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Abstract

The importance of microRNA (miRNA) to vascular biology is becoming increasingly evident;

however, the function of a significant number of miRNA remains to be determined. In partic-

ular, the effect of growth factor regulation of miRNAs on endothelial cell morphogenesis is

incomplete. Thus, we aimed to identify miRNAs regulated by pro-angiogenic vascular endo-

thelial growth factor (VEGF) and determine the effects of VEGF-regulated miRNAs and their

targets on processes important for angiogenesis. Human umbilical vein endothelial cells

(HUVECs) were thus stimulated with VEGF and miRNA levels assessed using microarrays.

We found that VEGF altered expression of many miRNA, and for this study focused on one

of the most significantly down-regulated miRNA in HUVECs following VEGF treatment,

miR-30b. Using specific miRNA mimics, we found that overexpression of miR-30b inhibited

capillary morphogenesis in vitro, while depletion of endogenous miR-30b resulted in in-

creased capillary morphogenesis indicating the potential significance of down-regulation of

miR-30b as a pro-angiogenic response to VEGF stimulation. MiR-30b overexpression in

HUVEC regulated transforming growth factor beta 2 (TGFβ2) production, which led to

increased phosphorylation of Smad2, indicating activation of an autocrine TGFβ signaling

pathway. Up-regulation of TGFβ2 by miR-30b overexpression was found to be dependent

on ATF2 activation, a transcription factor known to regulate TGFβ2 expression, as miR-30b

overexpressing cells exhibited increased levels of phosphorylated ATF2 and depletion of

ATF2 inhibited miR-30b-induced TGFβ2 expression. However, miR-30b effects on ATF2

were indirect and found to be via targeting of the known ATF2 repressor protein JDP2

whose mRNA levels were indirectly correlated with miR-30b levels. Increased secretion of

TGFβ2 from HUVEC was shown to mediate the inhibitory effects of miR-30b on capillary

morphogenesis as treatment with a neutralizing antibody to TGFβ2 restored capillary mor-

phogenesis to normal levels in miR-30b overexpressing cells. These results support that the

regulation of miR-30b by VEGF in HUVEC is important for capillary morphogenesis, as

increased miR-30b expression inhibits capillary morphogenesis through enhanced expres-

sion of TGFβ2.
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Introduction

Angiogenesis is the process of new blood vessel growth from pre-existing vessels. It is a com-

plex tightly regulated process that involves a number of coordinated steps for vessel formation

to occur. A number of factors that promote angiogenesis have been identified, with vascular

endothelial growth factor being the best characterized. In addition to pro-angiogenic factors, a

number of molecules have been shown to inhibit the angiogenic process, and it is the balance

between these anti-angiogenic factors and pro-angiogenic factors that dictate whether new

vessel formation will occur.

In addition to the well-studied proteinacious pro- and anti-angiogenic factors, the impor-

tance of microRNAs (miRNA) to angiogenesis has been more recently suggested from earlier

studies demonstrating the importance of the miRNA processing enzyme Dicer to embryonic

vascular development [1], in vitro angiogenic processes such as capillary morphogenesis and

sprouting [2], and in vivo vessel formation in response to angiogenic stimuli [3]. MiRNAs are

small RNA molecules of ~22 nucleotides in size. They are found in almost every living system,

from viruses to plants to animals, and are known to regulate message RNA (mRNA) levels via

their ability to bind to target mRNA and either sequester it from being translated into protein

or cause it to be degraded [4,5]. Expression profiling of human umbilical vein endothelial cells

(HUVEC) [6] and subsequently other endothelial cell types [7] has provided insight into the

importance of individual miRNA expression patterns to endothelial cell biology. Since those

initial studies, roles for individual miRNAs in angiogenic processes are increasingly being

identified with both pro- [8–13] and anti-angiogenic [14–17] effects being observed. However,

many of these identified miRNAs have yet to be fully described in terms of the mechanism by

which they regulate angiogenesis and many more remain as yet unstudied. As miRNAs con-

tribute to a number of disease states in which angiogenesis also plays a significant role, includ-

ing cancer [18], cardiovascular disease [19], liver disease [20] and rheumatoid arthritis [21],

new studies are attempting to assess the feasibility of manipulating miRNA expression to com-

bat such diseases [22,23]. Thus, a better understanding of the roles of individual specific miR-

NAs is vitally important for determining the feasibility of manipulating such miRNAs for

therapeutic purposes to combat pathological angiogenesis.

It is well known that angiogenesis is controlled by a balance of factors that promote angio-

genesis and those that inhibit the process. VEGF is one of the most potent pro-angiogenic fac-

tors identified to date. A number of studies have recently shown that VEGF production can be

regulated by numerous miRNA [24–29], again highlighting the importance of miRNA to the

angiogenic process. However, there is a lack of information regarding whether or not VEGF

itself is capable of regulating the transcriptional production of miRNA which in turn play a

role in angiogenesis. As such, we were interested to determine whether VEGF stimulation of

endothelial cells resulted in altered miRNA expression and whether these altered miRNA con-

tributed to vessel formation. Following VEGF stimulation, endothelial expression of miRNA

was assessed using Affymetrix miRNA expression arrays. We identified a number of VEGF-

regulated miRNA and focused our further study of the role of one of the most highly downre-

gulated miRNA, namely miR-30b.

