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Abstract

Salmonella enteritidis and Salmonella typhimurium are important food-borne bacterial path-

ogens, which are responsible for diarrhea and gastroenteritis in humans and animals. In this

study, S. typhimurium bacterial ghost (STG) was generated based on minimum inhibitory

concentration (MIC) of sodium hydroxide (NaOH). Experimental studies performed using in

vitro and in vivo experimental model systems to characterize effects of STG as a vaccine

candidate. When compared with murine macrophages (RAW 264.7) exposed to PBS buffer

(98.1%), the macrophages exposed to formalin-killed inactivated cells (FKC), live wild-type

bacterial cells and NaOH-induced STG at 1 × 108 CFU/mL showed 85.6%, 66.5% and

84.6% cell viability, respectively. It suggests that STG significantly reduces the cytotoxic

effect of wild-type bacterial cells. Furthermore, STG is an excellent inducer for mRNAs of

pro-inflammatory cytokine (TNF-α, IL-1β) and factor (iNOS), anti-inflammatory cytokine

(IL-10) and dual activities (IL-6) in the stimulated macrophage cells. In vivo, STG vaccine

induced humoral and cellular immune responses and protection against homologous and

heterologous challenges in rats. Furthermore, the immunogenicity and protective efficacy

of STG vaccine were compared with those of FKC and non-vaccinated PBS control groups.

The vaccinated rats from STG group exhibited higher levels of serum IgG antibody res-

ponses, serum bactericidal antibodies, and CD4+ and CD8+ T-cell populations than those of

the FKC and PBS control groups. Most importantly, after challenge with homologous and

heterologous strains, the bacterial loads in the STG group were markedly lower than the

FKC and PBS control groups. In conclusion, these findings suggest that the STG vaccine

induces protective immunity against homologous and heterologous challenges.
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Introduction

Salmonella are Gram-negative foodborne zoonotic bacteria that cause salmonellosis worldwide

[1, 2]. S. typhimurium and S. enteritidis are mainly transmitted to humans by consumption of

contaminated eggs and poultry meat products, and represent a global public health burden [3].

Salmonella species are composed of several serotypes that can cause infections in homologous

vaccinated animals. Moreover, S. typhimurium strains are often resistant to multiple antibiot-

ics, such as aminopenicillins, gentamicin, tetracycline, chloramphenicol, and sulfonamides [4–

7]. Therefore, there is a need to develop Non-Typhoidal Salmonellae (NTS) vaccine that can

induce both homologous and heterologous protective immunity against Salmonella strains.

Meanwhile, several efforts with live attenuated vaccines have been made to induce cross-pro-

tection against NTS infections. Previous studies demonstrated that live attenuated Salmonella
aroA [8–10], capable of reducing invasion and colonization of the gastrointestinal tract and

protected animals from homologous challenge, but they lack the ability to induce heterologous

protective immunity against a virulent challenge. Furthermore, the administration of attenu-

ated aroA mutants from S. enteritidis [11] or S. typhimurium [12] has been shown to reduce

fecal shedding against homologous challenge. However, vaccination with Salmonella adenylate

cyclase (cya) and C-reactive protein (crp) mutant protected chickens from Salmonella sero-

types challenges [13].

Bacterial ghosts (BG) are structurally intact empty bacterial cell envelopes prepared from

various Gram-negative bacteria [14]. In BG preparation, bacterial cell lysis is induced by the

controlled expression of the bacteriophage PhiX174 lysis gene E [15, 16] or minimum inhibi-

tory concentration (MIC) of sodium hydroxide (NaOH) [17–21]. Based on this lysis, protein E

or MIC of NaOH produces transmembrane tunnel structures on the cell surface that result in

empty non-living cell envelopes. However, there are some differences in two methods. BG pro-

duced by the former method maintains their original structure, preserves all the cell surface

antigens and provides efficient protection against specific infections [15–17]. Especially, func-

tional and antigenic determinants of the envelope components are not denatured during lysis.

