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Abstract

MicroRNAs are biomarkers and potential therapeutic targets for breast cancer. Anacardic

acid (AnAc) is a dietary phenolic lipid that inhibits both MCF-7 estrogen receptor α (ERα)

positive and MDA-MB-231 triple negative breast cancer (TNBC) cell proliferation with IC50s

of 13.5 and 35 μM, respectively. To identify potential mediators of AnAc action in breast can-

cer, we profiled the genome-wide microRNA transcriptome (microRNAome) in these two

cell lines altered by the AnAc 24:1n5 congener. Whole genome expression profiling (RNA-

seq) and subsequent network analysis in MetaCore Gene Ontology (GO) algorithm was

used to characterize the biological pathways altered by AnAc. In MCF-7 cells, 69 AnAc-

responsive miRNAs were identified, e.g., increased let-7a and reduced miR-584. Fewer, i.

e., 37 AnAc-responsive miRNAs were identified in MDA-MB-231 cells, e.g., decreased miR-

23b and increased miR-1257. Only two miRNAs were increased by AnAc in both cell lines:

miR-612 and miR-20b; however, opposite miRNA arm preference was noted: miR-20b-3p

and miR-20b-5p were upregulated in MCF-7 and MDA-MB-231, respectively. miR-20b-5p

target EFNB2 transcript levels were reduced by AnAc in MDA-MB-231 cells. AnAc reduced

miR-378g that targets VIM (vimentin) and VIM mRNA transcript expression was increased

in AnAc-treated MCF-7 cells, suggesting a reciprocal relationship. The top three enriched

GO terms for AnAc-treated MCF-7 cells were B cell receptor signaling pathway and ribo-

somal large subunit biogenesis and S-adenosylmethionine metabolic process for AnAc-

treated MDA-MB-231 cells. The pathways modulated by these AnAc-regulated miRNAs

suggest that key nodal molecules, e.g., Cyclin D1, MYC, c-FOS, PPARγ, and SIN3, are tar-

gets of AnAc activity.

Introduction

microRNAs (miRNAs) are ~ 22 nt noncoding RNAs that basepair with complementary

sequences in the 3’UTR of their target mRNAs within the RNA-induced silencing complex
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(RISC) resulting in translational repression and, in many cases, degradation of the target tran-

script [1]. The selection of the miR-5p or miR-3p arm for inclusion into the RISC complex for

3’-UTR mRNA target selection is determined by the AGO protein [2]. Each miRNA can have

hundreds of gene targets resulting in coordinate regulation of cellular pathways [3]. Dysregu-

lated miRNAs in breast cancer contribute to aberrant regulation of cell cycle, differentiation,

metabolism, and cancer stem cell (CSC) survival (reviewed in [1, 4–10]).

Anacardic acid (AnAc) is a collective term for the mixture of 6-alkylbenzoic acid conge-

ners that are produced in a number of plants [11]. AnAc has a variety of activities including

inhibition of histone acetyltransferase (HAT) activity (reviewed in [12]). Previously, we

reported that a specific congener AnAc 24:1n5 acts as a nuclear receptor alternate site mod-

ulator (NRAM) to inhibit breast cancer cells in an estrogen receptor (ER)-dependent man-

ner by interfering with ER-DNA binding [13]. In addition, AnAc 24:1n5 also inhibited the

growth of MDA-MB-231 triple negative breast cancer (TNBC, i.e., ERα negative, progester-

one receptor negative, and ERBB2 negative) cells, albeit at a higher IC50 and through an

undefined mechanism [13]. Thus, we hypothesize that additional molecular targets, includ-

ing miRNAs, are affected by AnAc in breast cancer cells. High Throughput Sequencing

(HTS) provides a comprehensive overview of biological processes and pathways affected by

AnAc; thus, offering novel insights into potential mechanisms of action and cellular

targets.

The goal of this study was to use RNA-Seq to comprehensively identify alterations in miR-

NAs in ERα-positive, luminal A MCF-7 and MDA-MB-231 TNBC breast cancer cell lines

treated with AnAc 24:1n5. Our results identified common and divergent mRNA transcripts

down- or up-regulated by AnAc. The pathways modulated by these miRNAs suggest that key

nodal molecules, e.g., Cyclin D1, SMAD, SP1, MYC, c-FOS, PPARγ, BCL2, FOXO3A, MDA2,

and SIN3, are targets of AnAc activity.

Materials and methods

Materials

AnAc 24:1n5 was purified to greater than 95% as previously reported [13, 14]. For our experi-

ments, AnAc 24:1n5 (AnAc) was dissolved in ethanol (EtOH); thus, EtOH was used as a vehi-

cle control.

Cell culture and treatments

MCF-7 and MDA-MB-231 cells were purchased from American Type Tissue Collection

(ATCC, Manassas, VA). Cells were used at less than 9 passages from ATCC. MCF-7 and

MDA-MB-231 cells were maintained in IMEM (Cellgro, Manassas, VA) containing 5% fetal

bovine serum (FBS, Atlanta Biologicals, Lawrenceville, GA) and 1% Penicillin/Streptomycin

(Cellgro). Cells were grown in phenol red-free IMEM (ThermoFisher) medium containing

5% dextran coated charcoal (DCC)-stripped FBS (hormone-depleted medium) for 48 h prior

to treatment with established IC50 concentrations of AnAc 24:1n5: 13.5 μM for MCF-7 and

35.0 μM for MDA-MB-231 cells [13] for 6 h and was replicated in three separate

experiments.

RNA isolation and RNA seq

RNA was isolated from MCF-7 and MDA-MB-231 breast cancer cells using the Exiqon miR-

CURY™ RNA Isolation kit (Woburn, MA, USA). RNA concentration was assessed using a

NanoDrop spectrophotometer.

Anacardic acid and miRNAs
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For miRNA RNA-seq

The Truseq Small RNA kit (Illumina) was used to prepare miRNA libraries from 1 μg total

RNA. Each Library was individually gel purified on a Novex TBE 6% gel and resuspended in

10uL 10mM Tris-Cl, pH 8.5. Libraries were validated and quantitated by running 1μL on the

Agilent Technologies 2100 Bioanalyzer DNA High Sensitivity Chip. 36-cycle single sequencing

reads were generated on the Illumina NextSeq500 instrument utilizing the 500 Mid-output v2

(75 cycle) sequencing kit. The resulting samples were divided into 48 FASTQ [15] single-end

raw sequencing files representing four conditions: MCF-7 control, MCF-7 treated with AnAc

24:1n5 (MCF-7 AnAc), MDA-MB-231 control, and MDA-MB-231 treated with AnAc 24:1n5

(MDA MB-231 AnAc). These raw data of our RNA-seq are available at Gene Expression

Omnibus (GEO) database: accession number GSE78011.

Differential miRNA expression analysis

A total of three biological replicates for each treatment were analyzed, with four flow cell lanes

per replicate. Raw sequence data files were downloaded from Illumina’s BaseSpace (https://

basespace.illumina.com/) onto the KBRIN server for analysis the miRDeep2 [16] and edgeR

[17]. Each of the four single-end raw. FASTQ files for each replicate (representing the four

flow cells) was concatenated into one single-end. FASTQ file using the unix cat command.

Quality control (QC) of the raw sequence data was performed using FastQC (version

0.10.1) [18]. The FastQC results indicated sequence trimming was not necessary since the min-

imum quality value for all samples was well above Q30 (1 in 1000 error rate) (data not shown).

Given that this is a miR sequencing project, preliminary adapter trimming was performed

on each of the samples using a custom file adaptersToTrim.fa which contains a subset of the

Illumina TruSeq Small RNA adapter and primer sequences taken from https://support.

illumina.com/content/dam/illumina-support/documents/documentation/chemistry_

documentation/experiment-design/illumina-adapter-sequences_1000000002694-00.pdf

Sequences were trimmed of the adapters with Trimmomatric v0.33 [19].