MiR-30b is a member of the five-member miR-30 family of miRNAs which are encoded

over 6 genes and expressed from 4 distinct transcripts [30]. The miR-30 family of miRNA are

highly conserved across species and share the same seed sequence. MiR-30b has not been well

studied to date, but has been shown to play a role in myogenesis [31] and osteoblastogenesis

[32,33]. However, overexpression of miR-30 family members in zebrafish models suggest they

promote angiogenesis [34,35], which would not be in line with our findings that it is sup-

pressed by the potent pro-angiogenic factor VEGF. As such we wished to further confirm our
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initial findings of VEGF regulation of miR-30b, and determine the outcome of modulation of

miR-30b expression in human endothelial cells on capillary morphogenesis. We found that

miR-30b overexpression in HUVEC is associated with impaired capillary morphogenesis in

part through autocrine regulation of TGFβ2 expression. We further found this is due in part to

the ability of miR-30b to down-regulate expression of Jun dimerization protein 2 (JDP2), a

repressor of the activating transcription factor 2 (ATF2) protein which is known to promote

transcription of TGFβ2 [36]. This study further implicates TGFβ2 as a negative regulator of

angiogenic processes and provides important insight regarding endothelial cell response to

pro-angiogenic VEGF stimulation via miRNA regulation of transcription factor activity.

Materials and methods

Antibodies and growth factors

Primary antibodies used were: TGFβ2 (V, SC-90), ATF-2 (C-19, SC-187), and phospho-ATF-2

(F-1, SC-8398) from Santa Cruz Biotechnology (Santa Cruz, CA), phospho-Smad2 (S465/467)

from Cell Signaling Technology (3101; Danvers, MA), Smad2 from Invitrogen (511300; Carlsbad,

CA), β-Actin (clone AC-74) from Sigma-Aldrich (A5316; St. Louis, MO), anti-TGFβ2 neutraliz-

ing antibody (AB-12-NA) and Normal Rabbit IgG (AB-105-C) from R&D Systems (Minneapolis,

MN). Secondary antibodies used were: goat anti-mouse IgG horse radish peroxidase (HRP) con-

jugate and goat anti-rabbit IgG HRP conjugate, both from Calbiochem (EMD Biosciences, La

Jolla, CA). Recombinant human VEGF165 was purchased from R&D Systems (Minneapolis, MN).

Recombinant Human TGFβ2 (100-35B) was from Peprotech (Quebec, QC). Avastin1 (DIN

02270994) was from Roche (Mississauga, ON) and was used at a concentration of 1 μg/ml.

Cell culture

Human umbilical vein endothelial cells (HUVECs) were purchased from Lonza (C2517A;

Walkersville, MD) and grown in EGM-2 media [EBM-2 basal medium (CC-3156) supple-

mented with EGM-2 SingleQuot kit supplement and growth factors (CC-4176)] also from

Lonza. Cells were routinely passaged at 80–90% confluence and used for experiments at pas-

sage 6 through 10. Cells were maintained at 37˚C in 5% CO2. All experiments were performed

in EGM-2 unless otherwise noted. For serum starvation, HUVECs were incubated in MCDB

131 Medium (Gibco by Life Technologies; Carlsbad, CA) supplemented with L-Glutamine

(GlutaMAX-I; Gibco by Life Technologies, Carlsbad, CA) and 0.5% fetal bovine serum (FBS:

Medicorp, Montreal, QC) for 16–20 hours, with additional time under starvation as required

under specific experimental conditions.

SiRNA transfection

ATF2 ON-TARGET siRNA (ATF2 siRNA 1; MQ-009871-00) and control non-targeting siRNA

(siControl Non-Targeting siRNA #1; D-001210-01) were purchased from Dharmacon (Lafa-

yette, CO). ATF2 Silencer siRNA (ATF2 siRNA 2; AM16708A) was purchased from Ambion

(Ambion, ThermoFisher Scientific, Burlington ON). For silencing of ATF2, both ATF2 siRNAs

and control siRNA were used at concentrations of 5 or 50 nM. HUVECs were transfected at

80% confluence in Opti-MEM1 I reduced serum medium using Oligofectamine Transfection

Reagent (Invitrogen, Carlsbad, CA), according to the manufacturer’s protocol.

Transfection of microRNA mimics and hairpin inhibitors

HUVECs were seeded onto either 6 cm or 10 cm tissue culture plates at 4 x 105 cells or 1 x 106

cells, respectively, and allowed to adhere overnight. Transfection of cells with miRIDIAN

MiR-30b-VEGF-TGFβ2 axis regulates angiogenesis
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microRNA Mimics or miRIDIAN microRNA Hairpin Inhibitors (all from Thermo Fisher

Scientific Inc., Waltham, MA) was achieved with Oligofectamine Transfection Reagent (Invi-

trogen, Carlsbad, CA), according to the manufacturer’s instructions. Mimics used were: miRI-

DIAN microRNA Mimic Negative Control #1 and miRIDIAN microRNA hsa-miR-30b-5p

mimic. Hairpin inhibitors used were: miRIDIAN microRNA Hairpin Inhibitor Negative Con-

trol #1 and miRIDIAN microRNA hsa-miR-30b-5p hairpin inhibitor.

Western blotting

Equal amounts of total protein per sample were diluted with NuPAGE1 LDS Sample Buffer

(Novex, Life Technologies, Carlsbad, CA) and reduced with dithiothreitol (DTT). Electrophore-

sis was performed with NuPAGE1 Novex1 4–12% Bis-Tris Gels (Novex, Life Technologies,

Carlsbad, CA) and proteins were transferred to Hybond-C Extra nitrocellulose membrane

(Amersham Biosciences, GE Healthcare, Piscataway, NJ). The following concentrations of pri-

mary antibody were used: TGFβ2 (1:200), phospho-ATF-2 (1:200), ATF-2 (1:200), phospho-

Smad2 (1:1000), Smad2 (1:1000), β-actin (1:7000). Following primary antibody incubation,

membranes were incubated in appropriate secondary antibodies and images were developed in

Immobilon Western Chemiluminescent HRP Substrate (EMD Millipore, Billerica, MA) prior

to visualization using the GeneGnome detection system (Syngene, Frederick, MD).

RNA isolation

HUVECs were washed once with PBS, followed by the addition of 700 μl QIAzol lysis reagent

(Qiagen, Germantown, MD). Cell lysate was frozen at -80˚C until processing for total RNA

including miRNA with the miRNeasy Mini Kit (Qiagen, Germantown, MD) according to the

manufacturer’s protocol. RNA was dissolved in sterile nuclease free water and stored at -80˚C.