However, there are some disadvantages of the method such as limitation to Gram-negative

bacteria only, potential risks because of difficulty to reach 100% lysis rate of BG strain in a

short time [22], and cost expensive and time consuming, multi-step process. Alternatively, BG

produced by the latter method has no limitation to both Gram-positive [18] and Gram-nega-

tive bacteria [17,19]. This method needs a short time to generate BG without any potential

risks, cheap cost and time-saving, simple process. Despite some surface structures in BG may

be modified or lost by NaOH [19], the NaOH-induced BG provides efficient protection against

specific infections [17,18].

In the last two decades, BG is representing to be the attractive vaccine candidate, because it

can elicit both humoral and cellular immune responses against specific infections in experi-

mental animals [23,24]. In previous studies, an effective S. entritidis and S. gallinarum ghost

vaccines were produced to protect animals from Salmonella infections [25,26]. In the present

study, non-living S. typhimurium bacterial ghosts (STG) was successfully produced by using

the chemically-induced method. The main purpose of this investigation was to assess in vitro
cytotoxicity of STG and the influence of STG on mRNA induction of cytokine and nitric oxide

synthase in murine macrophages and in vivo protection of STG against the homologous and

heterologous challenge in a rat model. Moreover, immunogenicity and protective efficacy

were compared between the STG vaccine and formalin-killed inactivated cells (FKC) vaccine.

This is the first study on the cross-protective efficacy of the STG vaccine in rats.
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Experimental procedures

Bacterial strain and culture condition

S. typhimurium KCCM40253 was kindly provided by Prof. Ki-Sung Lee, Department of Biol-

ogy and Medicinal Science, Pai Chai University, Daejeon, Korea. S. enteritidis was provided

from an animal health product manufacturing company (KBNP, Inc., Korea). The bacteria

were grown at 37˚C in Luria-Bertani (LB) broth or on LB agar. Incubation temperature for

growth and lysis was 37˚C in a shaking incubator at 200 rpm.

Production of S. typhimurium ghosts

STG were produced by using the MIC of NaOH as described previously [17–19]. Briefly,

the MIC of NaOH against S. typhimurium was determined by the two-fold broth dilution

method and 72 h cultured S. typhimurium cells were harvested by centrifugation for 10 min

at 10,000 × g. After washing three times with PBS (pH 7.2), the bacterial suspension was

adjusted to 1 × 108 CFU/mL. One mL of the MIC of NaOH was added to 2 mL of the bacte-

rial suspension and incubated at 37˚C for 1 h. After incubation, STG were collected by

centrifugation and washed three times with PBS. Samples were prepared and analyzed by

scanning electron microscopy (SEM) as described previously [17,18]. For FKC vaccine

preparation, 0.5% formalin was added to the bacterial suspension and incubated for 24 h at

37˚C. After incubation, the bacterial suspension was washed three times with PBS, and the

bacterial suspension was plated on LB agar plates to confirm the total loss of viability. FKC

was stored at 4˚C until use.

Assessment of macrophage-mediated cytotoxicity

Murine macrophage (KCLB:40071, RAW 264.7) cells were purchased from Korean Cell Line

Bank (Seoul, Korea) and cultured in 96-well plates (BD Falcon; BD Bioscience Discovery Lab-

ware, Bedford, MA, USA) for 24 h at 37˚C, in humidified 5% CO2, 95% air. The cells (1.0 × 104

cells/well) were then treated with 1.0 × 108 CFU/mL of the FKC, wild-type bacterial cells and

NaOH-induced STG, respectively, in culture medium, and incubated for a further 24 h. PBS

treated- and LPS-treated macrophages were used as negative and positive controls, respec-

tively. LPS was extracted from S. typhimurium (1 × 108 CFU/mL) using an LPS extraction kit

(iNtRON Biotechnology Inc., Seongnam-si, Gyeonggi-do, Korea) according to the manufac-

turer’s protocol. Briefly, 5 mL culture was centrifuged at 13,000 rpm for 5 min. The bacterial

pellet was treated with 1 mL of supplied lysis buffer and vortexed vigorously. After adding

