liquid 0.5x Murashige and Skoog (MS) containing the respective elicitor molecules

for 2 h before the roots were harvested. For inhibition of root growth, seedlings were grown

vertically for 12 days on medium containing the respective elicitors. Primary root length was

analysed using Fiji (http://fiji.sc/Fiji). For microscopic analysis of the reporter lines after elici-

tor treatment, 7 day old seedlings were transferred into liquid 0.5x Murashige and Skoog (MS)

containing the respective elicitor molecules at a concentration of 100 nM. Based on an initial

assessment of elicitor responses at 4, 8 and 24 h of treatment (S1 Fig) we selected the following
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treatment times for detailed microscopic analysis: 4 h (pACS6::YFPN), 6 h (pWRKY11::YFPN,

pMYB51::YFPN, pZAT12::YFPN, pPER5::YFPN) or 24 h (pAOS::YFPN, pICS1::YFPN, pHEL::

YFPN, pPR1::YFPN).

Microscopy and image processing

The promoter::YFPN lines were analysed by confocal microscopy using a Leica SPII exciting at

488 nm and detecting at 515–590 nm (initial time course elicitor treatments) and a Leica SP5

exciting at 514 nm and detecting at 525–600 nm (detailed analysis after elicitor treatments) or

525–580 nm (inoculation with Fusarium oxysporum). The counterstain with propidium iodide

was performed by submerging the roots in 15 mg ml-1 propidium iodide diluted in water for

10 min followed by detection at 600–700 nm after excitation with 543 nm using a Leica SP5.

Amplification of the signal (gain) was kept constant when comparing different elicitor treat-

ments but varied between the developmental zones analysed (S5 Fig). Per line and elicitor, six

seedlings were analysed of which three were selected for microscopic analysis. Each root was

analysed in four developmental zones: root tip / meristem (RC), transition zone (TZ), differen-

tiation zone (DZ) and mature zone (MZ). The optical section chosen for all root analyses was

the root center as judged by the visibility of xylem vessels and/or the maximal root diameter.

The pictures of the MZ were taken at about half of the entire primary root length.

Quantification of the images of promoter::YFPN lines after elicitor treatments was per-

formed using Fiji. All signals below a grey value threshold of 60 were excluded from quantifica-

tion to avoid autofluorescence signals. The score of an image is the sum of the mean integrated

density values of all particles detected that surpass the autofluorescence threshold. The average

of the scores obtained from three images of replicate roots was used to calculate fold-changes

between different elicitor treatments and the control. In order to increase stringency of the

analysis and select the strongest responses only average values above a significance threshold

of 50’000 were used directly to calculate the fold-change. Values below this threshold were set

to 50’000 to exclude weak responses and focus on the stronger fluorescent signals. Fold-change

values above 1.5 were defined as induction and values below 0.67 as suppression. Quantifica-

tion of the images of promoter::YFPN lines after infection with F. oxysporum was performed

using Fiji. All signals below a grey value threshold of 100 were excluded from quantification to

avoid autofluorescence signals.

Measurement of ROS

For ROS assays, roots were grown vertically on 0.5x MS agar in 12 cm x 12 cm square petri

dishes. When 14 days old the roots were isolated from the shoots using a razor blade. Per sam-

ple, root systems of 2 plants were placed into a well of a Lia White 96-well plate (Greiner Bio-

One) containing 0.1 ml water and kept in the dark overnight. 12 samples were prepared per

condition. For ROS detection, horseradish peroxidase (Sigma-Aldrich) and luminol (Sigma-

Aldrich) were added as 50 μl mix per well to reach a final concentration of 10 μg ml-1 and

100 μM, respectively. Luminescence was measured continuously until the background signal

dropped to a baseline before the elicitors were added. Elicitors were added as 10 μl stock solu-

tions to reach a final concentration of 1 μM in the well. Luminescence was measured for 1

hour in a MicroLumat LB96P plate reader (Berthold Technologies) with a signal integration

time of 1 sec.

MAP kinase phosphorylation

For detection of MAP kinase phosphorylation, the root systems of 12 plants grown 14 days

vertically on 0.5x MS agar were isolated and placed in water overnight before adding 1 μM
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elicitor for 10 min. Tissue (50 mg per sample) was frozen in liquid nitrogen and ground before

addition of 50 μL SDS-extraction buffer (0.35 M Tris-HCl pH 6.8, 30% glycerol, 10% SDS, 0.6

M dithiothreitol, 0.012% bromophenol blue). Total proteins were separated by electrophoresis

in a 12% SDS-polyacrylamide gel and transferred to a PVDF membrane according to the man-

ufacturer’s instructions (Bio-Rad). Protein transfer was visualized by staining with Ponceau S.