The trimmed sequences were directly aligned to the human hg19 reference genome assem-

bly using the mapper.pl wrapper of the miRDeep2 package (v 0.0.7) [16]. This script used bow-

tie (version 1.1.1) [20], generating alignment files in arf format. The aligned sequences were

then used as inputs into the miRDeep2 package and the script quantifier.pl. In addition, this

script used the mirBase release 21 [21] mature miRNA and miRNA hairpin sequences down-

loaded from ftp://mirbase.org/pub/mirbase/CURRENT/. The result was a file containing the

number of reads mapping to each of the 2,822 human (hsa) miRs for the specific sample. After

quantification, the resulting counts for each miR in each sample were combined into a reads

matrix. This was accomplished using a custom perl script, createReadMatrix.pl. Differentially

expressed miRs were determined using edgeR [17] and a customized R script, Schultz-Klinge.

miRNA.R. Using a p-value cutoff of 0.05, the number of differentially expressed miRs in each

comparison is shown in Table 1.

In silico network analysis

We performed pathway and network analysis of differentially expressed genes in MetaCore™
version 6.27 (GeneGO, Thomson Reuters, New York, N.Y.). MetaCore™ is a web-based soft-

ware suite for multiple applications in systems biology including RNA-seq analysis as used

here. MetaCore™ analyses are based on MetaBase (http://metadatabase.org/), a 100% manu-

ally-curated integrated database of mammalian biology that contains over 6 million experi-

mental findings on protein-protein, protein-DNA, protein-RNA, and protein-compound

interactions; metabolic and signaling pathways; and other information [22].

Anacardic acid and miRNAs
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Generation of heatmaps: Files of miRNAs significantly altered by AnAc treatment in each

cell line were imported into Partek software Version 6.6 (Partek Inc., St Louis, MO.) and Par-

tek Genomic Suite™ was used to generate heatmaps (Fig 1, S1 and S2 Figs). Each hierarchical

clustering was created using Euclidean distance as similarity measure for genes and samples.

We noted that one of the three MCF-7 AnAc samples appeared to behave as a hybrid between

the other two AnAc treated and three control (EtOH)-treated samples (S2 Fig).

RNA isolation, RT-PCR and quantitative real-time PCR (qPCR) of

miRNAs and mRNAs

Cell growth, treatment and RNA isolation and quantification/quality assessment were per-

formed as described above. For miRNA, RNA was converted to cDNA using the Taqman1

miRNA Reverse Transcription kit (PE Applied Biosystems). For mRNA, RNA was converted

to cDNA using the High Capacity cDNA Reverse Transcription kit (PE Applied Biosystems).

Primers for hsa-miR-268g, hsa-miR-612, hsa-miR-20b-5p, and hsa-miR-20b-3p were pur-

chased from TaqMan (Advanced miRNA assays) and RNU48 (TaqMan) was used as the refer-

ence for normalization [23]. Primers for VIM (Vimentin) [24]: Forward 5'-GACAATGCGTC
TCTGGCACGTCTT-3'; Reverse 5'- TCCTCCGCCTCCTGCAGGTTCTT-3'; for ZFP36L1
(ZFP36 Ring Finger Protein Like 1, aka ERF1 and BRF1) [25]: Forward, 50-AGGATGACCAC
CACCCTCGTGTCT-30, Reverse, 50-CCC CCTGCACTGGGAGCACTA-30, and for GAPDH [26]

were purchased from IDT. qPCR was performed using ABI Viia 7 (Life Technologies) with

each reaction run in triplicate. The comparative threshold cycle (Ct) method (2-ΔΔCT) was used

to determine fold change relative to vehicle treated or control transfected cells [27].

Transient transfection

MCF-7 and MDA-MB-231 cells were transiently transfected for 24 h with miR-612 mimic,

miR-612 inhibitor, Anti-miR ™ negative control #1, or mirVANA™ miRNA mimic negative

control #1 (all from Ambion, Life Technologies, Thermo Fisher Scientific, Carlsbad, CA,

USA), using Lipofectamine RNAiMAX transfection reagent (Invitrogen, Thermo Fisher Scien-

tific) and Opti-MEM1 Reduced Serum Medium (Invitrogen, Thermo Fisher Scientific). After

24 h of transfection, cells were treated with ethanol (EtOH, vehicle control) or 13.5 or 35 μM

AnAc, for MCF-7 and MDA-MB-231 respectively, in phenol red-free IMEM medium contain-

ing 5% DCC-stripped FBS for 48 h prior to MTT assay (CellTiter 96, Promega, Madison, WI,

USA). Two separate experiments were performed with quadruplicate wells within each experi-

ment. For analysis of miR-612 expression in transfected cells, the medium was changed 24 h

Table 1. Differentially expressed miRNAs (DEmiRs). The log2-fold change with zero value in the control

conditions was arbitrarily set to one and the maximum log2-fold change value and those with zero value in the

treatment conditions were arbitrarily set to the minimum log2-fold change value of minus one. The number of

differentially expressed genes in each comparison is shown and the number of upregulated genes indicated

with the upward arrow and downregulated genes indicated by downward arrow.

Comparison Cutoff Number of DEmiRs

MCF-7 AnAc vs. control P� 0.05 69 ("48, #21)

MDA-MB-231 AnAc vs. control P� 0.05 37 ("15, #22)

All Cells AnAc vs. All Cells controlz P� 0.05 25 ("13, #12)

All MCF-7 vs. All MDA-MB-231 controly P� 0.05 795 ("510, #285)

Z All Cells is the sum of both cell lines
Y Sum of AnAc treatment and control for each cell line

https://doi.org/10.1371/journal.pone.0184471.t001
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after transfection as above, without any treatment and RNA was harvested (see above) a total

of 72 h post transfection, i.e., at the same time the MTT assay was performed for qPCR of miR-

612 using RNU48 as a control (see above).

Results and discussion

RNA-seq analysis of AnAc-regulated miRNAs

MCF-7 luminal A (ERα+) and MDA-MB-231 TNBC (triple negative breast cancer) cells were

incubated in hormone-depleted medium for 48 h prior to a 6 h treatment with the previously

established IC50 concentrations of AnAc 24:1n5 for MCF-7 (13.5 μM) and MDA-MB-231

(35.0 μM) cells [13]. The 6 h time point was selected based on transcriptome studies in MCF-7

cells to identify primary gene targets [28] and because AnAc 24:1n5 has no overt effect on the

viability of either MCF-7 or MDA-MB-231 at that time [13, 29]. The goal was to identify early

miRNA changes in response to AnAc 24:1n5 in each cell line. For target analysis, only miRNA

transcripts that showed a log2 fold-change greater than 1 (or -1 for repressed miRNAs) were

included.

Differentially expressed miRNAs (DEmiRs) were identified for four pairwise comparisons

(MCF-7 AnAc-treated vs. MCF-7 control; MDA-MB-231 AnAc-treated vs. MDA-MB-231

control; MCF-7 and MDA-MB-231 AnAc treated vs. MCF-7 and MDA-MB-231 control;

MDA-MB-231 AnAc treated and control vs. MCF-7 AnAc treated and control) using the tux-

edo suite of programs including cufflinks and cuffdiff (version 2.2.1) [30, 31]. Significant

DEmiRs with fold-change and p values are listed in S1 and S2 Tables. The number of DEmiRs

in each comparison is shown in Table 1. Tables 2–5 list the AnAc-regulated miRNAs in MCF-

7 and MDA-MB-231 cells, their genomic location and host gene (if applicable), information

about their relevance in breast or other cancers and their experimentally verified, i.e., bona

Fig 1. Heat map of miRNAs significantly altered in AnAc-treated MCF-7 and MDA-MB-231 cells. miRNAs

significantly affected by AnAc were analyzed using Partek Genomic Suite™ to generate the heat map.

https://doi.org/10.1371/journal.pone.0184471.g001
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fide, targets. The expression of more miRNAs was significantly changed in response to AnAc

in MCF-7 cells vs MDA-MB-231 cells (Figs 1 and 2). The heatmap shows that MCF-7 and

MDA-MB-231 cells have different responses to AnAc with MDA-MB-231 cells showing less

change in response to AnAc compared with MCF-7 cells (Fig 1). These data suggest that AnAc

selectivity alters miRNA transcript expression in these two cell lines through mostly non-over-

lapping mechanisms.