200 μL of chloroform, the mixture was centrifuged at 13,000 rpm for 10 min at 4˚C. Then, the

supernatant (400 μL) was mixed well with a supplied purification buffer and incubated for 10

min at −20˚C. After centrifuging the mixture solution at 13,000 rpm for 15 min at 4˚C, the

upper layer was removed to obtain the LPS pellet. The pellet was washed with 70% ethanol and

centrifuged at 13,000 rpm for 3 min at 4˚C. After discarding the resulting upper layer, the pel-

let was dried at room temperature and dissolved in 10 mM Tris-HCl (pH 8.0) by boiling for 2

min. To get the pure LPS, proteinase K (2.5 μg/ LPS 1 μg) as added to the dissolved LPS and

the mixture was incubated at 4˚C for 30 min. The cell density was then assessed by using Cell

Counting Kit-8 (CCK-8, Sigma-Aldrich, St. Louis, MO, USA). Absorbance was measured at

450 nm and all experiments were performed in triplicate. Cytotoxic activity is expressed as the

percentage of cell viability by the following formula: % Cytotoxicity = (1 − A450nm of target

cells/A450nm of control cells) × 100.
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Quantitative analysis of cytokine mRNA by reverse transcription (RT)-

qPCR

RAW 264.7 cells (1.0 × 104 cells/well) were cultured in 24-well flat-bottom plates and treated

with the FKC, wild-type bacterial cells and NaOH-induced STG, respectively, at a concentra-

tion of 1.0 × 108 CFU/mL. After 1–12 h stimulation, total RNA was isolated using RNAiso

(Takara Bio, Shiga, Japan), according to the manufacturer’s instructions. Tumor necrosis fac-

tor (TNF)-α, interleukin (IL)-1β, IL-6, IL-10 and inducible nitric oxide synthase (iNOS)

mRNA levels were quantified by RT-qPCR amplification. Sequences for the primers of target

genes are listed in S1 Table. RT reaction was performed in a 20 μL reaction mixture containing

300 ng of total RNA, 50 mM Tris-HCl (pH 8.3), 75 mM KCl, 8 mM MgCl2, 10 mM DTT, 0.1%

NP-40, 40 mM dNTP, 2 pM of respective primer set, 20 U of RNase inhibitor (Takara Bio),

and 200 U PrimeScript Reverse Transcriptase (Takara Bio). The thermal cycler was pro-

grammed for 1 RT cycle at 50˚C for 30 min and 70˚C for 15 min. cDNA was amplified in a

20 μL reaction mixture containing 10 μL 2X SYBR1 Premix Ex Taq™ II (Tli RNaseH Plus,

Takara Bio, Shiga, Japan), 0.2 μL ROX reference dye II, 0.4 μL of 10 μM of both forward and

reverse primer and 1 ng of cDNA, using Stratagene Mx3005P cycler (1 cycle at 95˚C for 30 s,

30 cycles of denaturation at 95˚C for 5 s, and primer annealing and extension at 60˚C for 34 s).

Each gene was amplified in triplicate and cDNA concentration differences were normalized to

glyceraldehyde 3-phosphate dehydrogenase (GAPDH).

Experimental animals

Ten-week-old male Sprague-Dawley rats were housed under standard conditions of tempera-

ture and relative humidity with a 12 h light/dark cycle. Food and water were available ad libi-
tum. All animal experiments were approved by institutional animal care and use committee at

Pai Chai University.

Vaccination and challenge protocol

Thirty-nine rats were equally divided into three groups: A, B, and C. The rats in group A

(n = 13) were injected subcutaneously with sterile PBS as a non-vaccinated control. The rats in

groups B (n = 13) and C (n = 13) were vaccinated subcutaneously with FKC (1 × 108 cells/mL)

and STG (1 × 108 cells/mL), respectively. Rats from all groups were vaccinated three times at

two-week intervals. Two weeks after the final vaccination (week 7), all rats were challenged

orally with S. typhimurium (1 × 108 CFU/mL) [27] or S. enteritidis (2 × 106 CFU/mL) in PBS

[17,28,29].