Polyclonal primary antibodies against phospho-p44/42 MAPK (Cell Signaling Technologies)

were used with alkaline phosphatase-conjugated anti-rabbit as secondary antibodies. Signal

detection was performed using CDPstar (Roche).

Quantitative PCR

For gene expression analysis, plants were grown for 7 days vertically on 0.5x MS agar. For elici-

tor treatment, 20–30 seedlings were transferred to 6-well plates containing liquid 0.5x MS

medium with the indicated concentrations of elicitors. After 2 hours of treatment, the roots

were separated from the shoots using a scalpel blade and snap-frozen in liquid nitrogen. The

tissue was ground using a TissueLyser from Qiagen. RNA was extracted using TRIzol (Invitro-

gen) and 2 μg were treated with DNAse I. For cDNA synthesis, 1 μg of RNA were used with

the qScript cDNA synthesis kit (Quanta Biosciences). 10 ng of cDNA were used as template

for qRT- PCR using SYBR Green JumpStart Taq ReadyMix (Sigma-Aldrich) with an Mx3005P

(Stratagene). Samples were run as 3 technical replicates, the experiment was performed in 3

biological repetitions. Changes in gene expression were determined after normalization to the

reference gene UBQ5 (At3g62250) using the 2-ΔΔCt method [36]. All primers are listed in S1

Table.

Inoculation with Fusarium oxysporum

The strains 699 and 699 GFP of Fusarium oxysporum f.sp. conglutinans (ATCC 58110) [37]

were obtained from Antonio di Pietro (Cordoba, ES). F. oxysporum was cultivated in potato

dextrose agar plates at 28˚C. For production of microconidia several pieces of mycelium were

transferred to sucrose sodium nitrate medium and incubated for 3–4 days at 28˚C and 150

rpm. The spores were isolated by filtration through 2 layers of miracloth, pelleted at 3000 g for

5 min and resuspended in liquid 0.5x MS medium at a concentration of 1�105 spores / ml.

This dilution was used to inoculate 10d-old seedlings growing in 12-well plates by pipetting

the spore solution into the wells to reach a final concentration of 1�104 spores / ml. The infec-

tion site and the MZ of infected roots were analysed at 2 dpi using confocal microscopy.

Accession numbers

At4g31550 (WRKY11), At1g18570 (MYB51), At4g11280 (ACS6), At5g42650 (AOS), At3g04720

(HEL/PR4), At5g59820 (ZAT12), At1g14550 (PER5), At1g74710 (ICS1), At2g14610 (PR1),
At4g05320 (UBQ10)

Results

Early PTI-responses are conserved between leaves and roots

The production of ROS is an early response of plant cells towards MAMPs such as flg22 or

elf18. While this phenomenon has repeatedly been described for leaf tissue and seedlings, we

compared the oxidative burst in Arabidopsis roots after treatment with 1 μM flg22, chi7 or

AtPep1 using a luminol-based assay (Fig 1A). A significant increase in ROS accumulation was

observed for all three elicitors, with flg22 and AtPep1 triggering a stronger response than chi7.

AtPep1 is a danger signal for roots
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The peak of luminescence consistently appeared somewhat later in treatments with flg22 com-

pared to samples treated with chi7 and AtPep1.

Following elicitor perception, the phosphorylation of MAP kinases transduces the signal

towards downstream components. This activation of MAP kinases also occurs in roots after

treatment with 1 μM flg22, chi7 or AtPep1 (Fig 1B). The analysis of the respective receptor

mutants fls2, cerk1-2 and pepr1 pepr2 demonstrated that also in roots, MAP kinase activation

following elicitor perception depends on the previously described LRR-RLKs FLS2, CERK1,

PEPR1 and PEPR2.

AtPep1 causes a drastic inhibition of root growth

Elicitor treatment can impair plant development as was shown for flg22 by submerging seed-

lings in liquid medium containing flg22 [23,38]. To compare the impact of elicitors on root

development we grew seedlings vertically on 0.5x MS agar plates containing 10 nM, 100 nM or

1 μM of flg22, chi7 or AtPep1. The presence of 100 nM and 1 μM AtPep1 strongly reduced the

length of the primary root by a factor of 2.5 and 8.5, respectively (Fig 2). In contrast, exposure

to 1 μM flg22 decreased root length only by maximally 1.5 fold across three experiments while

the presence of chi7 had no reproducible effect on primary root length at either concentration.