As shown in the Venn Diagrams of Fig 2, there were no common downregulated miRNAs

in AnAc-treated MCF-7 and MDA-MB-231 cells. Only two miRNA were commonly upregu-

lated by AnAc in both MCF-7 and MDA-MB-231 cells: miR-20b and miR-612 (Fig 2, Table 2).

The common GO Processes for upregulated miR-20b and miR-612 were identified by Meta-

Core™ analysis and listed in Fig 2; however no matches between genes/proteins for miR-20b

and miR-612 were identified in Pathway Maps by MetaCore analysis. Interestingly, AnAc

increased miR-20-3p in MCF-7 and miR-20-5p in MDA-MB-231 cells. This suggests that dis-

tinct miR-20b targets would be expected to be regulated in response to AnAc upregulation of

miR-20b-3p versusmiR-20-5p in the two cell lines. The selection of which mature miRNA 5p

or 3p arm is dominant is determined by thermodynamic and structural properties of the pro-

cessed pre-miR-duplex AGO protein (reviewed in [32]). The functional consequences of arm

selection are therefore distinct. The exact mechanism of miRNA Induced Silencing Complex

(miRISC) assembly remains elusive and includes a human miRNA loading complex contain-

ing the ds-pre-miRNA, DICER1, TRBP2 and miRNA-free AGO protein as its components.

[33]. Recent studies in Huh7 human hepatoma cells showed that an increase in target genes, i.
e., SLC7A1 (CAT-1), increased the processing of pre-miR-122 to miR-122, implying that

increases in target mRNA levels can promote miRNA biogenesis [33]. Whether this is true for

other cells and miRNAs remains to be examined. The MetaCore network enrichment analysis

of the miRNAs upregulated in AnAc-treated MCF-7 vs. MDA-MB-231 cells identified “Cellu-

lar response to inorganic substance” as the top GO process (S3A Fig). The network analyses

for miR-20b and miR-612 are shown in S3A and S3B Fig.

There is only one previous examination of miRNAs, mRNAs, and lncRNAs in MCF-7 and

MDA-MB-231 cells, but that study used a microarray expression profiling [167] rather than an

Table 2. miRNAs upregulated by AnAc in both MCF-7 and MDA-MB-231 cells. The genomic location of

each miRNA was identified in miRAD http://bmi.ana.med.uni-muenchen.de/miriad/ [34]. Verified targets are

those experimentally validated targets of the indicated miRNA as demonstrated by 3’-UTR luciferase reporter

assay. Since many publications do not include whether the 5p or 3p arm of the miRNA was studied, if the

sequence of the miRNA was provided, it was searched in miRBase.org to identify which arm was used in the

target gene 3’-UTR luciferase reporter assay.

miRNA Role in breast or other cancers Verified targets

miR-612 Chr11, intergenic. Tumor suppressor miRNA

in HCC tumors, cells and xenograft tumors

[35, 36]. Downregulated in colorectal cancer

tumors and cells and acts as a tumor

suppressor [37].

For 5p: AKT2 [37] SP1 [38]

miR-20b-3p

MCF-7

ChrX, encoded by the miR-106a-363 cluster

is intergenic [39]. Oncogenic activity, i.e.,

stimulates soft agar colony formation in NIH-

3T3 cells [39]. Lower expression in taxol-

resistant breast tumors and cells [40].

Expression is stimulated by EGR1 [41].

For 3p: ESR1 [42]; EPAS1 [43]; NCOA3

[40]; BRCA1, PTEN [41]

miR-20b-5p

MDA-MB-231

For 5p: ARID4A and MYLIP [39]. HIF1A

and VEGF [44]; PPARG, BAMBI, CRIM1

[45] EPHB4 and EFNB2 [46]; PTEN [47];

SOS1 and ERK2 [48].

https://doi.org/10.1371/journal.pone.0184471.t002
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unbiased RNA-sequencing approach. None of the AnAc-regulated miRNAs was among the

miRNAs more highly expressed in MCF-7 compared with MDA-MB-231 cells [167]. In con-

trast, miR-4284 was more highly expressed in MDA-MB-231 cells [167] and we observed that

AnAc decreased miR-4284 in MDA-MB-231 cells (Table 5). The role of miR-4284 in breast

cancer is unknown and there are no validated targets of miR-4284, although microRNA.org

lists 7,891 putative targets.

miRNAs downregulated by AnAc in MCF-7 cells

Twenty-one miRNAs were downregulated by AnAc in MCF-7 cells (Table 3). miRNAs are

encoded within a gene (intronic or exonic) or are intergenic (reviewed in [168]). miRNAs can

be regulated independently or are cotranscribed with their host gene (reviewed in [8]). To

examine if the miRNA host gene was downregulated by AnAc in MCF-7 cells we searched

Table 3. miRNAs downregulated by AnAc in MCF-7 cells. The genomic location of each miRNA was iden-

tified in miRAD http://bmi.ana.med.uni-muenchen.de/miriad/ [34]. Verified targets are those experimentally

validated targets of the indicated miRNA as demonstrated by 3’-UTR luciferase reporter assay. Since many

publications do not include whether the 5p or 3p arm of the miRNA was studied, if the sequence of the miRNA

was provided, it was searched in miRBase.org to identify which arm was used in the target gene 3’-UTR lucif-

erase reporter assay.

miRNA Role in breast or other cancers Verified targets

miR-378g Chr1, host gene LINC01057 [49]. Target of c-Myc [50].

High miR-378 promotes cancer stem cell (CSC)

properties, increased cell survival and colony formation;

acts as on oncomiR; correlates with increased SOX2

[51]. Induced during adipogenesis by increasing

transactivation by C/EBPα and C/EBPβ [52].

VIM [51] TOB2 [50] SUFU

and TUSC2 [53] HDAC4 [54]

miR-509-1-3p,

-2-3p, -3-3p

miR-509-1, -2, and -3 are in ChrX, host gene

LOC107984060. Tumor suppressor miRNA [55, 56].

Inhibited by E2 in MCF-7 cells [57]. Anti-metastatic

mRNA: The expression of miR-509 was reported to be

attenuated in brain metastatic lesions compared to their

enrichment in primary breast tumors [58].

For 3p: RHOC [58]; For 5p:

YWHAG [59]

miR-513b-5p ChrX, host gene LOC107984060. Cluster with miR- 506,

507, 208, 509–1,-2,-3, 514b; Acts as a tumor suppressor

in gastric cancer cells [60]

For 5p: HMGB3 [60]

miR-548, 548j-

5p, 548l

MIR548J: Chr22: host gene HMGB1P10; MIR548L: Chr

11 host gene ANKRD48. miR-548J functions as a

metastasis promoter in breast cancer cells [61].

miR-548L: AKT [62]; miR-

548j-5p: TNS1 [61]

miR-597-3p Chr8, host gene TNKS downregulated in colorectal

cancer [63]

miR-1238-3p Chr19, host gene ARG4D. no publications in PubMed For 3p: LHX2 [64]

miR-1915-3p Chr10, host gene CASC10. Processing of pri-miR-1915

to pre-miR-1915 is increased by p53 [65].

For 3p: BCL2 [66]

miR-3146 Chr7, host gene TWISTNB. no publications in PubMed

miR-4430 Chr2 intergenic. no publications in PubMed

miR-5002-5p Chr3, host gene KALRN. no publications in PubMed

miR-5187-5p Chr2, host gene TOMM40L. no publications in PubMed

miR-6717-5p Chr14, host gene NDRG2. no publications in PubMed

miR-6773-3p Chr16, host gene ESRP2. no publications in PubMed

miR-6804-5p Chr19, host gene PPP6R1. no publications in PubMed

miR-6814-5p Chr21, host gene RIPK4. no publications in PubMed

miR-6838-5p Chr7, host gene PLOM. no publications in PubMed

miR-6873-3p Chr6, host gene WDR46. no publications in PubMed

https://doi.org/10.1371/journal.pone.0184471.t003
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Table 4. miRNAs upregulated by AnAc MCF-7 cells. The genomic location of each miRNA was identified in miRAD http://bmi.ana.med.uni-muenchen.de/

miriad/ [34]. Verified targets are those experimentally validated targets of the indicated miRNA as demonstrated by 3’-UTR luciferase reporter assay in the

cited reference. Since many publications do not include whether the 5p or 3p arm of the miRNA was studied, if the sequence of the miRNA was provided, it

was searched in miRBase.org to identify which arm was used in the target gene 3’-UTR luciferase reporter assay.

miRNA Role in breast or other cancers Verified targets

Let-7a-2-3p Chr11; intergenic. Lower expression metastatic breast tumors [67]. Downregulated by

E2 treatment in MCF-7 cells [68]. Decreased expression with breast tumor grade and

upregulated KEGG pathway targets have roles in cancer-related pathways, including

cycle (MCM2), Jak-STAT (SOCS1), MAPK (STMN1), PPAR signaling (ME1) [69].