Detection of antibody levels by ELISA

Serum Immunoglobulin (Ig) G antibodies were determined by indirect enzyme-linked immu-

nosorbent assay (ELISA) as previously described [18,19]. Microtiter plates were coated with

100 μL of S. typhpimurium or S. enteritidis (1 × 108 cells/mL) in coating buffer (pH 9.6). ELISA

was carried out with sera from non-vaccinated and vaccinated rats. Goat anti-rat IgG conju-

gated alkaline phosphatase (1:30,000; Sigma-Aldrich) was used as the secondary antibody. The

plates were developed with 100 μL of the substrate p-nitrophenyl phosphate (Sigma-Aldrich,

St. Louis, MO) and 100 μL of 3N NaOH was added to stop the reaction. The optical density

was measured at 405 nm with a microplate reader (Bio-Rad, USA).
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Analysis of T-cells populations by FACS

To analyze T cell populations, blood samples were collected from non-vaccinated and vacci-

nated rats at one week after the final vaccination. The peripheral blood mononuclear cells

were prepared using Histopaque-1077 (Sigma-Aldrich, St. Louis, MO) according to the manu-

facture’s protocol. The cells (1.0 × 106) were washed three times in PBS and incubated either

fluorescein isothiocyanate (FITC) labeled anti-CD4 or CD8 monoclonal antibodies at 4˚C for

30 min in the dark. After the incubation, all the samples were washed twice with PBS, and ana-

lyzed on a BD FACSCanto II flow cytometer (BD Biosciences, NJ, USA). Data analysis was

done on BD FACSDiva software (BD Biosciences).

Determination of serum bactericidal activity

The bactericidal activity of the sera was tested as described previously [30]. Twenty-five μL of

serum were mixed with 100 μL of S. typhimurium (1 × 106 CFU/mL) or S. enteritidis (1 × 106

CFU/mL) and incubated for 1 h at room temperature. After incubation, samples were plated

on selective media and incubated for 24–48 h at 37˚C. Instead of serum, PBS was served as a

control. The percentage of serum bactericidal activity was determined by using the following

formula: SBA = {1 –(the number of viable bacteria after serum treatment/the number of viable

bacteria after PBS treatment)} × 100%.

Western blot analysis

S. typhimurium or S. entertidis envelope proteins were extracted as previously described

[31,32]. Twenty μg of protein were loaded and subjected to 12% Sodium dodecyl sulfate-poly-

acrylamide gel electrophoresis (SDS-PAGE). Western blots were probed with vaccinated or

non-vaccinated sera (1:1,000) in non-fat dry milk as primary antibodies. Goat anti-rat IgG

conjugated alkaline phosphatase (1:7,000; Sigma-Aldrich) was used as a secondary antibody.

Detection was developed using nitroblue tetrazolium and 5-bromo-4-chloro-3-indolylpho-

sphate (MBI Fermentas, Canada).

Bacterial clearance analysis

To evaluate the STG vaccine-induced protective immunity against homologous and heterolo-

gous challenges, the rats were sacrificed on 2 weeks post-challenge. The liver, lung, spleen, and

kidney of each was harvested aseptically and homogenized in PBS using a tissue homogenizer

(Sun MI Technology, Korea). Serial dilution of homogenates was then plated on selective

media and incubated at 37˚C for 24–48 h. After incubation, CFUs were determined.

Statistical analysis

All statistical analyses were performed with one-way ANOVA using SPSS software (version

14.0) and data were expressed as mean ± standard error of the mean. Differences were consid-

ered statistically significant at P values of< 0.001, < 0.01 and< 0.05.

Results

Production and characterization of S. typhimurium ghosts

In order to produce STG, we first determined the MIC of NaOH (3.13 mg/mL) against S.

typhimurium by using the two-fold broth dilution method. STG was successfully produced by

using the specific concentration of NaOH. At the end of lysis process, no viable colonies were

detected in the MIC of NaOH-induced STG. This indicates that the efficiency of chemically-
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induced STG was 100%. Formation of the transmembrane tunnels in STG was examined by

SEM (Fig 1A and 1B). Electron microscopic analysis revealed the presence of transmembrane

lysis tunnel structures in STG (Fig 1B) as compared to the unlysed wild-type S. typhimurium
cells (Fig 1A). Although the cellular morphology doesn’t seem to be affected by the MIC of

NaOH, some of the cell surface structures seem to be slightly affected.

Cytotoxicity tests and induction of cytokine mRNA expression in murine

macrophages exposed to STG

The cytotoxicity was compared using the viability of RAW 264.7 murine macrophages exposed

to the FKC, wild-type bacterial cells and NaOH-induced STG, respectively (Fig 2). The given

concentration of S. typhimurium LPS included in this analysis showed cell viability of 93.9%. The

macrophages exposed to STG showed 84.9% cell viability (PBS: P< 0.01 and LPS: P< 0.05),

which was similar to those exposed to FKC (85.6%) but significantly higher than those exposed

to wild-type bacterial cells (66.5%) under the same concentration.