This dose-dependent effect of AtPep1 on primary root length was not observed for pepr1 pepr2
seedlings that lack functional receptors for AtPeps. Interestingly, in a heterozygous F2 popula-

tion of a pepr1 pepr2 cross exposed to 100 nM AtPep1, plants developing the longest primary

roots were mainly homozygous for the insertion in AtPEPR2 (S2 Fig). Since the distribution of

the atpepr1 allele showed no bias towards homozygosity, the results suggest that it is mainly

perception through AtPEPR2 that determines the observed root inhibition phenotype with

AtPep1, similar to what has been indicated in a previous study [23].

AtPep1 elicits a stronger induction of defence-related genes in the root

than flg22 or chi7

To test the potential of flg22, chi7 and AtPep1 as danger signals to the root we generated a

series of promoter-reporter constructs to monitor elicitor-driven defence signalling in specific

tissues or developmental zones of the root. Expression of the YFP-derived fluorophore Venus

was driven by a number of defence-related promoters (referred to hereafter as promoter::YFPN
constructs). The Venus reporter contains a nuclear localization sequence that facilitates the

cell-specific detection of the fluorescent signal, allowing for the analysis of local effects in dif-

ferent root tissues and zones. We selected a set of defence-associated marker genes that were

previously used to study root and leaf signalling and cover general immune responses such as

ROS accumulation and production of antimicrobials as well as hormonal synthesis and down-

stream responses:WRKY11 as an early MAMP-signalling marker [39],MYB51 as a regulator

of indole glucosinolate synthesis [40], ACS6 reporting ET synthesis [41], AOS as marker for JA

synthesis [42],HEL/PR4 as downstream marker for ET/JA signalling and ICS1 as well as PR1
as markers for SA synthesis and signalling [43–45]. ZAT12 and PER5 were selected as markers

associated to oxidative stress, where PER5 encodes a peroxidase expressed following MAMP

and DAMP treatment [46–48]. Based on an initial assessment of elicitor-dependent responses

at 4, 8 and 24 h of treatment (S1 Fig) we selected the following treatment times for detailed

microscopic analysis: 4 h (pACS6::YFPN), 6 h (pWRKY11::YFPN, pMYB51::YFPN, pZAT12::
YFPN, pPER5::YFPN) or 24 h (pAOS::YFPN, pICS1::YFPN, pHEL::YFPN, pPR1::YFPN).

Following treatment with 100 nM of flg22, chi7, AtPep1 or 0.5x MS without elicitor, the

fluorescent signal of the reporter was analysed in the root tip (RC, root cap and meristematic

tissue), the transition zone (TZ), the differentiation zone (DZ, visible formation of tracheary
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elements and root hairs) and in the mature zone (MZ). Using confocal microscopy and subse-

quent signal quantification by Fiji (http://fiji.sc/Fiji), the four developmental zones were ana-

lysed in at least 3 different roots for each marker and treatment. At least two independent

transformation lines were studied per construct in order to ensure biological reliability of the

observed patterns, as the activity of a promoter-reporter construct is known to be dependent

on its insertion site. Fig 3A gives an example of a corresponding dataset obtained using ET/JA

pathway marker pHEL::YFPN. The strong AtPep1-dependent activation of pHEL::YFPN was

observed in all developmental zones analysed and was not present in roots treated with flg22,

chi7 or mock solution (Fig 3 and S3E Fig). Signal quantification confirmed that the level of

pHEL::YFPN -derived fluorescence in AtPep1-treated roots clearly exceeded that in MAMP-

treated roots (Fig 3B). Corresponding micrographs of the other promoter::YFPN lines are pro-

vided in the supporting information (S3A–S3I Fig).

Fig 1. Responses of PAMP-triggered immunity in roots. (a) Luminol-based detection of ROS production in

isolated roots of Col-0 seedlings treated with 1 μM flg22, chi7 or AtPep1 or without elicitor. Data represent the

mean of 12 replicates ± SE. RLU—relative luminescence units (b) Activation of MAP kinases detected by western

blot (MPK). Isolated roots from 2-week old seedlings of Col-0 and transgenic lines were treated with 1 μM flg22,

chi7 or AtPep1 or without elicitor for 10 min before sampling. Ponceau S staining was used as loading control (PS).