Transfection of MCF-7 and MDA-MB-231 cells with let-7a mimics inhibits cell

proliferation, colony formation, cell migration and invasion and HMGA1 protein [70].

None experimentally validated for 3p.

miR-378j Chr17, host gene DDX52. no publications in PubMed

miR-450a-

1-3p

ChrX, intergenic, clustered with miR-424, 503, 542, 450a-2, and 450b. No

publications relating to miR-450a-1 in PubMed, but miR-450a expression was higher

in lymph node metastasis in breast cancer [71] and in endometrial carcinosarcomas

[72].

None validated for 3p. For 5p: DNMT3a [73]

miR-520a-

5p

Chr19, intergenic. miR-520a-3p inhibits proliferation by targeting HOXD8 in non-small

cell lung cancer

None experimentally validated for 5p. For 3p:

CCND1 and CD44 [74]

miR-520d-

5p

Chr19, intergenic. involved in HER2-receptor-related differentiation through

undefined mechanisms [75]. Overexpression by lentiviral-miR-520d infection of

human HLF and Huh7 hepatoma cells converted the cells to non-tumorigenic and less

differentiated normal stem cells, but no miRNA target genes were validated [76]. Acts

as a tumor suppressor in colorectal cancer [77].

For 5p: CTHRC1 [77]

miR-

548ag-1

Chr4, intergenic. no publications in PubMed

miR-551b-

5p

Chr3, intergenic. Downregulated by E2 in MCF-7 cells [57]. Down-regulated in

aggressive breast tumors [78]. Upregulated in TAM-resistant MCF-7 cells [79].

Upregulated in serum samples from prostate cancer patients compared with benign

prostatic hyperplasia patients [80]. Upregulated in recurrent epithelial ovarian cancer

(OVCa) [81]. Upregulated in OVCa stem cells, promotes proliferation, invasion, and

chemoresistance [82].

None experimentally validated for 5p. For 3p:

FOXO3 and TRIM31 [82]

miR-562 Chr2, host gene DIS3L2. Upregulated in serum samples from prostate cancer

patients with disseminated disease compared with benign prostatic hyperplasia

patients [80].

EYA1 [83]; IL22 [84]

miR-663a Chr20, intergenic. Upregulated by E2 in ECC-1 cells [85]. Transcription increased by

ZNF224 [86]. Acts as a tumor suppressor and is downregulated in in gastric [87],

colorectal [88], prostate [89], breast [86], hepatocellular [90], pancreatic [91], non-

small cell lung cancer [92]. Transcription factor Ets-2 binds the miR-663 promoter and

stimulates transcription in prostate cancer cells [89].

TP53 (P53) and CDKN1A (p21) [86] JUND [92]

TGFB1 [91] HMGA2 [90]

miR-664b-

5p

ChrX, host gene DKC1. Acts as a tumor suppressor in osteosarcoma [93] and as an

oncomiR- in T-cell acute lymphoblastic leukemia [94] and cervical cancer [95].

None experimentally validated for 5p. For 3p:

FOXO4 [96]; MAT1A [97]; PLP2 [98]; SOX7 [93]

miR-921 Chr1, host gene FAM78B. Downregulated in bladder cancer [99]. CBR1 [100]

miR-1229-

5p

Chr 5, host gene MGAT4B. Upregulated in serum of colorectal cancer patients [101].

Overexpressed in breast cancer and correlated with poor prognosis for patients [102].

None experimentally validated for 5p. For 3p;

GSK3B, APC and ICAT [102].

miR-1287-

3p

Chr10, host gene PYROXD2. Downregulated in MCF-7 cells that are aromatase

inhibitor resistant [103]. Hypermethylated in cervical cancer [104], downregulated in

larynx carcinoma [105], anaplastic astrocytomas and/or glioblastomas [106].

None experimentally validated for 3p. For 5p: ATF6B

[107]

miR-1976 Chr1, host gene RPS6KA1; Acts as a tumor suppressor in NSCLC [108]. PLCE1 [108]

miR-3132 Chr2, host gene TMEM198; no publications in PubMed

miR-3195 Chr20, intergenic; no publications in PubMed

miR-3960 Chr9, intergenic. the lncRNA HOTAIR1 competitively binds to miR-3960 and

regulates hematopoiesis [109].

HOXA2 [110]

miR-

4436b-1-3p

Chr2, host gene MALL. Appears to be a strong pathogenic candidate in Autism

Spectrum Disorders (ASDs) [111].

miR-

4436b-2-3p

Chr2, intergenic. Appears to be a strong pathogenic candidate in ASDs [111].

(Continued )
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Table 4. (Continued)

miRNA Role in breast or other cancers Verified targets

miR-4485-

5p

Chr11, host gene MTRNR2L8. Is transported into mitochondria and inhibits 16S rRNA

processing and mitochondrial protein synthesis [112]. Acts as a tumor suppressor in

MCF-7 cells in vitro and in MDA-MB-231 cells in xenograft studies in mice [112].

miR-4516 Chr16, host gene PKD1. Upregulated by fine particulate matter (PM2.5) treatment of

A549 NSCLC cells [113]. High expression was associated with infiltrative growth of

follicular variant of papillary thyroid carcinomas [114].

STAT3 [115], RPL37 [113]

miR-4634 Chr5, intergenic. One of five miRNAs in serum that detects breast cancer [116]

miR-

4659a-3p

Chr8, host gene AGPAT5. no publications in PubMed

miR-4661-

3p

Chr8, host gene LRRC69. miR-466l upregulates both mRNA and protein expression

of IL-10 in macrophages by binding to the 3’UTR of IL10 and inhibiting RNA binding

protein-induced transcript degradation [117].

miR-4675 Chr10, intergenic. no publications in PubMed

miR-4687-

3p

Chr11, host gene STIM1. no publications in PubMed

miR-4692 Chr11, no publications in PubMed

miR-4695-

3p

Chr1, host gene ALDH4A1. no publications in PubMed

miR-4701-

3p

Chr12, host gene ADCY6. Downregulated in papillary thyroid carcinoma (PTC) [118].

miR-4741 Chr18, host gene RBBP8. Downregulated in serum of HCC patients treated with

transarterial chemoembolisation (TACE) with bad response to TACE [119].

miR-4756-

5p

Chr20, host gene BCAS1. no publications in PubMed

miR-5008-

3p

Chr1, host gene WNT9A. no publications in PubMed

miR-5585-

5p

Chr1, host gene TMEM39B. no publications in PubMed

miR-6087 ChrX, intergenic. Identified in human mesenchymal stem cells and downregulated

during endothelial differentiation [120]. Upregulated in intermediate monocytes [121].

ENG [120]

miR-6126 Chr16, host gene NAA60. Exosomal tumor suppressor is downregulated in ovarian

cancer tumors and is released from ovarian cancer cells [122].