To determine the activation of macrophages exposed to STG to produce inflammatory

cytokines, mRNA expression of pro-inflammatory cytokines and factor (TNF-α, IL-1β and

iNOS), anti-inflammatory cytokine (IL-10) and dual properties of cytokine (IL-6) was investi-

gated using RT-qPCR (Fig 2). In TNF-α mRNA, the highest mRNA level was found at 6 h in

the macrophages exposed to wild-type bacterial cells (PBS and LPS: P< 0.001), which was

much higher than those exposed to FKC and STG, respectively. In STG-exposed macrophages,

the maximum accumulation of TNF-α mRNA was found at 2 h (PBS: P< 0.001 and LPS:

P< 0.05), which was a similar quantity found in macrophages exposed to wild-type bacterial

cells, and then declined in a time-dependent manner. Similarly, the induction of IL-1β mRNA

was induced in a time-dependent manner in the macrophages exposed to STG. Its maximum

level was found at 6 h, which was less than those exposed to FKC and wild-type bacterial cells.

In iNOS, IL-6 and IL-10 mRNA, the respective maximum levels were found at 6 h in the mac-

rophages exposed to wild-type bacterial cells (PBS and LPS: P< 0.001), which was slightly

higher than those exposed to STG. Taken together, our data indicated that STG can activate

macrophages to secrete both pro-inflammatory and anti-inflammatory cytokines.

Humoral immune response

To evaluate humoral immune responses of the STG vaccine against S. typhimurium and S.

enteritidis antigens, the titers of total IgG in the sera of vaccinated and non-vaccinated animals

Fig 1. Scanning electron microscopic analysis of (a) S. typhimurium and (b) STG. Arrows indicate

trans-membrane lysis tunnels.

https://doi.org/10.1371/journal.pone.0185488.g001
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Fig 2. Cell viability and pro- and anti-inflammatory cytokine production of STG. To determine

cytotoxicity, murine macrophages (RAW 264.7) were exposed to PBS buffer, LPS purified from S.

typhimurium, FKC, wild-type bacterial cells (ST) and NaOH-induced STG, respectively (bars). At 24 h post-

exposure, macrophages were collected for analysis of cell viability using Cell counting Kit-8. Absorbance was

measured at 450 nm and all experiments were performed in triplicate. Cytotoxic activity is expressed as the

percentage of cell viability by the formula described in Materials and Methods. At given time post-exposure

with PBS buffer, LPS purified from S. typhimurium, FKC, ST and STG, respectively (bars), macrophages

were collected for analysis of mRNA expression for pro- and anti-inflammatory cytokines and factor (TNF-α,

IL-1β, iNOS, IL-6 and IL-10) using RT-qPCR. Data are representative of triplicate experiments with each

sample run in triplicate. All statistical analyses were performed with one-way ANOVA using SPSS software

(version 14.0) and data were expressed as mean ± standard error of the mean. *** = P < 0.001; ** =

P < 0.01; * = P < 0.05 (significant difference from PBS) and ### = P < 0.001; ## = P < 0.01; # = P < 0.05

(significant difference from LPS).

https://doi.org/10.1371/journal.pone.0185488.g002
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were determined by indirect ELISA (Fig 3). Rats from FKC and STG groups elicited higher

serum IgG antibody responses as compared to the PBS control group (Fig 3A). However, there

were significant differences in the levels of serum IgG antibodies between FKC and STG at

weeks 2 and 6. At week 9 post-challenge, rats vaccinated with either STG or FKC showed sig-

nificantly higher IgG antibody responses than PBS control rats (P< 0.01). Most importantly,

serum IgG antibodies in STG group rats increased robustly as compared to PBS group

(P< 0.01) and FKC group (P< 0.05) throughout the vaccination and S. enteritidis challenge

period (Fig 3B).

