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Abstract

Early detection of infectious diseases can substantially reduce the health and economic

impacts on livestock production. Here we describe a system for monitoring animal activity

based on video and data processing techniques, in order to detect slowdown and weakening

due to infection with African swine fever (ASF), one of the most significant threats to the pig

industry. The system classifies and quantifies motion-based animal behaviour and daily

activity in video sequences, allowing automated and non-intrusive surveillance in real-time.

The aim of this system is to evaluate significant changes in animals’ motion after being

experimentally infected with ASF virus. Indeed, pig mobility declined progressively and fell

significantly below pre-infection levels starting at four days after infection at a confidence

level of 95%. Furthermore, daily motion decreased in infected animals by approximately

10% before the detection of the disease by clinical signs. These results show the promise of

video processing techniques for real-time early detection of livestock infectious diseases.

Introduction

Late detection of emergency diseases promotes disease spread and increases the risk of epi-

demic, and it may cause significant economic losses in affected countries [1], as demonstrated

by the last epidemics of foot-and-mouth disease [2, 3], classical swine fever [4, 5] or the current

epidemic of African swine fever (ASF) [6]. Classical strategies to detect diseases on the farm

include active and passive surveillance as well as sentinel surveillance, which focuses on farms

at higher risk of incursion [7].

The effectiveness of passive surveillance relies on the ability to detect disease based on the

observation of clinical signs. This can pose a severe obstacle to early detection, particularly if

death is the most visible clinical sign as is the case with foot-and-mouth disease, classical swine

fever or ASF. On the other hand, farms may apply active surveillance approaches to gain infor-

mation about disease prevalence on the farm under a sampling protocol based on appropriate
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laboratory tests, for example the qPCR quantitative polymerase chain reaction (qPCR) of

blood samples, which can allow rapid and reliable detection of infection onset. While this can

be effective, it is financially and logistically burdensome and not always feasible.

Many animal diseases manifest fever and weakness which may be difficult to detect by sim-

ple observation in early stages of infection. However, it can be detected through continuous-

quantitative monitoring of animal behaviour through new technologies [8]. In this work, we

aim to demonstrate that animals infected with ASF virus show a progressive deceleration in

performing daily activities caused by muscle weakness from early stages of infection, which

should translate into reduced overall motion, which quantitative automatic video processing

should be able to detect [9]. This might allow detection of ASF onset in real time. Within the

framework of the EU-funded Rapidia Field project (www.rapidia.eu), we continuously moni-

tored eight pigs housed in a single indoor pen under Biosafety Level 3 (BSL-3) experimental

conditions for 11 days before, and then 12 days after, experimental infection with ASF virus.

Animal motion was quantified and classified using video processing and supervised learning,

respectively, in order to detect significant early changes in behaviour between pre- and post-

infection periods.

Lastest research and developments based on computer vision techniques have improved

the current technology mainly designed for motion detection, object recognition and object

tracking. With this work, we have implemented algorithms for motion capture, in which

movement recorded by a camera is translated into digital models. It also incorporates a super-

vised learning method to classify motion-based animal behaviour. Finally, the system aims to

assess the randomness of runs in order to detect a reduction in daily motion, such that a cer-

tain number of consecutive low motion scores may be attributable to ASF.

Materials and methods

Ethics statement

The experiment was carried out at the BSL-3 facilities of the VISAVET Centre of the Veteri-

nary Faculty of the Universidad Complutense de Madrid (UCM). The in vivo experimental

protocol was approved by the Committee of Animal Experimentation of the UCM (Regulation

2010/63/EU and Spanish Royal Decree 53/2013). The protocol included a detailed description

of efforts to prevent unnecessary suffering of the animals, including humane endpoints and

the use of anesthetics and euthanasic following Galindo-Cardiel et al. clinical evaluation guide-

lines [10]. Specifically, humane endpoints were reached when at least one parameter was

scored as severe. Animals’ health and welfare was checked twice daily (morning and evening)

by a clinical veterinarian. Pigs were also monitored 24h/day by videocameras that were

checked regularly during the day.