ITGB1 [122]

miR-6131 Chr5, host gene ROPN1L. no publications in PubMed

miR-6515-

5p

Chr19, host gene CALR. no publications in PubMed

miR-6726-

5p

Chr1, host gene ACAP3. no publications in PubMed

miR-6757-

5p

Chr12, host gene TNS2. no publications in PubMed

miR-6813-

3p

Chr20, host gene RGS19. no publications in PubMed

miR-6857-

5p

ChrX, host gene SMC1A no publications in PubMed

miR-6868-

5p

Chr17, host gene EXOC7. no publications in PubMed

miR-6874-

5p

Chr7, host gene RNF216. no publications in PubMed

miR-7151-

5p

Chr10, host gene CTNNA3. no publications in PubMed

miR-8079 Chr13, intergenic. no publications in PubMed

miR-8089 Chr5, host gene BTNL9. no publications in PubMed

https://doi.org/10.1371/journal.pone.0184471.t004
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Table 5. miRNAs downregulated by AnAc in MDA-MB-231 cells. The genomic location of each miRNA

was identified in miRAD http://bmi.ana.med.uni-muenchen.de/miriad/ [34]. Verified targets are those experi-

mentally validated targets of the indicated miRNA as demonstrated by 3’-UTR luciferase reporter assay.

Since many publications do not include whether the 5p or 3p arm of the miRNA was studied, if the sequence

of the miRNA was provided, it was searched in miRBase.org to identify which arm was used in the target gene

3’-UTR luciferase reporter assay.

miRNA Role in breast or other cancers Verified targets

miR-23b-

5p

Chr9, host gene C9orf3. OncomiR, induced by c-

Myc [123]. Lower expression in MDA-MB-231 than

MCF-7 cells [124]. Stimulated by E2 in ERβ-

transfected MCF-7 cells [125]. Involved in regulation

of cytoskeletal remodeling and motility [126, 127].

Primary breast tumor expression of mIR-23b

correlates with lung metastasis [128]. Metastatic

breast cancer cells in patient bone marrow had

increased miR-23b [129]. Increased in MCF-7 cell

derived exosomes after docosahexaenoic acid

(DHA) treatment [130]. miR-23a is 2.5-fold higher in

MDA-MB-231 than MCF-7 cells and downregulates

CDH1 resulting in hyperactivation of Wnt/-catenin

signaling, EMT, and metastasis [131].

For 5p: PRODH [132]

miR-141-

3p

Chr12, intergenic and clustered with miR-200c [133].

Both OncomiR and tumor suppressor miRNA,

depending on tissue-type. Expression is repressed

by ZEB1 [134], PELP1 [135], PLK1, KLF8 [136], and

progesterone [137, 138] and upregulated by p53

[139]. Downregulated in metastatic breast cancer

[71] and in basal-like primary tumors [140].

Expression stimulated by treatment of MDA-MB-231

cells with DNA demethylating agent 5-AZA-CdR

[141]. Low circulating miR-141 was associated with

lower overall survival of breast cancer patients [142,

143]. Overexpression of mIR-141 stimulates brain

metastasis in mouse models and high serum miR-

141 levels were associated with shorter brain

metastasis–free survival in human breast cancer

patients [144]. miR-141 expression is higher in

docetaxel-resistant breast cancer cell lines [145].

For 3p: PGR [137]; CTNNB1 [146];

EIF4E [145]; ANP32E [140]

miR-

499a-5p

Chr12, host gene MYH7B. SNP rs3746444 G miR-

499A>G was associated with increased breast

cancer risk in Chinese population [147].

For 5p: IFNAR1 [148]

miR-

664b-5p

ChrX, host gene DKC1. No references were found in

PubMed.

miR-

1247-5p

Chr14, in the DLK1-DIO3 genomic imprinted

microRNA cluster [149]. Downregulated in

aromatase-resistant MCF-7 breast cancer cells

[103] and lung adenocarcinomas [150]. Acts as a

tumor suppressor in pancreatic cancer [151].

Silenced by DNA methylation in lung

adenocarcinomas and cell lines and overexpression

promotes apoptosis and inhibits cell invasion and

migration [152]. Overexpressed in castration-

resistant prostate cancer [153].

For 5p: NRP1 and NRP2 [151]; SOX9

[154]; MYCBP2 [153]; MAP3K9 [155];

STMN1 [152]

miR-

1273g-3p

Chr1, host gene SCP2. no publications in PubMed

miR-

1277-3p

ChrX, host gene WDR44. no publications in PubMed For 3p: LPL [156]

miR-3611 Chr10, host gene CUL2. no publications in PubMed

miR-

3614-3p

Chr17, host gene TRIM25. no publications in

PubMed

(Continued)
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GSE78011. In AnAc-treated MCF-7 cells, six downregulated host genes for downregulated

miRNAs were identified: MiR-548j host gene HMGB1P10; miR-597 host gene TNKS; miR-

1915 host gene CASC10; miR-3146 host gene TWISTNB; miR-5187 host gene TOMM40L; and

miR-6814 host gene RIPK4. Whether AnAc selectively inhibits the transcription of these genes

via its p300/PCAF histone acetyltransferase (HAT) inhibitory function [169] remains to be

examined. Inhibition of HAT activity would be expected to increase gene expression. Interest-

ingly, AnAc inhibits p300/PCAF histone acetyltransferase (HAT) activity [169] and thus could

coordinately downregulate this set of miRNAs and host genes by promoting a more condensed

genomic state, but experimentally examining the veracity of the supposition is outside this cur-

rent study and remains to be examined fully. MetaCore transcription factor (TF) network

analysis identified CREB1, FosB, SOX4, TCF7L2 (TCF4), PRDM14, JunD, GATA-3, FRA-1,

cFos, JunB, FOXp3, and YY1 as significantly associated with these genes. The ability of AnAc

to inhibit the activity of these TFs will also need to be experimentally verified.

A decrease in a miRNA would be expected to result in an increase its target transcript

expression. Validated targets of each miRNA were identified in the literature. An important

note in searching the literature for miRNA targets is that often, whether the miRNA# is the 3p

or 5p arm is not stated. However, if the miRNA sequence is provided in a diagram along with

the seed match site in a target mRNA’s 3’-UTR, the miRNA sequence can be identified as

either 3p or 5p by entering the miRNA sequence in miRBase.org. Clearly, a miRNA-3p and

Table 5. (Continued)

miRNA Role in breast or other cancers Verified targets

miR-4284 Chr7, host gene STX1A. Stimulated by treatment of

primary human glioblastoma cells with a synthetic

berbamine derivative [157]. Downregulated in clear

cell papillary renal cell carcinoma [158].

miR-4451 Chr4, host gene ARHGAP24. no publications in

PubMed

miR-

4743-5p

Chr18, host gene CTIF. no publications in PubMed

miR-5684 Chr19, intergenic. no publications in PubMed

miR-5696 Chr2, intergenic. no publications in PubMed

miR-6126 Chr16, host gene NAA60. Expression is

downregulated in ovarian tumors and miR-6126 acts

as a tumor suppressor miRNA in ovarian cancer

cells [159].

ITGB1 [159]

miR-

6513-3p

Chr2, host gene PNKD. no publications in PubMed

miR-

6720-5p

Chr6, host gene FOXF2. Upregulated by Alternaria

spp mycotoxin alternariol (10 μM) treatment of

HepG2 cells [160].

miR-

6765-3p

Chr14, host gene JAG2. no publications in PubMed

miR-

6796-3p

Chr19, host gene PLD3. no publications in PubMed

miR-

6797-5p

Chr19, host gene RPS19. no publications in PubMed

miR-

6850-3p

Chr8, host gene RPL8. no publications in PubMed

miR-

7109-5p

Chr22, host gene PISD. no publications in PubMed

https://doi.org/10.1371/journal.pone.0184471.t005
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miRNA-5p will have different targets, and thus potentially different cellular effects. When

identified in our RNA seq study, the 3p or 5p arm is indicated.