Quantitative RT-PCR

Reverse transcription was performed with Moloney murine leukemia virus (M-MLV) reverse

transcriptase (RT) (Invitrogen by Life Technologies, Carlsbad, CA) according to the manufac-

turer’s instructions. PCR was performed as individual reactions with gene specific primers and

RT2 SYBR Green ROX™ qPCR Mastermix (Qiagen, Germantown, MD). PCR was performed

with a 7500 Fast Real-Time PCR System (Applied Biosystems by Life Technologies, Carlsbad,

CA). The amount of RNA in each sample was normalized to β-actin levels within that sample.

Relative expression was determined via delta-delta-Ct method with values displayed as 2-ΔΔCt.

The primer sets used were: β-actin (forward: CCAACCGCGAGAAGATGA; reverse: CCAGAGGCG
TACAGGGATAG), TGFβ1 (forward: CACGTGGAGCTGTACCAGAA; reverse: CAGCCGGTTGCTG
AGGTA), TGFβ2 (forward: CCAAAGGGTACAATCCAC; reverse: CAGATTCTGGATTTATGGTA
TT), ATF2 (forward: TTTGGTCCAGCACGTAATGA; reverse: CAAACCCACTTCTTCACAGTTT
T), JDP2 (forward: TTTGCAGGGAGGTGCTCT; reverse: GATCTGCCCAGGCATCATA).

MicroRNA expression analysis

For microarray analysis, RNA was labeled using the Flashtag HSR biotin labeling kit and used

to probe Affymetrix GeneChip Human miRNA 2.0 arrays (Affymetrix, Santa Clara CA) as per

manufacturer’s instructions in the Stemcore Core Facility at Ottawa Hospital Research Insti-

tute. Analysis of gene expression following modulation of miR-30b levels was performed with

an Affymetrix GeneChip Human Gene 1.0 ST array also at Stemcore Facility according to

manufacturer’s instructions. For quantitative RT-PCR of miRNA, RNA samples were diluted

to a concentration of 5 ng/μl in sterile nuclease free water and reverse transcription of desired
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mature miRNAs was performed, with up to four miRNA-specific primers in the same reaction,

using TaqMan MicroRNA Assays (Applied Biosystems by Life Technologies, Carlsbad, CA)

specific for individual miRNAs and the TaqMan MicroRNA Reverse Transcription Kit (Ap-

plied Biosystems by Life Technologies, Carlsbad, CA), following the manufacturer’s protocol.

PCR was performed with the TaqMan MicroRNA Assay PCR primer for the desired miRNA

and the TaqMan 2X Universal PCR Master Mix (Applied Biosystems by Life Technologies,

Carlsbad, CA). PCR was performed with a 7500 Fast Real-Time PCR System (Applied Biosys-

tems by Life Technologies, Carlsbad, CA). Primers used were as follows: hsa-miR-30b (assay #

000602) hsa-miR-103 (assay # 000439), RNU24 (assay # 001001) and hsa-miR-21 (assay #

000397). Gene expression data were normalized to miR-103 unless otherwise stated. Relative

expression was determined via delta-delta-Ct method with values displayed as 2-ΔΔCt.

Cell viability assay

HUVECs were seeded into 6-well tissue culture plates at a density of 9 x 104 cells/well in tripli-

cate, and cells were maintained in EGM-2 growth media. To assess cell viability, cells were

washed once in Hank’s Balanced Salt Solution (HBSS) to remove floating debris, and then

trypsinized. Viability was assessed by trypan blue exclusion using a Vi-Cell XR cell viability

analyzer (Beckman Coulter, Brea, CA) at the times indicated. For transfection experiments,

HUVECs were seeded for the assay at 24 hours post transfection and time points used for via-

ble cells counts indicate 24 hour intervals post seeding.

Migration assay

Cell migration was assessed via scratch wound assay. HUVECs were seeded into 6-well tissue

culture plates at 4.5 x 105 cells/well in duplicate and allowed to grow overnight to 100% conflu-

ence. A wound of approximately 1.5 mm was made creating a gap into which cells could

migrate. For transfection experiments, cells were seeded at 24 hours post transfection and

wounding was performed at 48 hours post transfection. Images were taken at time of wound-

ing and 24 hours post wounding with a Nikon Eclipse TE2000-U microscope. Migration was

assessed by calculating the distance migrated from 12 total measurements taken across the

wound front from each of duplicate wells for each experiment.

Capillary morphogenesis assay (Cord formation)

The organization of HUVECs into capillary-like cord structures was assessed by plating cells

onto Cultrex1 Basement Membrane Extract (BME, Growth factor reduced, Trevigen, Gai-

thersburg, MD). BME was polymerized at 37˚C for 30 minutes in 24-well plates followed by

incubation in EGM-2 growth media for 1–2 hours. Cells were then seeded at 5 × 104 cells/well

in duplicate or triplicate in EGM-2 growth media. Transfected cells were seeded onto BME at

48 hours post transfection. Twenty-four hours later, images were taken with a Nikon Eclipse

TE2000-U microscope. Demarcation of each well into 4 quadrants allowed for a total of 4

images per well with the total number of capillary-like cord structures and loops counted with

ImageJ software (http://imagej.nih.gov/ij/), and expressed as the average number per field of

view. Cords were considered to be elongated cellular extensions and loops were identified as

fully enclosed areas surrounded completely by cord structures regardless of the size of the area.

TGFβ1 and TGFβ2 ELISAs

Quantikine ELISAs from R&D Systems (Minneapolis, MN) were used for the determination

of TGFβ1 (cat# SB100B) and TGFβ2 (cat# SB250) in cell culture supernates. HUVECs were
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transfected with 20 nM of either control miRNA mimic or miR-30b mimic and were main-

tained in MCDB 131 with 0.5% FBS for 24 hours prior to collection of supernates. Cell culture

supernates were collected and debris was removed through centrifugation at 1,200 x g for 5

minutes followed by storage of the supernates at -80˚C. ELISAs were run according to manu-

facturer’s instructions in duplicate and absorbance was read at 450 nm with correction at 570

nm on a Multiskan Ascent photometer (Thermo Scientific, Rockford, IL). A standard curve

was created for the determination of TGFβ concentrations by interpolation. Basal levels of

TGFβ in culture media alone was subtracted as background from each cell culture sample.