The experiment

The experiment lasted from 11 April 2015 (day 1) to 3 May 2015 (day 23), during which eight

Landrace Large White healthy pigs from an authorized breeding centre (four months old and

weighing approximately 40 kg) arrived together one day before and were enclosed together in

one indoor pen maintained at constant temperature and humidity, with ad libitum access to

food and water. They were continuously monitored using one camera in a fixed position. At

least twice per day, animals were evaluated by veterinarians and technicians who monitored

animal internal temperature, recorded clinical signs [11], kept the pen clean and controlled

feed supplies. Once per day, blood and oral samples were analysed for ASF virus using a qPCR

test [12], which allows the confirmatory diagnosis of ASF virus within hours of a sample.
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All animals were accommodated in the pen and allowed to acclimate for one day before the

experiment. On day 11, all animals were simultaneously inoculated with an attenuated strain

of ASF virus from a tick captured in Kenya in 2005 (ASFV Ken05/Tk1). The first positive

qPCR detection of the virus occurred on day 15 in six of eight animals. Subsequently, some

animals showed mild clinical signs but first evident clinical signs associated with ASF started

from day 18 in five of eight animals. After this day, all animals spent increasing amounts of

time lying down until ultimately dying from the disease. The last animal died on day 23.

Based on this time course of infection, the experimental period was divided into 4 phases

for analysis (Fig 1): (1) pre-infection (days 1-11), when animals were free of infection; (2)

infection (days 12-15), after animals were inoculated with ASF virus but with no ASF virus

detected; (3) qPCR detection (days 16-18), during which ASF virus was qPCR-detected in at

least one animal; and (4) clinical detection (days 19-23), when clinical signs of ASF were evi-

dent in at least one animal, until the end of the experiment.

Video filming

A total of 541 hours of video footage were taken using a single camera equipped with night-

vision capability at a fixed position in an upper corner of the pen (Fig 2A). Video footage was

collected continuously throughout the 23-day experiment. The room was artificially illuminated

from 7 a.m. to 9 p.m., while the camera recorded under night conditions from 9 p.m. to 7 a.m.

The ‘U’-shape and the limited size of the pen as well as the tall metal enclosure did not allow

individual tracking of the animals. Since the fixed camera filmed the same background through-

out, and light intensity remained fairly constant within the day and night periods, it was easy to

Fig 1. Timeline showing the four analytical phases of the experiment. The experiment began on day 1 (kick off), and animals were inoculated

with ASF virus on day 11. On day 15, six of eight animals tested positive for the virus by quantitative PCR. On day 18, clinical signs of ASF became

evident in five of eight animals. The experiment ended on day 23.

https://doi.org/10.1371/journal.pone.0183793.g001

Fig 2. A) Original video frame (all RGB channels). B) The same frame in the red channel. C) Region of

interest in the red-channel frame used for motion analysis.

https://doi.org/10.1371/journal.pone.0183793.g002
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distinguish between animals in motion and static background, despite the standard definition

(SD) resolution of the video which might make subsequent motion detection less sensitive.

Video was recorded at 6 frames per second (704 x 576 pixels) in RGB24 format, providing

24 bits in red, green and blue channels (RGB) for broad range of colour. We used the red chan-

nel for all analyses since it provided the best contrast for animal recognition (see Fig 2B). In

addition, we analysed only a region of interest in which all animals were always observable (see

Fig 2C).

Motion capture

Animal movements were recorded and digitally processed through the Optical flow algorithm

based on the Horn-Schunck methodology [13] implemented in Matlab. This algorithm esti-

mates the speed and direction of moving objects between consecutive images based on the

movement of brightness patterns [14]. This estimation process is described below.