AnAc reduced miR-378g that targets VIM (vimentin) [51] and VIM mRNA transcript

expression was increased in AnAc-treated MCF-7 cells (GSE78011), suggesting a reciprocal

regulation. None of the other validated targets of decreased miRNAs (Table 3) were found

among the upregulated mRNA transcripts identified in GSE78011. MetaCore network enrich-

ment analysis did not match any of the downregulated miRNAs and Pathway Maps, GO pro-

cesses, or Process Networks. Networks identified were 1) miR-509: positive regulation of

macromolecule metabolic process; 2) miR-584: regulation of gene expression; 3) miR-509,

miR584, MDM2, ERK1/2: positive regulation of gene expression (S4 Fig). Based on their CSC

and tumor-promoting activities the AnAc downregulation of miR-378g, miR-548, miR-548j,

miR-548l (Table 3) would be expected to contribute to the anti-proliferative activity of AnAc.

miRNAs upregulated by AnAc in MCF-7

AnAc increased the expression of 48 miRNAs in MCF-7 cells (Table 4). None of the host genes

(Table 3) of intronic miRNAs was upregulated by AnAc treatment of MCF-7 cells. None of the

validated targets of upregulated miRNAs in AnAc-treated MCF-7 cells (Table 4) were found

among the AnAc-regulated mRNA transcripts identified in RNA seq (GSE78011). Given their

roles as ‘tumor suppressor’ miRNAs in inhibiting breast and other cancer cell proliferation

and activities (see Table 4), the increases in let-7a-2-3p, miR-520a-5p, miR-520d-5p, miR-

551b-5p, miR-612, miR-663a, miR-1287-3p, miR-4485-5p, and miR-6126 may play roles in

AnAc-mediated inhibition of breast cancer cell proliferation. miR-520a-5p and miR-520d-5p

are in a cluster of miR-520 isomers (a-h) on Chr 19 that share the same seed sequence, and

Fig 2. Enrichment analysis of miRNA-seq data. Differentially expressed genes were identified in pairwise comparisons: MCF-7 AnAc vs. MDA-MB-231

AnAc using the tuxedo suite of programs including cufflink-cuffdiff2. The Venn diagrams show the number of common and differentially expressed genes

significantly downregulated (A) and upregulated (B). Pathway analysis was performed using GeneGo Pathways Software (MetaCoreTM). The pathways

identified for each comparison are listed in the order provided by MetaCoreTM analysis.

https://doi.org/10.1371/journal.pone.0184471.g002
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thus are predicted to have common targets. miR-520f was recently reported to target ADAM9,

thus inhibiting internalization of E-cadherin, and TGFBR2 that inhibits TGFβ signaling–medi-

ated induction of ZEB1/2 and/or SNAI which thus allows CDH1 (E-cadherin) transcription,

thus blocking EMT [170].

MetaCore analysis of these miRNAs identified “embryo implantation, cellular response to

amino acid stimulus” as the top GO process (S5A Fig). Network analysis identified two top

networks: 1) mi-1229-3p, miR-520a-5p, miR-612, miR-4516, miR-562: positive regulation of

metabolic process (S5B Fig); and 2) miR 20b-3p, miR 663a, let-7a-5p, miR-1229 -3p, SMAD3:

regulation of cell proliferation (S5C Fig). Network analysis of TFs associated with the 48 upre-

gulated miRNAs identified c-Myc, N-Myc, EPAs1, E2F1, SOX2, AML1, RUNX10, NANOG,

MITF, EGR1, and ZNF224 in the top ten TFs. Whether AnAc may activate these TFs to

increase the transcription of the upregulated miRNAs or selectively increase miRNA stability

will require further examination.

miRNAs oppositely regulated by AnAc in MCF-7 and MDA-MB-231 cells

In contrast, miR-6873 showed opposite AnAc regulation in the two cell lines: it was downregu-

lated in MCF-7 and upregulated in MDA-MB-231 cells (Tables 2 and 5). There are no publica-

tions in PubMed on miR-6873 and miR-6873 was not listed in microRNA.org or miRTarBase.

Thus, its relevance to AnAc responses in these two cell lines is unknown.

miRNAs downregulated by AnAc in MDA-MB-231 cells

Twenty-two miRNAs were downregulated by AnAc in MDA-MB-231 cells and none of these

overlapped with miRNAs downregulated by AnAc in MCF-7 cells (Table 5). The chromosome

location and host gene, if warranted, of each of the AnAc-downregulated miRNAs are identi-

fied in Table 5. To examine if the miRNA host gene was downregulated by AnAc in

MDA-MB-231 cells, we searched GSE78011. miR-1277 host gene WDR44was downregulated

by AnAc in MDA-MB-231 cells. WDR44 encodes a protein that interacts with the small

GTPase rab11 and is involved in endosome recycling [171]. There are no validated targets for

miR-1277 in miRTarBase.

Downregulation of a miRNA would be expected to increase the expression of its targets;

hence, we searched our data of mRNAs upregulated by AnAc in MDA-MB-231 cells (550

genes, GSE78011) for the validated targets in Table 5, but none were reciprocally upregulated.

This may be because the miRNA and mRNA for RNA seq were extracted at the same time, i.e.,
after 6 h of AnAc treatment, or that these mRNAs are not expressed or targeted in MDA-MB-

231 cells. Given their roles as putative oncomiRs the downregulation miR-23b and miR-1247

may play a role in the anti-proliferative activity of AnAc in in MDA-MB-231 cells.

Analysis of the data identified ZFP36L1 as a putative target of miR-3614 in MDA-MB-231

cells. Interestingly, AnAc downregulated miR-3614 and upregulated ZFP36L1 transcript

expression in MDA-MB-231 cells, suggesting an inverse correlation. ZFP36L1 has been identi-

fied as a cancer gene due to mutations in breast cancer and acts in a recessive manner [172].

ZFP36L1 is a member of the TTP family of tandem zinc finger proteins that bind AU-rich ele-

ments (AURE) in the 30-end of target gene transcripts and promote target degradation, e.g.
STARD1 [173], VEGFA [174], NR4A2 [175], BCL2 [176], LDLR [177], STAT5B [178], and

CDK6 [179]. Of these genes, only VEGFA and LDLR were identified as differentially expressed

genes in AnAc-treated cells. LDLR was downregulated whereas VEGFA was upregulated in

AnAc-treated MDA-MB-231 cells. Interestingly, medroxyprogesterone acetate (MPA, a syn-

thetic progestin), but not E2, upregulates ZFP36L1 transcription in MCF-7 cells [25].
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MetaCore analysis of the AnAc-downregulated miRNAs in MDA-MB-231 cells identified

one canonical pathway map: “Development: miRNA-dependent regulation of EMT” and the

10 GO processes in S6A Fig. Network analysis identified two top networks: 1) miR-23b-3p,

miR-499, miR-499-3p, miR-499-5p, c-Fos (S6B Fig), and miR-141, miR-141-3p, miR-1247-5p,

PPAR-gamma, BMI-1 (S6C Fig).

miRNAs upregulated by AnAc in MDA-MB-231 cells

Fourteen miRNAs were increased by AnAc-treatment of MDA-MB-231 cells (Table 6). We

have described miR-20b-5p and miR-612 upregulation in the context of similar results in

AnAc-treated MCF-7 cells (Table 2, Fig 2, S2 Fig). The chromosome location and host gene, if

warranted, of each of the AnAc-upregulated miRNAs are identified in Table 6. Interestingly,

most of the downregulated miRNAs were intergenic. miR-1298 is in encoded in HTR2C, but

HTR2Cwas not among the AnAc-regulated genes in MDA-MB-231 cells in GSE78011. An

increase in a miRNA would be expected to result in a decrease of its target transcript. miR-

20b-5p target EFNB2 (ephrin B2) expression was downregulated in AnAc-treated MDA-MB-

231 cells, but none of the validated targets of the upregulated miRNAs (Table 6) were found

among the AnAc-downregulated mRNA transcripts identified in RNA seq (GSE78011). Given

their roles as ‘tumor suppressor’ miRNAs (see Table 6), the increases in miR-29b, miR-612,

and miR-1298 may contribute to the antiproliferative activity of AnAc in MDA-MB-231 cells.

MetaCore analysis of these upregulated miRNAs identified “cellular response to inorganic

substance” as the top GO process (S7A Fig). MetaCore analysis identified two networks: 1)

Table 6. miRNAs upregulated by AnAc in MDA-MB-231 cells. The genomic location of each miRNA was

identified in miRAD http://bmi.ana.med.uni-muenchen.de/miriad/ [34]. Verified targets are those experimen-

tally validated targets of the indicated miRNA as demonstrated by 3’-UTR luciferase reporter assay. Since

many publications do not include whether the 5p or 3p arm of the miRNA was studied, if the sequence of the

miRNA was provided, it was searched in miRBase.org to identify which arm was used in the target gene 3’-

UTR luciferase reporter assay.

miRNA Role in breast or other cancers Verified targets

miR-378f Chr1, intergenic. Downregulated by E6/E7 silencing in HeLa cells

[161].

miR-1257 Chr20, intergenic. Downregulated in dedifferentiated

liposarcoma [162].

miR-

1298-5p

ChrX, host gene HTR2C clustered with miR-764, miR1912,

miR1264, miR-1911, and miR-448. Downregulated in

neuroglioma [163]. Identified as an inhibitor the growth of KRAS-

driven colon cancer cells both in vitro and in vivo [164].