Statistical analysis

Analysis of statistical significance was performed in GraphPad Prism 3 (GraphPad Software

Inc.). Comparison between two groups was performed with unpaired Student’s t-tests. Com-

parisons between multiple groups were done by ANOVA with post hoc analysis. Results were

considered statistically significant at P< 0.05.

Results

VEGF regulates the expression of miR-30b

The study of the role of individual miRNAs in angiogenesis is largely in its infancy and the reg-

ulation of miRNA expression by angiogenic growth factors is especially important to further-

ing our understanding of pro- and anti-angiogenic miRNAs. To this end, we examined VEGF

regulation of miRNA expression in HUVECs in order to identify candidate miRNAs that may

function in response to VEGF-promotion of angiogenesis. Following preliminary microarray

analysis of miRNA expression in response to VEGF (S1 Table), we found a number of differen-

tially expressed miRNA with high fold changes (Fig 1A). We identified miR-30b as a candidate

miRNA for further validation. To confirm VEGF-regulation of miR-30b, HUVECs were serum

starved overnight and stimulated with VEGF (50 ng/ml) for 24 hours. Expression of miR-30b

in response to VEGF was compared to expression levels of both miR-103 and RNU24 as en-

dogenous controls as our previous studies have found these are relatively invariant across

different cell lines and treatments [37]. We observed that VEGF consistently and significantly

Fig 1. VEGF reduces miR-30b expression in HUVECs. (A) RNA was isolated from HUVEC treated with

50ng/ml of VEGF for 24h and used to profile miRNA using Affymetrix gene expression arrays. Bars represent

the fold changed over unstimulated control HUVEC for some of the top targets (n = 1). (B) Cells were serum

starved overnight in MCDB 131 with 0.5% FBS and stimulated with VEGF (50 ng/ml) for 24 hours. Total RNA

was extracted and subjected to qRT-PCR to assess miR-30b expression. Levels of miR-30b are presented as

the mean ± SEM relative to the expression of the endogenous controls miR-103 (n = 6) and RNU24 (n = 3). A

statistically significant decrease in miR-30b expression is observed following VEGF stimulation. ** P = 0.0024

vs. miR-103; * P = 0.014 vs. RNU24 as determined by unpaired Student’s t-test.

https://doi.org/10.1371/journal.pone.0185619.g001
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downregulated miR-30b by an average of approximately 12% (Fig 1B) (P = 0.0024 vs. miR-103;

P = 0.014 vs. RNU24) suggesting that miR-30b suppression may be required for VEGF-regulated

angiogenic processes.

MiR-30b regulates endothelial cell capillary morphogenesis

To study its role in angiogenesis, miR-30b expression levels were modulated through the use

of miRNA inhibitors and mimics. MiR-30b levels were effectively reduced by approximately

20% at the low doses tested (0.1 nM), and up to 70% when high doses (20 nM) of specific hair-

pin inhibitors were tested (Fig 2A). Reduction of miR-30b levels did not alter cell morphology

in monolayer (Fig 2B), nor was viability or migration affected by reduced levels of miR-30b

(Fig 2C and 2D). However, depletion of miR-30b levels in untreated HUVEC was shown to

cause an induction in endothelial cell capillary-like cord formation, as assessed by quantifica-

tion of cord and loop number on BME (Fig 2E and 2F), suggesting miR-30b is a negative regu-

lator of this process in endothelial cells. Importantly, we also observed a significant increase in

cord formation in cells with levels of miR-30b reduction similar to those observed following

VEGF stimulation (Fig 2A and 2F; 0.1 nM inhibitor concentration), indicating that relatively

small decreases in the expression of miR-30b, such as those observed in response to VEGF, are

biologically relevant.

To confirm that miR-30b does indeed play a negative role in endothelial cell cord forma-

tion, we utilized mimics to overexpress miR-30b in HUVECs (Fig 3A). Interestingly, overex-

pression of miR-30b altered endothelial cell morphology, with HUVECs showing a more

elongated shape (Fig 3B), reminiscent of a more mesenchymal phenotype such as that ob-

served in the Endo-MT phenomenon [38]. However, as with depleting levels of miR-30b, over-

expression of miR-30b did not affect either viability or migratory ability of HUVECs (Fig 3C

and 3D). In contrast to what we observed with miR-30b reduction, overexpression of miR-30b

using specific miRNA mimics reduced cord formation (Fig 3E and 3F, as assessed by both

number of cords and number of loops) at varying doses. Taken together with the previous

results, these findings support a negative role for miR-30b in the regulation of endothelial cell

capillary morphogenesis.

MiR-30b regulates expression of TGFβ2

As our findings are in contrast to those previously observed in zebrafish that suggested miR-

30b overexpression enhanced vessel formation [34], we wished to further understand the

mechanism by which miR-30b could inhibit angiogenesis in human endothelial cells. In order

to identify potential targets of miR-30b that could facilitate the changes in capillary-like cord

formation observed, a gene expression microarray was performed on HUVECs overexpressing

miR-30b using mimic constructs. Microarray analysis identified TGFβ2, among other targets,

as being upregulated ~ 4-fold by miR-30b overexpression (data not shown). We chose to vali-

date TGFβ2 as a prospective mediator of the effects of miR-30b overexpression on capillary

morphogenesis as TGFβ family members have been shown to inhibit angiogenesis in some

contexts [39–41], and considering the fact that it appeared, upon miR-30b upregulation, that

endothelial cells gained an Endo-MT appearance which has been shown to be induced by