Supposing that we know the value of a function E(x, y, t) determining the brightness of

any point (x, y) in the (fixed) 2-dimensional domain D recorded in the video, at any time

t 2 [0, Tmax] during recording and considering a point following a trajectory (x(t), y(t)) in D, if

this point maintains its brightness along the entire time interval, the value of E(x(t), y(t), t)
remains constant for any t 2 [0, Tmax]. Then, assuming that functions E, x and y are smooth,

d
dt

EðxðtÞ; yðtÞ; tÞ ¼ 0; 8t 2 ½0;Tmax�; ð1Þ

or, after applying the chain rule for differentiation,

@E
@x
ðxðtÞ; yðtÞ; tÞ

dx
dt
ðtÞ þ

@E
@y
ðxðtÞ; yðtÞ; tÞ

dy
dt
ðtÞ þ

@E
@t
ðxðtÞ; yðtÞ; tÞ ¼ 0; 8t 2 ½0;Tmax�: ð2Þ

In this equation, dx
dt ðtÞ;

dy
dt ðtÞ

� �
represents the velocity of the point that at time t is in (x(t),

y(t)). Since we cover the entire domain D with all possible trajectories, we deduce from Eq 2

that

@E
@x
ðx; y; tÞuðx; y; tÞ þ

@E
@y
ðx; y; tÞvðx; y; tÞ þ

@E
@t
ðx; y; tÞ ¼ 0;8ðx; y; tÞ 2 D� ½0;Tmax�; ð3Þ

where (u(x, y, t), v(x, y, t)) is the velocity of the point located at (x, y) 2 D at time t. This can be

expressed more compactly as

Exuþ Eyv þ Et ¼ 0; in D� ½0;Tmax�: ð4Þ

To compute the velocity function (u, v), the Horn-Schunck method [13] minimises the

error z(u, v) given by

zðu; vÞ ¼
Z

D
ðExuþ Eyv þ EtÞ

2dxdy þ Z2

Z

D
ðu2

x þ u2
y þ v2

x þ v2
yÞdxdy; ð5Þ

where η is a weighting factor that scales global smoothness. Using the theory of calculus of var-

iation, the velocity (u, v) minimising Eq 5 satisfies the Euler–Lagrange equations of z, given by

E2
xuþ ExEyv ¼ Z2Du � ExEt;

ExEyuþ E2
y v ¼ Z2Dv � EyEt;

ð6Þ
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where Δu and Δv are the Laplacians of u and v, defined as

Du ¼
@

2u
@x2
þ
@

2u
@y2

and Dv ¼
@

2v
@x2
þ
@

2v
@y2

: ð7Þ

In reality, the entire video scene consists of Nmax 2 N frames (or images) instead of continu-

ous time t 2 [0, Tmax], E(x, y, t) takes values in {0, 1, � � �, 255} and D is divided into a matrix of

704 × 576 pixels. Therefore, we considered the discrete function Ei,j,k 2 {0, 1, � � �, 255} as the

measured average brightness of the pixel at the intersection of the ith row and jth column in

the kth frame. Hence, the minimum (ui,j,k, vi,j,k) of Eq 5 at an arbitrary pixel (i, j) in the discrete

domain D of 704 × 576 pixels per frame k 2 {0, 1, � � �, Nmax can be estimated iteratively as fol-

lows [13]:

unþ1
i;j;k ¼ �un

i;j;k � Ex

Ex�un
i;j;k þ Ey�vn

i;j;k þ Et

Z2 þ E2
x þ E2

y

;

vnþ1
i;j;k ¼ �vn

i;j;k � Ey

Ex�un
i;j;k þ Ey�vn

i;j;k þ Et

Z2 þ E2
x þ E2

y

;

ð8Þ

where u0
i;j;k ¼ v0

i;j;k ¼ 0, n = {1, � � �, N}, N = 25 is the maximum number of iterations, η = 10

considering a large relative motion between frames [15], and ð�un
i;j;k; �v

n
i;j;kÞ is the neighbourhood

average of ðun
i;j;k; v

n
i;j;kÞ computed using the convolution kernel

½1
ffiffiffi
2
p

1;
ffiffiffi
2
p

0
ffiffiffi
2
p

; 1
ffiffiffi
2
p

1�=4ð1þ
ffiffiffi
2
p
Þ [16]. We computed (Ex, Ey) using the convolution ker-

nel [−1 −2 −1;0 0 0;1 2 1] and its transposed form for each pixel in the first image and Et

between consecutive images using the [−1 1] kernel [15, 17].