The experiment was performed three times with similar results.

https://doi.org/10.1371/journal.pone.0185808.g001

Fig 2. Root growth inhibition by AtPep1. (a) Col-0 wild-type and transgenic lines were germinated and grown vertically for 12 days on 0.5x MS

containing 10 nM, 100 nM or 1 μM flg22, chi7 or AtPep1 or without elicitor. (b) Analysis of primary root length was performed using Fiji on images

recorded under (a) and is shown as box plots representing� 20 roots per sample. The experiment was performed three times for Col-0 and two times

for pepr1 pepr2. Statistical analysis was performed using a Student’s t-test comparing with roots grown on control medium: * p < 0.05, ** p < 0.01, ***
p < 0.001.

https://doi.org/10.1371/journal.pone.0185808.g002
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Most markers analysed showed the strongest transcriptional activation in the transition

and differentiation zone. Fig 4A summarizes the YFP-derived signal intensities for all tested

reporter constructs in the differentiation zone (DZ) of the root, where the majority of the

markers showed a higher signal following treatment with AtPep1 when compared to flg22 or

chi7. Signal quantification was also used to calculate factors of induction or repression, which

are illustrated in a colour-coded table (Fig 4B). Marker responses were only considered signifi-

cant if they passed a fold-change threshold of 1.5 for inductions or 0.67 for suppressions in at

least two independent transformation lines for each construct, thereby focusing on the stron-

gest responses revealing the largest expression changes (Fig 4B, S5A Fig).

Fig 3. Elicitor-triggered responses of pHEL::YFPN. (a) Microscopic analysis of root developmental zones of 7-days old pHEL::YFPN seedlings following 24

h treatment with 100 nM flg22, chi7, AtPep1 or 0.5x MS as control. RC—root cap / meristem, TZ—transition zone, DZ—differentiation zone, MZ—mature

zone. Bar 100 μM. (b) Quantification of fluorescent signals from microscopic analysis of different developmental zones of pHEL::YFPN as described under (a)

using Fiji. Bars represent the mean of� 3 images ± SD.

https://doi.org/10.1371/journal.pone.0185808.g003
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Fig 4. Elicitor-dependent activation of defence-related promoters in the TZ and DZ of the root. (a) Quantification of microscopic analysis of Promoter::

YFPN constructs in the differentiation zone of 7-days old seedlings following treatment with 100 nM flg22, chi7, AtPep1 or 0.5x MS as control. Images were

analysed using Fiji. Bars represent the mean of� 3 images ± SD. (b) Overview of inductive and suppressive responses of Promoter::YFPN constructs in

different developmental root zones analysed as described under (a). Numbers in the upper row indicate the sum of significant marker responses in one of the

four analysed root zones for a given elicitor, while numbers in the lower row indicate the total sum of significant responses from all markers and all root zones

for a given elicitor. Black colour indicates induction, white colour suppression and grey colour non-significant changes.

https://doi.org/10.1371/journal.pone.0185808.g004
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The summary of significant marker changes shows that all developmental zones are able to

translate elicitor signalling into transcriptional changes, although the strongest inductions of

defence-associated promoters by elicitors were observed in the TZ and DZ (Fig 4A and 4B,

S3A–S3I and S4 Figs). Accordingly, the sum of significant marker responses for each develop-

mental zone is highest for the DZ (15), followed by the TZ (11), the MZ (6) and the RC (2) (Fig

4B). Although most responses observed were inductions, chi7 treatment notably resulted in

repression of pACS6::YFPN in the MZ and of pHEL::YFPN in the RC (Fig 4B, S3C and S3E Fig,

S4 Fig).

While all tested constructs responded to AtPep1 treatment with transcriptional changes in

at least one developmental zone, only five out of nine markers significantly changed expression

following treatment with flg22 or chi7 (Fig 4B). The number of significant marker responses

for a given elicitor counted individually for the four analysed root zones was highest for the

DAMP AtPep1 (n = 18), followed by flg22 responses (n = 10) and chi7 responses (n = 6) (Fig

4B). Therefore our study evidences that the DAMP AtPep1 leads to a stronger response of the

selected defence genes in roots compared with the MAMPs flg22 and chi7.

Tissue specificity of elicitor-triggered responses

The potential of the promoter::YFPN reporter system to resolve regulatory questions at the tis-

sue level is greatly demonstrated by the following examples. The basal expression pattern of a

construct often varied depending on the developmental zone. If expression was observed in

the root tip, it was mostly restricted to the RC layers (e.g. pWRKY11::YFPN and pHEL::YFPN;

Fig 3, S3A and S3E Fig). Basal expression of the marker constructs in the TZ was visible in the

epidermal layer only and sometimes appeared after elicitor treatments in the central tissues

beginning to differentiate (e.g. pMYB51::YFPN and pZAT12::YFPN after treatment with

AtPep1, S3B and S3F Fig).