Fig 3. The levels of IgG antibody responses were determined by indirect ELISA. (a) S. typhpimurium

and (b) S. enteritidis were coated as an antigen for ELISA. Results are expressed as means ± standard errors

of the means. The asterisks indicate significant differences between antibody responses of the vaccinated

and non-vaccinated groups. ** = P < 0.01; * = P < 0.05.

https://doi.org/10.1371/journal.pone.0185488.g003
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Cellular immune response

The CD4+ and CD8+ T-cell populations in vaccinated and non-vaccinated animals were

observed by FACS (Fig 4A and 4B). As shown in Fig 4C, CD4+ T-cell populations significantly

increased in all vaccinated animals (FKC: P< 0.05 and STG: P< 0.01) than the non-vacci-

nated control PBS group, but no significant difference detected between FKC and STG. Simi-

larly, animals from FKC (P< 0.05) and STG (P< 0.01) had statistically higher percentage of

CD8+ T-cells compared to the control PBS group (Fig 4D). Meanwhile, the statistical differ-

ence between FKC and STG was not significant.

Determination of serum bactericidal activity

Serum bactericidal activity from rats vaccinated with the STG vaccine was tested against S.

typhimurium (Fig 5A) and S. enteritidis (Fig 5B). As can be seen in Fig 5, the group vaccinated

with the STG vaccine showed significantly higher levels of bactericidal antibodies compared to

FKC and PBS control groups (P< 0.01). However, at weeks 4 and 6, bactericidal activity was

not significantly different between STG and FKC against homologous strain. Interestingly,

Fig 4. Assessment of CD4+ and CD8+ T-cells by FACS analysis. Populations of (a) CD4+ and (b) CD8+ T-cells and (c and d) the

corresponding significant analysis from vaccinated and non-vaccinated control groups one week (week 6) after the final vaccination with

STG. Values are shown as means ± standard errors of the means. The asterisks indicate significant differences between T-cell

populations of the vaccinated and non-vaccinated groups. ** = P < 0.01; * = P < 0.05.

https://doi.org/10.1371/journal.pone.0185488.g004
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FKC vaccinated rats showed significant bactericidal antibodies against heterologous strain at

week 6 (P< 0.05). Overall, the results suggest that STG vaccinated group increased bactericidal

activities throughout the vaccination period (weeks 2, 4, and 6).

Immuno-blotting examination of the antibody response

Specific anti-S. typhimurium and anti-S. enteritidis antibody responses in sera of vaccinated

and non-vaccinated control animals were further analyzed by immunoblot using S. typhimur-
ium or S. enteritidis envelope proteins as antigens. Serum from STG vaccinated animals were

capable of recognizing envelope protein antigens from S. typhimurium and showed stronger

Fig 5. Serum bactericidal activities of rats vaccinated with STG against (a) S. typhpimurium or (b) S.

enteritidis. Data were expressed as means ± standard errors of the means. The asterisks indicate significant

differences between serum bactericidal activities of the vaccinated and non-vaccinated groups. ** = P < 0.01;

* = P < 0.05.

https://doi.org/10.1371/journal.pone.0185488.g005
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protein bands including OMPs and envelope proteins than other groups (PBS and FKC). The

molecular masses of envelope protein antigens were approximately 82, 62, 59, 57, 50, 40, 38,

37, 36, 27, 25, 21, 19, 17, 15, 12, 11 and 10 kDa (Fig 6A). Similarly, envelope proteins from S.

enteritidis were able to cross-recognize by STG vaccinated serum. The molecular masses of S.

enteritidis envelope protein antigens were found to be approximately 82, 62, 55, 47, 40, 38, 37,

36, 27, 21, 16, 15, 13 and 10 kDa (Fig 6B). Analysis of sera from FKC vaccinated animals

showed weaker bands against S. enteritidis protein antigens.