Finally, we computed the global motion in frame k as

mk ¼
X704

i¼1

X576

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2
i;j;k þ v2

i;j;k

q

: ð9Þ

Eq 9 allows us to obtain a unique motion value for each frame k and to reduce motion anal-

ysis to time series analysis.

Motion smoothing

We analysed the global motion, mk, in order to detect a significant reduction in animal motion

following ASF infection. Nevertheless, two main facts had to be considered before the analysis.

First, the video resolution caused a perturbation in the values of mk. Indeed, even when no

motion was recorded, we observed that the background slightly changed between consecutive

frames causing a problematic baseline noise in the time series. Second, as mentioned previ-

ously, the human factor altered the real values of global motion when the workers were in the

region of interest of the screen. Thus, some intervals of time scored excessively high values of

mk only when the workers were in the pen.

To smooth the perturbation in mk, we considered a simple moving average filter by replac-

ing each data point in the time series with the average of the previous K 2 N data points (i.e.

the previous K frames). In this work, we considered K = 90; that is, 15 seconds approximately

(see Fig 3). Henceforth, all motion works were carried out throughout the new time series

m̂k ¼
1

K

XK� 1

i¼0

mk� i; 8k 2 f1; � � � ;Nmaxg: ð10Þ
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Motion classification

Activity budgets relate to the use of an animal’s time including moving, standing or lying, feed-

ing, drinking, social and aggressive behaviours [21]. In this work, three types of motion were

proposed to classify animal activity during the experiment: (1) baseline, when all animals were

lying or sleeping, such that motion was minimal or absent; (2) animal motion, when animals

were walking, feeding or playing; and (3) human-related motion, when veterinary practices

were carried out. Animal movements sometimes increased in the presence of humans, and

also movements of the humans themselves contributed to overall motion when they entered

the region of interest being recorded. Therefore we quantified the relative amounts of all three

types of motion each day and sought to determine changes in animal motion unrelated to

human interaction.

To classify motion as baseline, animal motion or human-related motion, we used short

intervals of S = 15 seconds (corresponding to 6S = 90 frames) and we joined consecutive values

of m̂k into these intervals as follows

Mr ¼ ½m̂1þ6Sðr� 1Þ; m̂6Sr�; 8r 2 f1; 2; . . .g: ð11Þ

We described each interval Mr using five statistical parameters [18]: minimum (Mmin
r ), first

quartile (Mq1
r ), median (Mmed

r ), third quartile (Mq3
r ) and maximum (Mmax

r ).

Firstly, we analysed animal behaviour before experimental infection in order to quantify

healthy levels of motion. To do this, we grouped the short series Mr corresponding to the pre-

infection phase by using the k-means algorithm (kmeans command in Matlab performed with

squared Euclidean distance) with the five statistical values (Mmin
r , Mq1

r , Mmed
r , Mq3

r , Mmax
r ), which

assigned the input observations into k clusters through step-wise cluster centroid estimation

based on optimisation of within- and between-cluster dispersion [19].

To set up the optimal number of clusters k used in the k-means algorithm, we used the gap

criterion algorithm (evalclusters command in Matlab), which scored the so-called gap statistic

associated to a proposed number of clusters based on the minimisation of within-cluster

Fig 3. Global motion mk and the corresponding moving average m^
k for a randomly selected 2h of video footage.