Inductions were mainly observed in tissues that express the respective gene at a basal level

under control conditions, such as pWRKY11::YFPN, pMYB51::YFPN, and pZAT12::YFPN
throughout most root tissues of the DZ, pACS6::YFPN in the stele or pPER5::YFPN in the epi-

dermis (S3 Fig). A more unusual regulation was revealed for pHEL::YFPN, which was strongly

induced by AtPep1 in the TZ and particularly the DZ, where expression of this construct is

low under control conditions (S3E Fig). However, in the MZ pHEL::YFPN expression was

mainly restricted to the endodermis independently of the elicitor used and varied in expression

level rather than tissue localization.

AtPep1 treatment appeared to induce some constructs, e.g. pMYB51::YFPN and pZAT12::
YFPN, more strongly in the endodermis and the stele when compared to cortex and epidermis

(S3B and S3F Fig). A more detailed analysis could clarify if that observation is due to the fact

that stele cells are smaller than epidermal and cortical cells and therefore display more nuclear

signals in a given area or if the endodermis and the vascular tissues indeed respond more

strongly to AtPep1.

AtPep1 induces JA- and SA-signalling in the root

The elicitor-triggered responses of the promoter::YFPN lines revealed that several promoters

are activated by more than one elicitor molecule (Fig 4). The early MAMP-signalling marker

pWRKY11::YFPN proved responsive to all three tested molecules. Similarly, the ROS-related

constructs pZAT12::YFPN and pPER5::YFPN were activated by flg22, chi7 and AtPep1, even if

the intensity of the response varied clearly between the different developmental zones and elic-

itors (Fig 4B, S4 and S5 Figs).
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An interesting differential regulation was observed for the markers associated to ET signal-

ling, pACS6::YFPN and pHEL::YFPN. All three elicitors activated pACS6::YFPN in the DZ, sug-

gesting ET synthesis in the stele upon elicitor perception (Fig 4B, S3C Fig). A downstream

component of ET-signalling, pHEL::YFPN, was activated by flg22 in the TZ and by AtPep1 in

all root zones analysed. However, the ET or JA synthesis markers used in this study (pACS6::
YFPN and pAOS::YFPN) do not mirror the AtPep1-dependent induction of pHEL::YFPN in all

tested root zones, indicating that AtPep1 triggers an additional positive regulator ofHEL that

has yet to be identified. The ACS family comprises 9 genes in Arabidopsis, suggesting that an

isoform of ACS6 might contribute to the strong upregulation of pHEL::YFPN [49].

Notably, markers of the defence-related hormones JA and SA were activated when treated

with the DAMP AtPep1 while no significant changes were observed following perception of

the MAMPs flg22 and chi7. The JA-synthesis marker pAOS::YFPN responded in the DZ, while

the SA-related markers were induced in TZ and DZ (pICS1::YFPN) and the MZ (pPR1::YFPN),

respectively (Fig 4B; S3D, S3H and S3I Fig). The concurrent induction of pathways for SA and

JA signalling supports a function of the DAMP AtPep1 as a danger signal to the plant.

To confirm reliability of the promoter::YFPN constructs we also analysed gene expression by

quantitative RT-PCR (qPCR) (Fig 5). In accordance with the microscopic analysis of pMYB51::
YFPN qPCR detected the highest transcript levels ofMYB51 following treatment with AtPep1.

Similarly, increased accumulation of ACS6mRNA induced by AtPep1 corresponded to the

increased promoter activity visualized through pACS6::YFPN and exceeded that observed after

flg22 treatment (Fig 5). The analysis also clearly demonstrates that AtPep1 induces expression

ofMYB51 and ACS6 in a dose-dependent manner.

Fungal invasion mounts a local burst of defences in the root

In order to see how the contact with elicitors differs from the complex situation of a real patho-

gen attack, we analysed the set of promoter-YFPN lines during infection with the fungus Fusar-
ium oxysporum. This root-invading pathogen infects a wide range of host plants and enters the

root at the tip before growing towards the hypocotyl [50,51]. Seedlings were grown in 12-well

plates containing liquid 0.5x MS medium and inoculated with F. oxysporum spores when 10 d

old. The roots were analysed 2 days after inoculation (2 dpi) when the fungus had penetrated

the root and the front of growing hyphae localized to a region around 1–5 mm distance from

the tip. The analysis focused on local responses at the infection site (in close vicinity of the

invading hyphae) as well as on distant effects in the MZ of the root (about 2–3 cm distance

from the tip). We found that the majority of constructs tested were induced locally during F.
oxysporum infection (Fig 6). Quantification of the response demonstrated that the YFPN-con-

structs with pWRKY11, pMYB51, pZAT12, pACS6, pAOS and pHELwere significantly activated

at the fungal infection site (Fig 6B, S6 Fig). The markers used to report SA responses, pICS1::
YFPN and pPR1::YFPN, did not show a consistent expression pattern during fungal invasion

(Fig 6, S6 Fig). Expression of ROS marker pPER5::YFPN in infected roots exceeded that in

mock-treated roots, with the response being significant in 2 out of 4 analyses (Fig 6A, S6 Fig).