TGFβ2 [38]. To this end, HUVECs were transfected with increasing concentrations of miR-

30b mimic and expression levels of TGFβ2 were assessed by qRT-PCR. Cells overexpressing

miR-30b showed a significant dose-dependent increase in levels of TGFβ2 but not the closely

related family member TGFβ1 (Fig 4A), indicating the specificity of miR-30b regulation for

TGFβ2. This increase in TGFβ2 mRNA also translated to increased protein expression and

secretion, as TGFβ2 was elevated in both cell lysates (Fig 4B) and conditioned cell supernatants

MiR-30b-VEGF-TGFβ2 axis regulates angiogenesis
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Fig 2. Inhibition of miR-30b enhances endothelial capillary morphogenesis. (A) HUVECs were transfected with either

control miRNA inhibitor or miR-30b specific inhibitor for 48 hours. Data presented is the mean ± SEM (n = 2) normalized to the

expression of miR-30b in control inhibitor transfected cells. * P < 0.05, ** P < 0.01, *** P < 0.001 as determined by unpaired

Student’s t-test. (B) Morphology of HUVECs is unaffected by reduction of miR-30b using specific inhibitor (50 nM). (C)

HUVECs transfected with miR-30b inhibitor (50 nM) were assessed for cell viability by trypan blue exclusion at the times

indicated. Data represents the mean ± SEM (n = 2). (D) Migration of HUVECs depleted of miR-30b by specific inhibitor was

assessed by scratch wound assay. Data represents the mean ± SEM (n = 2) for distance migrated after 24 hours and

normalized to initial wound size. (E) Representative images of HUVEC capillary morphogenesis after 24 hours on growth

factor reduced BME. Cells were transfected with control or miR-30b specific inhibitor and the total number of capillary-like

MiR-30b-VEGF-TGFβ2 axis regulates angiogenesis
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(Fig 4C) from HUVEC transfected with miR-30b mimics. TGFβ1 protein levels remained

unchanged following miR-30b overexpression (Fig 4C) in line with observations of its mRNA

levels. Interestingly, we also observed an increase in the phosphorylation of Smad2 (Fig 4D), a

downstream signaling molecule of TGFβs, in cells overexpressing miR-30b, suggesting that

increased production of TGFβ2 could be enhancing an autocrine signaling pathway in

HUVECs. Taken together, these results indicate a level of regulation of TGFβ2 expression by

miR-30b in HUVECs resulting in increased TGFβ2 secretion and increased signaling down-

stream of TGFβ receptors.

Induction of TGFβ2 expression by miR-30b is dependent on ATF2

As miR-30b positively regulates TGFβ2, hence is not directly targeting its mRNA for degrada-

tion, we hypothesized that miR-30b targets a repressor of TGFβ2 expression. Previous studies

identified ATF2 as a positive transcriptional regulator of TGFβ2 expression [42], with ATF2

itself being functionally repressed by JDP2 [36], a predicted target of miR-30b (http://www.

targetscan.org). Thus, we hypothesized that miR-30b could target JDP2 which would alleviate

its repressive effects on ATF2, allowing for increased transcriptional activity of ATF2 thereby

resulting in enhanced expression of TGFβ2. We found that overexpression of miR-30b re-

duced expression of JDP2 (Fig 5A) as expected based on JDP2 being a predicted target of

miR-30b. SiRNA-mediated depletion of ATF2 in HUVEC, using two independent siRNA

sequences, also resulted in reduced expression of TGFβ2 mRNA (Fig 5B) indicating a require-

ment for ATF2 in TGFβ2 gene expression. Additionally, ATF2 was shown to negatively impact

endothelial capillary morphogenesis as cells depleted of ATF2 exhibited enhanced cord forma-

tion (Fig 5C and 5D), suggesting modulation of ATF2 may in fact contribute to the observed

effects of miR-30b on capillary morphogenesis. To determine if ATF2 is necessary for miR-

30b upregulation of TGFβ2, HUVECs were co-transfected with miR-30b mimic and ATF2

siRNA and levels of TGFβ2 were assessed. HUVECs transfected with both miR-30b mimic

and ATF2 siRNA exhibited a significantly reduced level of induction of TGFβ2 mRNA (Fig

5E) and protein expression (Fig 5F) as compared to cells transfected with miR-30b mimic

alone, indicating that miR-30b induction of TGFβ2 expression is dependent, at least in part,

on ATF2. Interestingly, cells overexpressing miR-30b exhibited increased phosphorylated, and

hence transcriptionally active ATF2 (Fig 5F), thus confirming the potential of miR-30b to reg-

ulate gene expression in HUVEC via altered transcription factor activity.

Autocrine TGFβ2 signaling facilitates the inhibitory effects of miR-30b on

capillary morphogenesis

As we have shown that miR-30b regulates the expression of TGFβ2 in endothelial cells, we

wished to confirm the role of TGFβ2 in cord formation and its contribution to the negative

regulatory role for miR-30b in this process. We observed that stimulation of HUVECs with

VEGF decreased expression of TGFβ2 but not TGFβ1, which was prevented by concurrent

treatment with the anti-VEGF monoclonal antibody Avastin (Fig 6A). Treatment of HUVECs

with recombinant TGFβ2 significantly reduced cord formation by approximately 87% (Fig 6B

and 6C), indicating an inhibitory role for TGFβ2 in HUVEC capillary morphogenesis in this

assay system. To determine if autocrine TGFβ2 signaling induced by miR-30b contributes to

cord structures and number of loops formed was assessed from duplicate wells. (F) Data represents the mean ± SEM for cells

transfected with 50 nM (n = 3) or 0.1 nM (n = 2) miR-30b inhibitor. Capillary-like cord formation is significantly enhanced in

cells with reduced levels of miR-30b. * P < 0.05, ** P < 0.01 as determined by unpaired Student’s t-test.