The moving average was performed over a window of K = 90 frames. The interval of time series boxed in red on the left

correspond to the video image on the right, in which the animals were in motion.

https://doi.org/10.1371/journal.pone.0183793.g003
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dispersion [20]. Consequently, the maximum value of the gap statistic is associated with the

optimal number of clusters (assuming more than 3 and less than 50).

These k clusters should represent a different type of motion recorded during 15-seconds

intervals, when the animals were not infected. For instance, intervals in which the animals

showed a similar activity within 15 seconds should be grouped in the same cluster (i.e. where

there is no high variation between Mmin
r , Mq1

r , Mmed
r , Mq3

r and Mmax
r ). But depending on the

number of animals in motion and the type of activity carried out, the mean value of motion

may differ between intervals (i.e. Mmed
r ) and, consequently, such intervals may be grouped in

different clusters. On the contrary, intervals in which the animals showed significant changes

in the activity such as when they were walking and the human interaction accelerated the over-

all motion during an instant, should be grouped in clusters with a high variation between

Mmin
r , Mq1

r , Mmed
r , Mq3

r and Mmax
r .

After k-means analysis, all k clusters (and the Mr records therein) were assigned to the three

types of motion relevant for this work: baseline (group G1), animal motion (group G2) and (3)

human-related motion (group G3).

Secondly, we classified the remaining Mr records to groups G1, G2 and G3 corresponding to

post-infection periods (Fig 1). To do this, we built a support vector machine (SVM) pairwise

classifier in Matlab.

To build an accurate SVM classifier, half of the Mr records in the pre-infection phase were

randomly assigned to the so-called training dataset and the other half of records to the so-

called testing dataset. To train the SVM model, we used the svmtrain command with the train-

ing dataset; then, we evaluated the accuracy of the model using the svmclassify command with

the testing dataset. Once the accuracy of the model was verified, it was then used to classify the

remaining Mr records of the experiment.

Changes in animal motion as a result of infection

We expected that the daily activity budget (i.e. time spent lying/sleeping and feeding/walking)

would change after infection with ASF virus. To measure this reliably, we used the Wald-Wol-

fowitz runs test (runstest command in Matlab) at significance levels of 90%, 95% and 99%, cor-

responding to respective p-values of less than 0.1, 0.05 or 0.01, which evaluated whether

consecutive daily motion values were randomly distributed around the average value of the

considered period. First, runs tests were performed during the pre-infection phase (days 1-11)

to verify random distribution of motion values around the average value. Then, runs tests were

repeated by expanding the window by one additional day until day 18, when clinical signs

were detected. This allowed us to determine whether and when consecutive motion values sig-

nificantly diverged from the average value, indicating ASF infection.

Results

Motion classification

The gap statistic showed a maximum of 3.6955 for 32 clusters, with the next highest values

being 3.6676 for 28 clusters and 3.6653 for 34 clusters. Therefore, we considered k = 32 clusters

in the k-means algorithm. Fig 4 shows the centroids of these clusters and the percentage of Mr

records classified in each one. After comparing many video sequences associated with Mr rec-

ords across all clusters, we assigned cluster 1-7 to baseline (G1), clusters 8-19 to animal motion

(G2), and clusters 20-32 to human-related motion (G3). As expected, the lowest motion values

corresponded to the baseline, which occurred during 70.06% of the pre-infection period, i.e.

around 70% of their time inactive [21]. Intermediate motion values corresponded to animal
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motion, which occurred during 27.67% of the pre-infection period. Finally, human-related

motion was greatest occurring during 2.27% of the time.

The SVM classifier showed accuracy of 95.66–98.87% at classifying records to groups G1,

G2 and G3 (Table 1). Conversely, only 1.64% of records in G1 were incorrectly assigned to G2,

1.13% of records in G3 were incorrectly assigned to G2 and records in G2 were incorrectly

assigned to G1 (1.14%) or G3 (3.20%).