Using a GFP-expressing F. oxysporum strain we confirmed that marker activation occurs adja-

cent to the invading fungal hyphae (S7 Fig).

During these early stages of infection the responses were observed close to the hyphal front,

mostly independent of the exact distance from the root tip. In contrast to this general activa-

tion of defence signalling on a local level we observed only few changes in the mature part of

infected roots (S8 Fig). Thus, roots appear to respond to the local invasion of a pathogen with

local activation of defence-associated genes across all tissue layers yet do not initiate a clear sys-

temic root response at this early time point.
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Discussion

In their natural environment, roots are faced with a complex mixture of molecular signals that

is likely to become locally enriched in DAMPs when the root is under attack. Early and late

responses to microbial molecular patterns have been studied under a variety of experimental

conditions [7]. Some of the described changes, such as callose deposition, can vary significantly

dependent on the growth conditions applied, highlighting the flexibility and adaptive character

of PTI signalling in nature [52]. Despite similarities in early cellular responses to MAMPs and

DAMPs such as ROS accumulation, the DAMP AtPep1 causes a severe inhibition of primary

root growth when continuously applied (Figs 1 and 2), pointing towards unique features of

PEPR-dependent signalling when compared to flg22-mediated root responses.

The microscopic analysis of different developmental zones of elicitor-treated roots showed

that AtPep1 triggered a higher number and intensity of immune marker responses when com-

pared to flg22 or chi7 (Figs 3 and 4). The striking observation that pHEL::YFPN is activated by

AtPep1 in all tested root zones supports the idea that the DAMP presents a signal of threat to

the root.HEL encodes a homolog of the pathogenesis-related protein PR-4 from tobacco [53]

and is inducible by JA and ET treatment [45,54]. Accordingly, we found increased expression

of pAOS::YFPN and pACS6::YFPN after AtPep1 treatment, suggesting intense JA/ET-signalling

(Fig 4). Similar to the distinction between MAMPs and DAMPs observed in the present study,

AtPep1 also evoked a stronger induction of the defensin gene PDF1.2 in whole seedlings when

compared to flg22 or elf18 [55].

Fig 5. Verification of elicitor-triggered responses of promoter::YFPN markers by qPCR. (a) Signal quantification using micrographs from roots

expressing pMYB51::YFPN and pACS6::YFPN. 7-day old seedlings were treated with 100 nM flg22, chi7 or AtPep1 or 0.5x MS without elicitor and

analysed in four developmental zones. Bars represent the sum of average signals obtained for each of the four developmental zones from 2–3

independent transformation lines per construct. (b) Expression of pMYB51::YFPN and pACS6::YFPN in the differentiation zone of 7-day old seedlings

treated with 100 nM flg22, chi7 or AtPep1 or 0.5x MS without elicitor. Bar 100 μm. (c) Expression of MYB51 and ACS6 analysed by quantitative

RT-PCR following 2 h treatment of 7-day old seedlings with 100 nM flg22, chi7 or AtPep1 or 0.5x MS without elicitor. Transcript levels were normalized

to the reference gene UBIQUITIN5 before calculation of expression relative to the control. The experiment was repeated three times with similar

results.

https://doi.org/10.1371/journal.pone.0185808.g005
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Another finding that singularizes AtPep1 is its potential to co-activate markers of the SA

and JA pathways (Fig 4B; S3D and S3H Fig). Neither the marker for SA-synthesis, pICS1::
YFPN, nor that for JA-synthesis, pAOS::YFPN, were responding to 100 nM flg22 or chi7, while

both constructs were induced by AtPep1 in the root. SA- and JA-dependent hormone signal-

ling have repeatedly been demonstrated to work antagonistically during plant immune

responses [56,57]. However, concomitant activation of SA and JA pathways has been found in

several instances as well [58,59]. In particular, parallel activation of SA and JA-pathways was

reported after AtPep1-treatment of leaves, when increased transcript levels of the correspond-

ing marker genes PR1 and PDF1.2 were observed [60]. Likewise, co-activation of subsets of

SA- and JA-inducible genes was detected in a transcriptome analysis of AtPep2-treated seed-

lings [55].