Homologous and heterologous protections of S. typhimurium ghost

vaccine

To examine the ability of the STG vaccine against S. typhimurium challenge, rats were chal-

lenged orally with S. typhimurium two weeks after the final booster vaccination. The bacterial

loads in the liver, lung, spleen, and kidney were significantly lower in FKC (P< 0.05) and STG

(P< 0.01) than in PBS (Fig 7A–7D). The protection against S. typhimurium afforded by the

Fig 6. Western blot analysis of envelope proteins from (a) S. typhimurium or (b) S. enteritidis probed

with PBS, FKC and STG sera. Coomassie Brilliant Blue-stained SDS-PAGE (12%) gels containing envelope

proteins of S. typhimurium (ST) or S. enteritidis (SE) are in the left side of (a) and (b) panels.

https://doi.org/10.1371/journal.pone.0185488.g006
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Fig 7. Protection of STG against homologous and heterologous challenges. Bacterial loads in liver, lung,

spleen and kidney homogenates after (a-d) a homologous challenge with S. typhimurium or (e-h) a heterologous

challenge with S. enteritidis. Results are expressed as means ± standard errors of the means. The asterisks

indicate significant differences between the bacterial clearance of the vaccinated and non-vaccinated groups.

** = P < 0.01; * = P < 0.05.

https://doi.org/10.1371/journal.pone.0185488.g007
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STG vaccine was significantly greater than that afforded by the FKC vaccine (P< 0.05). In

order to determine the cross-protective efficacy of the STG vaccine, rats were vaccinated with

STG, FKC or PBS and challenged with a virulent S. enteritidis strain. The results of the bacterial

loads in liver, lung, spleen, and kidney are shown in Fig 7E–7H. The bacterial count in liver,

lung, spleen, and kidney were significantly lower in STG than those in PBS and FKC (P< 0.05).

These results suggest that the vaccination with STG vaccine provided protection against S. enter-
itidis strain, but FKC vaccinated rats failed to protect against S. enteritidis strain.

Discussion

The development of safe and effective vaccines against different Salmonella serotypes is an

urgent need for the control and prevention of Salmonella infections. It is known that macro-

phages and dendritic cells are the key cells to be infected by S. typhimurium, and these antigen-

presenting cells transport the bacteria to the liver and spleen, the major organs of bacterial rep-

lication [33,34]. Both cells are critical components to the immune response to S. typhimurium
infection, with macrophages controlling bacterial growth in the early phase of infection and

dendritic cells initiating the T cell response [35–37].

In this study, the higher cell viability in the macrophages exposed STG than that of wild-

type bacterial cells, suggesting that the MIC of NaOH reduces the cytotoxic effect of wild-type

bacterial cells. Previously, alkaline treatment to a Gram-negative bacterial LPS resulted in

reduced toxicity and deacylated LPS. The resultant LPS showed intact amide-linked fatty acids

and removal of ester-linked fatty acids [38], but it was antigenically poor [38,39] or deficient

[40]. However, our previous studies demonstrated that immunization with the NaOH-induced

BG from a Gram-negative bacterium or a Gram-positive bacterium induces effective immune

responses and provides a good protection against virulent challenge [17,18]. The present study

also supports previous studies and suggests that the NaOH treatment does not affect the

immunogenicity of BG or its potential as a vaccine candidate. Furthermore, our previous

results showed that LPS of BG is modified or party lost by NaOH treatment and suggested that

immunogenicity of the NaOH-induced BG could be derived from other cell envelope compo-

nents rather than LPS [19].

Murine macrophages respond with secreting a variety of cytokines (TNF-α, IL-1, IL-6, IL-

10 and IL-12) [37,41], chemokines, cell surface receptors, signaling molecules and transcrip-

tional activators [42]. Simultaneously, co-incubation S. typhimurium with murine macro-

phages enhanced production of oxygen-dependent antmcrobial molecules such as superoxide,

hydrogen peroxide and nitric oxide (NO) to kill intracellular Salmonella bacteria [43–45]. Like

wild-type S. typhimurium, the NaOH-induced STG effectively activated the mRNA expression

of TNF-α, IL-1β, iNOS, IL-6 and IL-10 in this study.

Furthermore, we demonstrate that the NaOH-induced STG vaccine has the ability to

induce both humoral and cellular immune responses and protects rats from S. typhimurium
and S. enteritidis challenges. The cellular morphology and cell surface structures were unaf-

fected by the MIC of NaOH during lysis process. This result indicates that the MIC of NaOH

successfully induced non-living STG vaccine. Previously, we produced the chemically induced

BG from a Gram-positive bacterium Staphlococcus aureus and a Gram-negative bacteria S.

enteritidis and Vibrio parahaemolyticus with 100% lysis efficiency [17–20].