Changes in animal motion as a result of infection

Table 2 shows the proportions of time spent each day in baseline, animal motion and human-

related motion computed with the entire data set. After the virus inoculation, lying/sleeping

time increased substantially and feeding/walking the time where during which animals were in

motion decreased substantially across the following post-infection phases. In fact, in the first

four days the animal motion decreased 8.51 points and, before the detection through clinical

signs, 9.97 points respect to the pre-infection phase.

Comparison of the percentages of records Mr classified by the SVM approach into groups

G1, G2 and G3 for each day of the experiment (Fig 5) shows that human-related motion

occurred during only a fraction of the time, but it made a disproportionate contribution to the

amount of motion generated, covering the clusters with the highest motion values, m̂k. There-

fore, such motion was excluded from the analysis. We executed the SVM-classifier for the

remaining days of the experiment. Fig 5 shows the percentage of records, Mr, classified in

Fig 4. Minimum (Min.), first quartile (Q1), median (Med.), third quartile (Q3) and maximum (Max.) centroid values for the k = 32 clusters

computed through k-means algorithm describing motion over 15-second intervals (90 frames) during the pre-infection period. Percentages

refer to the total number of records in each cluster.

https://doi.org/10.1371/journal.pone.0183793.g004

Table 1. Percentages of records in the testing dataset correctly and incorrectly assigned to groups

G1, G2 and G3 by the pairwise SVM- classifier.

group classified in group

G1 G2 G3

G1 98.36% 1.64% 0.00%

G2 1.14% 95.66% 3.20%

G3 0.00% 1.13% 98.87%

https://doi.org/10.1371/journal.pone.0183793.t001
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groups G1, G2 and G3 per day of the experiment; that is, the time classified as baseline motion,

animal in motion and human interaction per day. Throughout the experiment, the human

interaction represented a small percentage of the records.

Pre-infection phase (days 1-11). Aside from day 1, when animals were slightly hyperac-

tive because of their new environment, they spent fairly constant proportions of each day

lying/sleeping and feeding/walking. These proportions varied randomly around the respective

mean values of m1 and m2.

Infection phase (days 12-15). Following experimental infection with ASF virus, the pro-

portion of time spent each day in baseline tended to increase, while the proportion of time

spent in animal motion tended to decrease. Thus, the percentage of time each day in baseline

was higher than on any other previous day of the experiment, while the percentage of time in

animal motion was lower than on any other previous day, pointing to a probable effect of ASF.

Table 2. Percentage of time spent each day in baseline, animal motion and human-related motion for each of the four experimental phases defined

in Fig 1.

Type of motion Pre-infection Infection PCR detection Clinical detection

Baseline 70.06% 79.33% 80.72% 88.55%

Animal 27.67% 19.16% 17.70% 9.60%

Human-related 2.27% 1.51% 1.58% 1.85%

https://doi.org/10.1371/journal.pone.0183793.t002

Fig 5. Percentage of time each day involving baseline, animal motion or human-related motion. Mean values over the first 11 days are shown as

red lines for baseline (m1) and animal motion (m2).

https://doi.org/10.1371/journal.pone.0183793.g005

Early detection of livestock diseases based on video processing

PLOS ONE | https://doi.org/10.1371/journal.pone.0183793 September 6, 2017 9 / 13

https://doi.org/10.1371/journal.pone.0183793.t002
https://doi.org/10.1371/journal.pone.0183793.g005
https://doi.org/10.1371/journal.pone.0183793


PCR detection phase (days 16-18). The trends observed during the infection phase con-

tinued during the PCR detection phase. Percentages of baseline and animal motion remained

quite high and low, respectively.

Clinical detection phase (days 19-23). The trends observed during the infection phase

and PCR detection phase worsened during the clinical detection phase, with the percentage of

baseline increasing and percentage of animal motion decreasing. This worsening should be

interpreted with caution because the animals began to die rapidly from day 18 onwards. In

fact, two animals died at day 19 and six at day 23. Therefore the data collected during this

phase is unlikely to be useful for assessing the ability of our approach to detect ASF early.