For 5p: GJA1 [165], PTK2

and LAMB3 [164]

miR-

1304-5p

Chr11, intergenic. Downregulated in NSCLC cells [166].

miR-

3116-1

Chr1, host gene PATJ. no publications in PubMed

miR-3139 Chr4, host gene GAB1. no publications in PubMed

miR-3159 Chr11, intergenic. no publications in PubMed

miR-3936 Chr5, intergenic. no publications in PubMed

miR-4473 Chr9, host gene MLLT3. no publications in PubMed

miR-

6794-5p

Chr19, host gene MAST1. no publications in PubMed

miR-

6873-3p

Chr6, host gene WDR46. no publications in PubMed

miR-

7113-5p

Chr11, host gene NDUFS8. no publications in PubMed

https://doi.org/10.1371/journal.pone.0184471.t006
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miR-1257, Bcl-2, PAX6, FOXO3A, and FOXP3; and 2) miR-20b-5p, PPARγ, MDA2, p57, and

Sin3A (S7B and S7C Fig).

qPCR validation of select AnAc-mediated changes in miRNAs

We selected miR-612, increased by AnAc in both MCF-7 and MDA-MB-231 cells (Table 2);

miR-20b-3p and miR-29-5p, upregulated by AnAc in MCF-7 and MDA-MB-231, respectively

(Table 2), and miR-378g that was downregulated by AnAc in MCF-7 cells for validation. miR-

378g was selected because miR-378g targets VIM [51] and VIM mRNA transcript expression

was increased in AnAc-treated MCF-7 cells (GSE78011), suggesting a reciprocal regulation.

Cells were grown in hormone-depleted medium for 48 h prior to 6 h treatment with 13.5 or

35 μM AnAc. As anticipated, AnAc increased miR-612 in both cell lines (Fig 3A). Also as

anticipated, AnAc increased miR-20b-3p in MCF-7 cells. We did not detect the anticipated

decrease in miR-378g in AnAc-treated MCF-7 cells; however, AnAc reduced miR-378g in

MDA-MB-231 cells. We did not detect miR-20b-5p in MDA-MB-231 cells (CT values were

undetermined). CT values show that miR-20b-3p is the dominant arm of miR-20b expressed

in both cell lines (Fig 3B).

Effect of altered miR-612 on cell viability

Since AnAc increased miR-612 in both MCF-7 and MDA-MB-231 cells (Table 2, Fig 2) and

miR-612 has reported tumor suppressor activity in HCC [35, 36] and colorectal cancers [37]

(Table 4), we examined how altering miR-612 levels affected cell viability of MCF-7 and

MDA-MB-231 cells and their responses to AnAc. Alterations in miR-612 levels in each cell

line in response to transfection of miR-612 mimic and anti-miR-612 were demonstrated (Fig

4A). As expected, AnAc inhibited cell viability in both cell lines (Fig 4B). Transfection with

miR-612 mimic inhibited cell viability in each cell line with a larger effect in MCF-7 than

MDA-MB-231 cells. Transfection with a miR-612 inhibitor had no effect in MCF-7 cells, but

inhibited the viability of MDA-MB-231 cells ~ 20%. Notably, the miR-612 inhibitor abrogated

the anti-proliferative activity of AnAc in MCF-7 cells and reduced AnAc’s anti-proliferative

activity in MDA-MB-231 cells. These results are consistent with a model in which the increase

in miR-612 in AnAc-treated MCF-7 and MDA-MB-231 cells plays a role in the anti-prolifer-

ative activity of AnAc (Fig 4C).

Fig 3. qPCR analysis of select AnAc-regulated miRNA expression. MCF-7 and MDA-MB-231 cells were

grown in hormone-depleted medium for 48 h prior to 6 h treatment with 13.5 or 35 μM AnAc. A. qPCR using

TaqMan assays for miR-378g, miR-612, miR-20b-5p, and miR-20b-3p was performed using U48 as

normalizer. B. CT values for miR-20b-5p and miR-20b-3p expression. miR-20b-5p was not detected in

MDA-MB-231 (CT values ‘undetermined). For both A and B: Values are the mean ± SEM of triplicates in one

experiment for MCF-7 cells and are the mean ± SEM of two independent experiments for MDA-MB-231 cells.

https://doi.org/10.1371/journal.pone.0184471.g003
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qPCR validation of AnAc-mediated changes in mRNAs targeted by miR-

378g

We selected VIM, a target of miR-378g downregulated by AnAc in MCF-7 cells, and ZFP36L,

a target of miR-3614 downregulated by AnAc in MDA-MB-231 cells for validation by qPCR.

As anticipated from the decrease in miR-378g in RNA seq data (Table 3), we detected a slight

increase in VIM transcript expression in MCF-7 as well as an increase in VIM in MDA-MB-

231 cells (Fig 5). However, because qPCR indicated an increase in miR-378g levels in AnAc-

treated MCF-7 cells (Fig 5), it is possible that VIM is upregulated by AnAc by mechanisms

unrelated to miR-378g. In addition, miRNA and mRNA were extracted at the same time, i.e.,
after 6 h of AnAc treatment, and it may be that changes in VIMmRNA levels require a longer

time to be degraded after miR-378g targeting. Transcript levels of ZFP36Lwere increased in

AnAc-treated MDA-MB-231 cells (Fig 5), corresponding with the observed downregulation

of miR-3614 (Table 5). These data confirm the reciprocal expression of these mRNA tran-

scripts detected in RNA seq and their target miRNAs in the respective AnAc-treated cell

line.

Pathways affected by DEGs and DEmiRs in AnAc-treated MCF-7 cells

MetaCore analysis of DEGs from both mRNA and miRNA data sets of AnAc-treated MCF-7

cells identified NETosis in SLE as the top pathway. The release of neutrophil extracellular traps

(NETs) by dying cells (NETosis) was first described as the release of nuclear chromatin,

nuclear histones and many granular antimicrobial proteins from neutrophils as one of the first

lines of defense against pathogens (reviewed in [180]). The top GO processes were chromatin

silencing, negative regulation of gene expression (epigenetic, nucleosome assembly, chromatin

assembly, and nucleosome organization. The three gene networks identified were 1): PDEGF

PDE6G, APOBEC3H, GGTF II beta, CDIP, p53; 2) miR-499, BMCC1, Histone H1, miR-20b,

miR-23b; 3) UCHL1, Protein C, PDK4, EGR1, miR-1298 5p. Network #2 processes include

Fig 4. Overexpression of miR-612 inhibits cell viability and inhibition of miR-612 inhibits AnAc’s anti-

proliferative activity. MCF-7 and MDA-MB-231 cells were transfected with miR-Control (negative control),

miR-612 mimic, anti-miR-Control (negative control), or anti-miR-612 for 24 h prior to 48 h treatment with EtOH

(vehicle control) or 13.5 μM (MCF-7) or 35 μM (MDA-MB-231) AnAc. miR-612 expression was measured by

qPCR relative to RNU48 in the transfected, untreated cells 72 h after transfection to match the time of the

MTT assay (B). Values are the average of triplicate determinations ± SEM in one transfection and are relative

to the appropriate transfection control as indicated. Cell viability was evaluated by MTT assay (B). Values for

the MTT assay are relative to negative controls and are the avg ± SEM of 2 separate experiments. AnAc is

proposed to affect cell viability through miR-612 (C).

https://doi.org/10.1371/journal.pone.0184471.g004
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anoikis, negative regulation of fat cell proliferation, regulation of DNA metabolic processes,

which reflect the antiproliferative, pro-apoptotic, and NRAM activity of AnAc detected previ-

ously in MCF-7 cells [13].