https://doi.org/10.1371/journal.pone.0185619.g002
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Fig 3. Overexpression of miR-30b reduces HUVEC capillary morphogenesis. (A) Assessment of miR-30b expression

levels at 48 hours post transfection with miR-30b mimic. Data represents the mean ± SEM (n = 2) for miR-30b expression

normalized to endogenous miR-30b levels in control mimic transfected cells. * P < 0.05, ** P < 0.01 as determined by

unpaired Student’s t-test. (B) HUVEC morphology is altered following overexpression of miR-30b mimic (20 nM). (C) HUVECs

overexpressing miR-30b following mimic transfection (20 nM) were assessed for cell viability by trypan blue exclusion at the

indicated times. Data represents the mean ± SEM (n = 2). (D) Migration of cells transfected with miR-30b mimic (20 nM) was

assessed by scratch wound assay. Data indicates the mean ± SEM (n = 2) for distance migrated after 24 hours normalized to

initial wound size. (E) Capillary morphogenesis after 24 hours on growth factor reduced BME for HUVECs transfected with

MiR-30b-VEGF-TGFβ2 axis regulates angiogenesis
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the observed inhibition of capillary-like cord formation, we blocked TGFβ2 using a neutraliz-

ing antibody in miR-30b overexpressing HUVEC. In miR-30b overexpressing cells, treatment

with anti-TGFβ2 antibody almost completely restored cord formation to levels seen in control

miRNA transfected cells with cord and loop number significantly increased compared to miR-

miR-30b mimic. (F) Data represents the mean ± SEM (n = 3) for total number of capillary-like cord structures and number of

loops. Cord formation is significantly reduced in cells overexpressing miR-30b. ** P < 0.01, *** P < 0.001 as determined by

unpaired Student’s t-test.

https://doi.org/10.1371/journal.pone.0185619.g003

Fig 4. MiR-30b induces expression of TGFβ2. (A) HUVECs were transfected with either control mimic (con) or miR-30b mimic (30b)

and levels of TGFβ1 and TGFβ2 mRNA were assessed by qRT-PCR. Expression levels relative to control mimic transfected cells and

normalized to β-actin expression are presented as the mean ± SEM (n = 2). Overexpression of miR-30b significantly increases TGFβ2

expression. * P < 0.05, ** P < 0.01 as determined by unpaired Student’s t-test. (B) Cells were transfected with 20 nM of either control

mimic (control) or miR-30b mimic (miR-30b) and protein lysates were collected after 48 hours for assessment of TGFβ2 protein levels by

western blot. β-actin was used as endogenous control. (C) ELISAs for TGFβ1 and TGFβ2 were performed with 24 hour conditioned

supernates from HUVECs transfected with 20 nM of either control or miR-30b mimic. Data represents the mean ± SEM (n = 2).

Overexpression of miR-30b significantly increases TGFβ2 secretion into cell culture supernate. * P = 0.044 as determined by unpaired

Student’s t-test. (D) HUVECs were transfected with 20 nM of either control mimic (control) or miR-30b mimic (miR-30b) and protein

lysates were collected after 48 hours for assessment of Smad2 phosphorylation by western blot.

https://doi.org/10.1371/journal.pone.0185619.g004
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Fig 5. ATF2 is required for miR-30b regulation of TGFβ2 expression. (A) JDP2 mRNA expression was assessed in HUVECs transfected

with miR-30b mimic (20 nM) as compared to control by qRT-PCR. Data represents the mean ± SEM (n = 3) normalized to β-actin as

endogenous control. * P = 0.016 as determined by unpaired Student’s t-test. (B) HUVEC were transfected with 50 nM of either control siRNA or

ATF2 siRNA 1 or 2 and RNA was isolated at 48 hours post transfection. Levels of ATF2 and TGFβ2 mRNA were assessed by qRT-PCR with β-

actin as endogenous control. Data presented is mean ± SEM (n = 2). Statistically significant decreases in ATF2 and TGFβ2 expression were

seen in ATF2 siRNA treated cells as compared to control siRNA treated cells. * P < 0.05, ** P < 0.01, *** P < 0.001 as determined by unpaired

Student’s t-tests for each ATF2 siRNA compared to control siRNA. (C) Cells transfected with 5 nM of either control siRNA or ATF2 siRNA 1

were seeded onto growth factor reduced BME and the formation of capillary-like cord structures and number of loops was assessed after 24

hours. (D) A statistically significant increase in cord formation was observed in cells depleted of ATF2 through siRNA. Data represents the

mean ± SEM (n = 2). * P = 0.041 as determined by unpaired Student’s t-test. (E) HUVECs were co-transfected with miRNA mimic (20 nM) and

ATF2 siRNA 1 or 2 (50 nM) in the combinations displayed and cell lysates were collected at 48 hours post transfection and assessed for TGFβ2

mRNA expression. Data presented is mean ± SEM (n = 2). * P < 0.05, ** P < 0.01, *** P < 0.001 as determined by ANOVA with post hoc

analysis. (F) Cells were transfected as in (E) using miRNA mimic (20 nM) and ATF2 siRNA 1 (5 nM) and serum starved overnight in MCDB 131

with 0.5% FBS prior to protein expression analysis by western blot. Data is representative of expression levels observed in two independently

performed experiments.

https://doi.org/10.1371/journal.pone.0185619.g005
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30b overexpressing cells treated with rabbit IgG (Fig 6D and 6E). This data suggests that nega-

tive regulation of capillary morphogenesis by miR-30b is due to enhanced TGFβ2 autocrine

signaling in HUVECs, and our data support the notion that VEGF downregulates miR-30b in

part to overcome the inhibitory effects of TGFβ2 production by HUVEC.