Fig 6. Expression of promoter::YFPN constructs in roots infected with F. oxysporum. (a) Microscopic analysis of the infection site of 12-day old roots 2

days after inoculation with spores from F. oxysporum. Fluorescence derived from promoter::YFPN constructs is localized in the root nuclei and shown in

green, while propidium iodide was used as a counterstain of cell walls and dead cells and is shown in red. Bar 100 μm. (b) Quantification of microscopic

analysis of promoter::YFPN constructs as depicted in (a) using Fiji. Bars represent the mean of� 6 images ± SE. Statistical analysis was performed using a

Student’s t-test: * p < 0.05, ** p < 0.01, *** p < 0.001.

https://doi.org/10.1371/journal.pone.0185808.g006
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Our results demonstrate that the differentiation zone responds more often to elicitor treat-

ment than the other developmental zones (Fig 4B). While the mature epidermal cell walls

exposed to the rhizosphere have undergone impregnation with phenolic compounds, epider-

mal cell walls of the young, differentiating zones are less solidified and act as the site of root

exudation [61]. In line with a role of the DZ in the uptake and release of compounds is the con-

cept that a less rigid outer barrier might be accompanied by an increased perceptiveness and/

or responsiveness towards potential invaders. The ET marker pACS6::YFPN was activated in

vascular tissues of the DZ following treatment with flg22 (S3C Fig). While it is conceivable that

the elicitor molecules diffuse through the apoplast of epidermal and cortical cells, it appears

less likely that they can pass the endodermis with the casparian strip that presents a natural dif-

fusion barrier [62]. However, flg22 perception might trigger the production of ET, which

could enter the stele and induce pACS6::YFPN. Alternatively, flg22 could be perceived directly

in the vascular tissue layers if the peptide is entering the root before the diffusion barriers in

the endodermis are fully formed. In this scenario, the first cells that perceive flg22 would be

the FLS2-expressing cells in the DZ, much as was observed with our promoter::YFPN lines and

with a pFLS2::GUS construct by [63]. According to publicly available transcriptome analyses

the transcript abundance of FLS2 in the root appears to be generally lower than that of PEPR1,
PEPR2 and CERK1 (S9 Fig, [48]). The receptors for AtPeps, PEPR1 and PEPR2, are expressed

throughout the entire root length, but the PEPR2 promoter is mainly active in the stele [24,64].

In light of the observation that PEPR2 is largely responsible for AtPep1-dependent root growth

inhibition (S2 Fig, [23]), this result indicates that AtPep1 can indeed pass the peripheral root

tissues to bind the PEPR2 receptor in the stele. A recent study used fluorescently labelled

AtPep1 to track the intracellular route of the receptor-ligand complex with PEPR1, enabling

new approaches to analyse the in vivo diffusion properties of peptides in the root [64]. Future

studies will also provide additional insight into the biochemical stability of elicitors that would

affect the signalling potential of each molecule [65].

Our analysis of the promoter::YFPNmarkers during root invasion by the pathogen Fusarium
oxysporum offers a first insight into tissue-specific root immune signalling during pathogen

attack and demonstrates the potential to study root-microbe interaction close to real-time.

The majority of analysed markers was induced in the root zone located adjacent to the front of

the progressing hyphae, illustrating the concomitant activation of several lines of defence

within close proximity to the pathogen (Fig 6). Transcriptional responses that are restricted to

a small number of cells are difficult to detect using quantitative PCR of whole roots, underlin-

ing the analytical power of the marker toolset generated in this study.

Using the oxidative stress marker pZAT12::YFPN we confirmed a previous analysis based

on staining with specific dyes showing that F. oxysporum causes elevated levels of ROS and

nitric oxide in Arabidopsis roots [66]. Interestingly, F. oxysporum also appears to secrete small

peptides mimicking plant alkalinizing proteins in order to facilitate disease development,

thereby targeting early events in host immune signalling [67].

The increased expression of the JA synthesis marker pAOS::YFPN during root invasion by

F. oxysporum (Fig 6) could be related to the finding that JA signalling is associated with

increased susceptibility to this pathogen [68]. The JA receptor complex mutant coi1 exhibits

increased resistance towards F. oxysporum, which is not a consequence of reduced JA-SA

antagonism [68]. Nevertheless it has been found that SA responses decrease the susceptibility

to F. oxysporum [69,70]. The lack of activation of ICS1 and PR1 detected in our study indicates

that the selected markers are not involved in the SA-associated immune response towards F.
oxysporum or that the pathogen can suppress the induction of these genes. In support of this

idea, a transcriptome analysis of F. oxysporum-inoculated roots detected a decrease in PR1
expression level [71].
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Pathogen assays with leaves showed that pepr1 pepr2 plants exhibit increased susceptibility

to P. syringae, Botrytis cinerea and Colletotrichum higginsianum, suggesting that PEPR-medi-

ated signalling is involved in immunity towards pathogens with lifestyles ranging from hemi-

biotrophic to necrotrophic [28,72–74]. Future studies will show how the PEPR pathway affects

basal immunity to root pathogens and to which extent the defence responses described here

reflect gene regulation in roots growing in natural soils.