Pathways affected by DEGs and DEmiRs in AnAc-treated MDA-MB-231

cells

MetaCore analysis of DEGs from both mRNA and miRNA data sets of AnAc-treated

MDA-MB-231 cells identified “Immune response, IL-3 signaling via JAK/STAT, p38, JNK,

and NFkB” as the top pathway. The top GO processes were “Positive regulation of biologi-

cal process; cellular response to oxygen-containing compound, positive regulation of cellu-

lar process, response to oxygen-containing compound, regulation of developmental

process, and response to lipid”. The three gene networks identified were Network #1: Axin,

Frizzled, cMyc, WNT, PI3K reg classIA: canonical Wnt signaling pathway, beta-catenin

destruction complex disassembly, regulation of cell proliferation, cell surface receptor sig-

naling pathway involved in cell-cell signaling, cell-cell signaling by wnt. Network #2: C/

EBPbeta, SOS, NGFR, H-Ras, NGF: positive regulation of cellular metabolic process, posi-

tive regulation of MAPK cascade, positive regulation of metabolic process, positive regula-

tion of macromolecule metabolic process, and positive regulation of intracellular signal

transduction. Network #3: GALNT4, Keratin80, BCMP101, HEXIM1, PNRC1: transla-

tional elongation, translation, amide biosynthetic process, peptide biosynthetic process,

peptide metabolic process.

Fig 5. qPCR analysis of mRNA targets of AnAc-downregulated miRNAs. MCF-7 and MDA-MB-231 cells

were grown in hormone-depleted medium for 48 h prior to 6 h treatment with 13.5 or 35 μM AnAc. qPCR was

performed using GAPDH as normalizer. Values are the mean ± SEM of triplicates in one experiment for MCF-

7 cells and are the mean ± SEM of two independent experiments for MDA-MB-231 cells.

https://doi.org/10.1371/journal.pone.0184471.g005
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Conclusions

In summary, we describe the first comprehensive assessment of miRNA expression in

response to anacardic acid in ERα+, luminal A MCF-7 and MDA-MB-231 TNBC breast can-

cer cells. The pathways modulated by these miRNAs suggest that key nodal molecules, e.g.,
Cyclin D1, SMAD, SP1, MYC, c-FOS, PPARγ, BCL2, FOXO3A, MDA2, and SIN3, are targets

of AnAc activity. In agreement with the pathway analysis, we previously reported that AnAc

reduced CCND1 transcript expression in MCF-7 and MDA-MB-231 cells [13]. The roles of the

other proteins and pathways in AnAc responses remains to be investigated.

Supporting information

S1 Fig. Heat map of miRNAs significantly altered in AnAc-treated MCF-7 cells. miRNAs

significantly affected by AnAc were analyzed using Partek Genomic Suite™ to generate the heat

map.

(TIF)

S2 Fig. Heat map of miRNAs significantly altered in AnAc-treated MDA-MB-231 cells.

miRNAs significantly affected by AnAc were analyzed using Partek Genomic Suite™ to gener-

ate the heat map.

(TIF)

S3 Fig. MetaCore analysis of upregulated miRNAs in AnAc-treated MCF-7 and MDA-MB-

231 cells. A) Gene Ontology (GO) processes. The hatched bars are common whereas orange

indicates MCF-7 cells. MetaCore Analyze Networks algorithm identified B) miR-20b-5p,

Cyclin D1, DEC1 (Stra13), SMAD4 network: circadian regulation of gene expression (41.2%)

negative regulation of nucleobase containing compound metabolic process (82.4%), negative

regulation of cellular biosynthetic process (82.4%), rhythmic process (58.8%), negative regula-

tion of nitrogen compound metabolic process (82.4%). C) miR-612, SP1, MyCH, gamma-

ENaC, DR5 network: muscle filament sliding (36.4%), actin-myosin filament sliding (36.4%),

actin filament-based movement (43.2%), muscle contraction (50.0%), actin-mediated cell con-

traction (36.4%)

(PPTX)

S4 Fig. MetaCore analysis of downregulated miRNAs in AnAc-treated cells. MetaCore

Analyze Networks algorithm identified A) miR509: B) miR-584, C/EBPbeta, HOX10A; 3)

miR-509, miR-584, MDM2, ERK1/2.

(PPTX)

S5 Fig. MetaCore analysis of upregulated miRNAs in AnAc-treated MCF-7 cells. A) Gene

Ontology (GO) processes. MetaCore Analyze Networks algorithm identified B) miR 1229 3p,

miR 520a 5p, miR 612, miR 4516, miR 562: positive regulation of metabolic process (60.5%),

negative regulation of apoptotic process (37.2%), negative regulation of programmed cell

death (37.2%), negative regulation of cell death (37.2%), viral process (34.9%); C) miR 20b 5p,

miR 663a, miR let 7a 5p, miR 1229 3p, SMAD3: regulation of cell proliferation (65.2%), cellular

response to growth factor stimulus (43.5%), response to growth factor (43.5%), positive regula-

tion of macromolecule metabolic process (71.7%), response to lipid (52.2%)

(PPTX)

S6 Fig. MetaCore analysis of downregulated miRNAs in AnAc-treated MDA-MB-231 cells.

A) Gene Ontology (GO) processes. MetaCore Analyze Networks algorithm identified B) miR-

23b-3p, miR-499, miR-499-3p, miR-499-5p, c-Fos: response to drug (37.8%), response to abi-

otic stimulus (48.9%), response to mechanical stimulus (28.9%), cellular response to hormone
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stimulus (37.8%), response to inorganic substance (37.8%). C) miR-141, miR-141-3p, miR-

1247-5p, PPAR-gamma, BMI-1: positive regulation of transcription from RNA polymerase II

promoter (76.6%), regulation of transcription from RNA polymerase II promoter (85.1%),

positive regulation of nucleic acid-templated transcription (76.6%), positive regulation of tran-

scription, DNA-templated (76.6%), negative regulation of RNA metabolic process (74.5%).

(PPTX)

S7 Fig. MetaCore analysis of upregulated miRNAs in AnAc-treated MDA-MB-231 cells. A)

Gene Ontology (GO) processes. MetaCore Analyze Networks algorithm identified B) miR-

1257, Bcl-2, PAX6, FOXO3A, and FOXP3; and C) miR-20b-5p, PPARγ, MDA2, p57, Sin3.

(PPTX)

S1 Table. miRNAs regulated by AnAc in MCF-7 cells. Cells were grown in phenol red-free

IMEM (ThermoFisher) medium containing 5% dextran coated charcoal (DCC)-stripped FBS

(hormone-depleted medium) for 48 h prior to treatment with established IC50 concentrations

of AnAc 24:1n5: 13.5 μM for MCF-7 cells [13] for 6 h and was replicated in three separate

experiments. Differentially expressed miRNAs (DEmiRs) were identified for pairwise compar-

isons (MCF-7 AnAc-treated vs. MCF-7 control using the tuxedo suite of programs including

cufflinks and cuffdiff (version 2.2.1) Significant DEmiRs with fold-change and p values are

listed. These raw data of our RNA-seq are available at Gene Expression Omnibus (GEO) data-

base: accession number GSE78011.

(XLSX)

S2 Table. miRNAs regulated by AnAc in MDA-MB-231 cells. Cells were grown in phenol

red-free IMEM (ThermoFisher) medium containing 5% dextran coated charcoal (DCC)-

stripped FBS (hormone-depleted medium) for 48 h prior to treatment with established IC50

concentrations of AnAc 24:1n5: 35.0 μM for MDA-MB-231 cells [13] for 6 h and was repli-

cated in three separate experiments. Differentially expressed miRNAs (DEmiRs) were identi-

fied for pairwise comparisons (MDA-MB-231 AnAc-treated vs. MDA-MB-231 control using

the tuxedo suite of programs including cufflinks and cuffdiff (version 2.2.1) Significant

DEmiRs with fold-change and p values are listed. These raw data of our RNA-seq are available

at Gene Expression Omnibus (GEO) database: accession number GSE78011.

(XLSX)
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