In our previous study with chemically-induced S. enteritidis ghosts (SEG), the SEG vaccine

has shown the usefulness of detecting serum IgG antibody response after challenge and pro-

vided the protective immunity that might be mediated by induction of humoral immune

responses [17]. Peng et al [46] also demonstrated that humoral immune responses play an

important role in preventing Salmonella infections. In this regard, serum IgG antibodies in
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STG vaccinated rats after challenge with S. typhimurium and S. enteritidis strains were evalu-

ated. Compared with the levels of antibody response in PBS and FKC control groups, STG vac-

cinated animals had higher serum IgG antibody response throughout the vaccination as well

as the challenge period. Similar results were shown in S. enteritidis challenge studies, suggest-

ing STG vaccine has the ability to induce protective immune responses against different Sal-
monella serotypes. In contrast, the FKC vaccine induced significant protective immunity

against the S. typhimurium strain, but failed to induce significant antibody responses and pro-

tective immunity against the S. enteritidis strain.

Western blot analysis supported the difference between immune response induced by the

STG vaccine and FKC vaccine. Compared with the FKC vaccine, the STG vaccinated sera

showed stronger protein bands against the S. typhimurium and S. enteritidis antigen. This

could be due to the loss of major surface antigenic components in the FKC vaccine. Hofstra

et al [47] described that antigenic cross-reactivity of the major outer membrane proteins (30–

42 kDa) was a general phenomenon in Enterobacteriaceae. The lack of heterologous antibodies

revealed in the western blot analysis could be a reason for the lesser protection against the S.

enteritidis challenge. In both the S. typhimurium and S. enteritidis strains, the serum bacteri-

cidal antibodies were significantly induced in STG vaccinated animals as compared to FKC

and PBS vaccinated animals. Particularly, serum bactericidal analysis revealed that rats vacci-

nated with FKC vaccine produced higher levels of antibodies to the S. typhimurium strain.

These antibodies could not induce cross-protective antibodies to the S. enteritidis strain. The

data from the present study indicate that vaccination with the STG vaccine induces a strong

protective immunity against S. typhimurium and S. enteritidis challenges.

It has been reported that BG from pathogenic bacteria has the ability to induce strong

humoral and cellular immune responses and protect experimental animals from virulent chal-

lenge [48,49]. CD4+ MHC II- and CD8+ MHC I-restricted T cells play an important role in

destroying intracellular bacteria, such as Salmonella [50–52]. Our study showed that STG vac-

cinated rats significantly induced CD4+ and CD8+ T cell populations compared to FKC and

PBS control groups. Jawale et al [25] demonstrated that BG vaccine-induced CD4+ and CD8+

T-cells were involved in protection against Salmonella infections. However, recent studies

have suggested that B-cell and T-cell immune responses are equally important for protective

immunity against S. typhimurium [53,54].

Recently, genetically inactivated BG vaccines decreased bacterial load in tissue homoge-

nates and provided protection against Salmonella infections [25,46]. Similarly, immunization

with the chemically-induced SEG vaccine reduced bacterial clearance in liver, lung, spleen,

and kidney and protected rats from S. enteritidis challenge [17]. In a previous study with Sal-
monella live vaccines, aromatic amino acid-dependent, streptomycin dependent and galE
mutants [55–58] effectively induced protective immunity against a homologous challenge.

However, these vaccines have limited potential to induce protective immunity against heterol-

ogous challenge. Effective Salmonella vaccination in livestock needs the induction of homolo-

gous and heterologous protective immunity. Based on these results, vaccination with the STG

vaccine strongly induced protective immune responses and protected experimental animals

from S. typhimurium and S. enteritidis infections.

Conclusion

In conclusion, vaccination with the STG vaccine induced higher levels of humoral and cell-

mediated immunity than the FKC vaccine and exhibited a significant reduction in bacterial

colonization against S. typhimurium and S. enteritidis strains. The potential of chemically-

induced BG to heterologous protection is now being evaluated. Moreover, the results obtained
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from this study suggest that the envelope antigen expression could be an important compo-

nent of inducing cross-protective immune responses to the S. enteritidis strain. Therefore, the

STG vaccine could be a promising candidate for the development of inactivated vaccines

against Salmonella infections.
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