Conclusions

Taken together, our findings show that the DAMP AtPep1 is perceived as a stronger danger

signal by the Arabidopsis root than the MAMPs flg22 and chi7. We therefore suggest PEPR sig-

nalling as a major component of the root surveillance apparatus involved in the interpretation

of its biotic environment.
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selected for loss of root inhibition on 0.5x MS containing 100 nM AtPep1. Numbers represent
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S3 Fig. Effects of elicitors on the expression of promoter::YFPN in the root. Roots were ana-

lysed following treatment with 100 nM flg22, chi7, AtPep1 or 0.5x MS as control. Scale bar

100 μm. Signal amplification might differ between developmental zones (S5 Fig).
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S4 Fig. Quantification of elicitor-triggered responses of defence-associated promoters in

the root. Quantification of microscopic analysis of promoter::YFPN constructs in two indepen-

dent lines of 7-days old seedlings following treatment with 100 nM flg22, chi7, AtPep1 or 0.5x

MS as control. Images were analysed using Fiji. Bars represent the mean of� 3 images ± SD.

An asterisk indicates a mean of two values.
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S5 Fig. Summary of elicitor-triggered responses and amplification settings used for micro-

scopic analysis. (a) Overview of inductive and suppressive responses of promoter::YFPN con-

structs expressed in 7-days old seedlings following treatment with 100 nM flg22, chi7, AtPep1

or 0.5x MS as control. Numbers represent the factors calculated as fold-change for 2 indepen-

dent transformation lines per construct. A third line was analysed for ACS6::YFPN and HEL::

YFPN constructs to confirm whether or not chi7 can cause a suppression of these markers.

Black colour of a field indicates induction, white colour suppression and grey colour non-sig-

nificant changes. (b) Table summarizing the amplification settings (gain) used for confocal

microscopic analysis of promoter::YFPN constructs listed as an indicator for the expression

level of the respective construct.
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S6 Fig. Quantification of promoter::YFPN constructs at the infection site of roots invaded

by F. oxysporum. (a) Quantification of microscopic analysis of F. oxysporum—infected roots

expressing promoter::YFPN constructs in independent transformation lines when compared to

Fig 6. Bars represent the mean of� 6 images ± SE. (b) Quantification of microscopic analysis

of pHEL::YFPN, pPER5::YFPN and pICS1::YFPN constructs using Fiji. Bars represent the mean

of� 20 images ± SE. Statistical analysis was performed using a Student’s t-test: � p< 0.05, ��

p< 0.01, ��� p< 0.001. (b.t.) indicates that all signals were below the autofluorescence thresh-

old.

(PDF)

S7 Fig. Induction of promoter::YFPN constructs adjacent to invading hyphae of GFP-

labelled F. oxysporum. Microscopic analysis of the responses of 12-day old roots in the mature

part 2 days after inoculation with spores from F. oxysporum. Fluorescence derived from pro-

moter::YFPN constructs is localized in the root nuclei while fungal hyphae are green filamen-

tous structures. Bar 100 μm.

(PDF)

S8 Fig. Expression of promoter::YFPN constructs in the mature part of roots infected with

F. oxysporum. (a) Microscopic analysis of the responses of 12-day old roots in the mature part

2 days after inoculation with spores from F. oxysporum. Fluorescence derived from promoter::
YFPN constructs is localized in the root nuclei and shown in green, while propidium iodide

was used as a counterstain of cell walls and dead cells and is shown in red. Bar 100 μm. (b)

Quantification of microscopic analysis of promoter::YFPN constructs as depicted in (A) using

Fiji. Bars represent the mean of� 6 images ± SE. (C) Quantification of microscopic analysis of

F. oxysporum—infected roots expressing promoter::YFPN constructs in independent transfor-

mation lines when compared to Fig 6A and 6B. Bars represent the mean of� 6 images ± SE.

Statistical analysis was performed using a Student’s t-test: � p< 0.05, �� p< 0.01. (b.t.) indi-

cates that all signals were below the autofluorescence threshold.

(PDF)

S9 Fig. Expression of MAMP/DAMP receptor genes in roots.

(PDF)
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