Fig 6. Inhibition of autocrine TGFβ2 signaling prevents reduction of capillary morphogenesis by miR-30b. (A) HUVECs were

serum starved overnight in MCDB 131 with 0.5% FBS and stimulated with VEGF (50 ng/ml) in the presence or absence of Avastin

(1 μg/ml) for 24 hours. Data represents the mean ± SEM (n = 2) for expression of TGFβ1 and TGFβ2 assessed by qRT-PCR relative

to β-actin endogenous control. * P < 0.05, ** P < 0.01, *** P < 0.001 as determined by ANOVA. (B) HUVECs were treated with 5 ng/

ml of TGFβ2 for 3 days prior to seeding onto growth factor reduced BME for assessment of capillary-like cord formation after 24

hours. (C) A significant decrease in cord formation is observed in the TGFβ2 treated group. Data represents the mean ± SEM (n = 2).

** P = 0.0072 as determined by unpaired Student’s t-test. (D) HUVECs transfected with 1 nM control or miR-30b mimic were treated

4 hours post transfection with 0.8 μg/ml anti-TGFβ2 neutralizing antibody or rabbit IgG. Media was refreshed after 24 hours, again

with rabbit IgG or anti-TGFβ2 antibody and cells were seeded onto growth factor reduced BME 24 hours later (ie. 48 hours post

transfection) in media containing rabbit IgG or anti-TGFβ2 antibody. (E) Data represents the mean ± SEM (n = 3) of the number of

capillary-like cord structures or number of loops formed after 24 hours on BME. * P < 0.05, ns denotes not significant as determined

by ANOVA with post hoc analysis.

https://doi.org/10.1371/journal.pone.0185619.g006
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Discussion

Growth factors regulate miRNA expression in endothelial cells [3,15,17,43–46] and in turn,

miRNAs have been shown to regulate endothelial production of growth factors [17,47,48]

resulting in varying levels of control over angiogenic processes. MiR-30b has been identified as

a highly expressed miRNA in endothelial cells [2] with an, as yet, incompletely defined role in

response to growth factor stimulation. Our results have identified miR-30b as being negatively

regulated by VEGF in human umbilical vein endothelial cells. MiR-30b is located on chromo-

some 8q24.22 within the uncharacterized locus LOC102723694 (www.genecards.org). At pres-

ent it is unclear what gene regulatory elements may be directing its expression, however a

predicted promoter does appear to lie upstream of it and this promoter is predicted to have

multiple binding sites for the early growth response gene 1 (Egr1) transcription factor (www.

ensembl.org). Egr1 is known to be activated downstream of VEGF stimulation [49–51], and

thus it is possible that it could play a role in VEGF-mediated suppression of miR-30b, however

this remains to be confirmed.

The modest, although statistically significant decrease in miR-30b expression observed

upon treatment of cells with VEGF was shown to be of biological significance, as when endog-

enous miR-30b was downregulated through the use of a hairpin inhibitor to levels similar to

that observed in response to VEGF, we observed a significant increase in capillary morphogen-

esis. Conversely, when exogenous miR-30b was provided to endothelial cells we observed a sig-

nificant decrease in capillary morphogenesis. Initially, our results seem to be in contrast to

those recently reported by Bridge et al. [34], who suggested that overexpression of miR-30b

resulted in increased capillary formation in vitro and in vivo. They do however show that

infection of lymphatic endothelial cells with Kaposi sarcoma herpesvirus (KSHV) resulted in

significant downregulation of miR-30b and miR-30c, and given that it is known that KSHV is

a potent inducer of VEGF expression [52], these findings are in line with ours suggesting that

VEGF stimulation downregulates miR-30b. However, they go on to show that miR-30b over-

expression appears to increase capillary formation, not decrease as we have seen, and they

attribute this to its ability to target DLL4. However, it remains possible that miR-30b targeting

of DLL4 contributes to uncontrolled and disorganized sprouting due to loss of vessel tip cell

restriction [34], which may manifest in different capillary phenotypes depending on the

method of in vitro assay used, which differed in these two studies. It is also important to note

that composition of endothelial media differed, and given our results suggesting that VEGF

directly influences miR-30b expression, it is possible that use of alternative growth factor sup-

plements in endothelial media could influence the observed phenotypes. It is also possible

VEGF negatively regulates miR-30b in a sprouting vessel, resulting in miR-30b expression dif-

ferences between tip and stalk cells as a result of increased VEGF gradients observed at the tip

cell. This would theoretically result in reduced miR-30b levels in the tip cell and thus mainte-

nance of DLL4 expression which signals through NOTCH receptors on stalk cells to maintain

the stalk cell phenotype [53,54]. Our results are also different than those recently observed sug-

gesting exosomes from mesenchymal stem cells (MSC) with miR-30b overexpression or inhi-

bition positively or negatively affected endothelial cell tube formation respectively [55].

However in this study, the authors do not indicate that altered miR-30b levels specifically, as

transferred to HUVECs from MSC exosomes, is responsible for the increased tube formation

noted. No data was provided to show that modulating miR-30b in MSC does not lead to addi-

tional changes in the miRNA or protein content of the exosomes that could account for or

contribute to the changes in tube formation seen in their system. Despite this, our data, along

with these additional findings, indicate the importance of controlled miR-30b expression to
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angiogenesis, with our data specifically highlighting miR-30b as a VEGF-regulated miRNA

with anti-angiogenic potential.

Seeking to identify potential targets that could mediate the observed inhibition of miR-30b

overexpression on endothelial capillary morphogenesis, we identified up-regulation of TGFβ2

in response to overexpressing miR-30b. Knockout mouse models have shown the importance

of TGFβ signaling during embryonic vascular development with deletion of ligands TGFβ1

and TGFβ2 as well as receptors TGFβR1 and TGFβR2 all exhibiting developmental defects

often leading to embryonic lethality [56–59]. In certain contexts, TGFβs have been shown to

negatively regulate processes important for angiogenesis [39,40,60]. Specifically in regards to

capillary morphogenesis, TGFβ1 has been shown to impede capillary-like cord formation in

bovine microvascular endothelial cells [41]. Interestingly, our results indicate that TGFβ2, but

not TGFβ1, is suppressed by VEGF in HUVECs and that capillary morphogenesis is inhibited

by TGFβ2 in these cells, specifically highlighting TGFβ2 as anti-angiogenic in our system.

Interestingly, it has been recently shown that KSHV infection of endothelial cells also downre-

gulates TGFβ2 [61], and given that KSHV upregulates VEGF, our proposed pathway of

VEGF-regulation of miR-30b and its downstream effects on TGFβ2 is also supported by this

finding. Importantly, our data indicates that cells with higher levels of miR-30b secrete more

TGFβ2 and that these cells have higher levels of Smad2 phosphorylation indicating an active

autocrine TGFβ signaling pathway. As opposed to signaling through ALK1 and Smad1/5

which results in promotion of endothelial proliferation and migration, TGFβ signaling

through TGFβR1 and Smad2/3 mediates inhibitory signals in endothelium [39], thus our

result indicating increased Smad2 activation fits with established literature regarding the

inhibitory effects of signaling pathways stimulated by TGFβs in endothelial cells. Confirming

the importance of TGFβ2 in inhibiting capillary morphogenesis regulated by miR-30b expres-

sion, use of TGFβ2 neutralizing antibodies restored capillary-like cord formation in miR-30b

overexpressing cells, suggesting an autocrine signaling function for TGFβ2 in regulation of

capillary morphogenesis. Autocrine TGFβ signaling through Smad2 in cultured HUVECs has

been previously observed [62]. Thus, our results fit a model whereby miR-30b increases levels

of secreted TGFβ2 which functions in an autocrine signaling pathway to mediate the inhibi-

tory effects of increased miR-30b expression on endothelial cell capillary morphogenesis.

As TGFβ2 is increased with miR-30b overexpression it cannot be a direct target of this

miRNA. We thus speculated that miR-30b targets a repressor of TGFβ2 expression. It has been

previously suggested that miR-21 directly targets the 3’ UTR of TGFβ2 leading to its degrada-

tion and hence suppresses its expression [63], and in our array, we did observe upregulation of

miR-21 following VEGF stimulation of HUVEC (Fig 1A). While it is true that this upregula-

tion of miR-21 following VEGF stimulation of endothelial cells may also contribute to promot-

ing angiogenesis by downregulation of TGFβ2 which inhibits this process, the increased

expression of TGFβ2 observed following miR-30b overexpression observed in our experiments

is independent of miR-21, as we did not see any significant differences in miR-21 levels in

HUVEC transfected with miR-30b mimics as compared to controls (S1 Fig). As such, we spec-

ulated that the target of miR-30b could be a protein involved in TGFβ2 transcription. ATF2

has been shown to be a direct transcriptional activator of the TGFβ2 gene [42], and we showed

that ATF2 negatively impacted endothelial cell capillary morphogenesis as its depletion

enhanced capillary-like cord formation in HUVECs. Phosphorylation of ATF2 on residues

Thr69 and Thr71 is required for its dimerization and activation [64], and we have shown that

increased activation of ATF2 occurs in response to high levels of miR-30b and that ATF2

depletion inhibits the induction of TGFβ2 expression by miR-30b, confirming a requirement

for ATF2 in mediating the effects of miR-30b on TGFβ2 expression. Our data suggests that

enhanced ATF2 activation results from miR-30b targeting of a known ATF2 repressor, namely
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JDP2 [36] in cells overexpressing miR-30b. We demonstrated a direct effect of miR-30b on

JDP2 levels in HUVEC and JDP2 is a predicted target of miR-30b containing a miR-30b bind-

ing site in its 3’-UTR [assessed by TargetScan (http://www.targetscan.org)]. JDP2 has been

shown to directly bind to ATF2 in a stable heterodimer on CRE-element containing promoter

sequences [36], and this interaction prevents ATF2 mediated gene transcription. We speculate

that reduced JDP2 allows ATF2 to form other hetero- or homodimers that are subsequently

activated via JNK/p38 kinases as has been previously shown [65–67], resulting in the increased

phosphorylation of ATF2 as we observe. As such, our data suggest a possible mechanism

whereby miR-30b targets JDP2 thus freeing ATF2 from repression and promoting its activa-

tion and binding to promoter sequences such as in the TGFβ2 gene. In turn, the anti-angio-

genic effects of miR-30b are manifested by the subsequent autocrine inhibitory effects of

TGFβ2 in endothelial cells. These autocrine inhibitory effects are overcome by VEGF stimula-

tion resulting in decreased TGFβ2 levels in part via downregulation of miR-30b.

Conclusions

Understanding mechanistically how individual miRNAs function to regulate complex pro-

cesses such as capillary morphogenesis is important; however, context-specific functions of

miRNAs need to be considered. Furthering our understanding of VEGF-mediated miRNA

expression in angiogenic processes, we have identified miR-30b as a VEGF regulated miRNA

with a negative regulatory role in capillary morphogenesis of HUVEC. Importantly, we identi-

fied the mechanism of miR-30b inhibition of capillary morphogenesis via regulation of an

autocrine inhibition manifested by increased TGFβ2 production. We have also shown that

miR-30b influences TGFβ2 production through regulation of the activity of the TGFβ2 tran-

scription factor ATF2, via targeting one of its known repressors. Thus, our results make an

important link and further elucidate a mechanism of cross-regulation between the pro-angio-

genic growth factor VEGF and TGFβ2 expression in endothelial cells and highlight the impor-

tance of autocrine growth factor signaling regulated by miRNAs, to angiogenic processes.

Supporting information

S1 Fig. MiR-21 expression levels do not change following modulation of miR-30b levels

with specific mimic and inhibitor. HUVEC were transfected with control or miR-30b mimic

(20 nM) and control or miR-30b inhibitor (50 nM) and expression of miR-21 was assessed at

48 hours post transfection. Endogenous control used for normalization was miR-103. Data

represents the mean ± SEM (n = 2).

(TIF)

S1 Table. Affymetrix miRNA 1.0 chip expression results.

(XLS)
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