Runs test. Runs tests were carried out for progressively longer time windows during the

23-day recording period in order to examine on what day the changes in baseline and animal

motion deviated significantly from pre-infection values (Table 3). These runs tests focused on

days 11-18, the period critical for early ASF detection (Fig 5). Runs tests for the period from

days 1 to 11 suggested that, as expected, percentages of baseline and animal motion varied ran-

domly around their mean values. Runs tests for longer periods indicated that although the per-

centage of baseline increased after inoculation and the percentage of animal motion, these

changes did not deviate significantly from pre-infection values until day 15, when the differ-

ences became significant at the 90% level. The differences were significant at the 95% level on

day 16 and at the 99% level on day 18.

Discussion

Video processing of livestock offers the possibility of non-intrusive animal monitoring in real

time. Here we aimed to examine whether such monitoring could reliably detect decreases in

pig motion in the early stages of ASF infection. Our results in this pilot study showed that,

indeed, we detected a significant decrease in motion at just four days after experimental infec-

tion with the ASF virus. This was the same day that the virus was detected in blood using

qPCR, and a full three days before clinical signs of ASF were observed.

The proposed method comprises motion estimation, clustering/classification of motion

patterns and recognition of these patterns via supervised learning. “Optical flow” is a widely

used algorithm to measure the apparent velocities of objects in video streams that allowed us

to quantify motion between consecutive frames throughout the entire experiment. We divided

the total recording period into intervals of a few seconds and classified motion in each interval

into (1) baseline (little or no motion), (2) animal motion and (3) human-related motion. An

SVM pairwise classifier was used to train the model to recognise the three types of motion

based on a randomly selected 50% of the pre-infection dataset, and this ability was then

assessed using the other half of the same dataset. After establishing an accuracy >95%, we

Table 3. The |Z| statistic and 2-tailed significance (Sig.) for runs tests of percentages of daily time spent in baseline or animal motion (Fig 5). Runs

tests were performed on progressively longer intervals of the experimental period, from days 1-11 to days 1-18.

Runs Day interval

Baseline [1, 11] [1, 12] [1, 13] [1, 14] [1, 15] [1, 16] [1, 17] [1, 18]

|Z|

Sig. (2-tailed)

0.28

0.77

0.11

0.90

-0.02

0.97

-0.14

0.88

-0.10

0.91

-0.19

0.84

-2.45

0.01**
-2.65

0.01***

Animal motion [1, 11] [1, 12] [1, 13] [1, 14] [1, 15] [1, 16] [1, 17] [1, 18]

|Z|

Sig. (2-tailed)

-0.61

0.54

-0.20

0.83

-0.56

0.57

-0.83

0.10

-2.13

0.03**
-2.33

0.02**
-2.49

0.01**
-2.65

0.01***

*, ** and ***: significance at 90%, 95% and 99%, respectively.

https://doi.org/10.1371/journal.pone.0183793.t003
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applied the classifier to the data collection during the post-infection phases of the experiment.

This allowed us to detect an increase in the proportion of baseline activity and concomitant

decreases in animal motion. To assess the possibility that these results might be due only to

chance, we performed runs tests on data over progressively longer time windows. This analysis

indicated that the changes in motion attributable to ASF became significant at four days after

infection (95% level).

In our study, a slight perturbation in the global motion was recorded, even when no ani-

mals were in the pen (before the start of the experiment) or when the animals did not move,

probably reflecting the SD resolution of the camera. Our efforts to treat these perturbed time

series as retrogressive models (ARMA/ARIMA) were unsatisfactory, so we treated them as

normally distributed and as contributing a constant amount of daily motion to the observed

total. It is possible that alternative approaches to noise reduction may allow more refined clas-

sification and recognition of motion types, such as differentiation between feeding and walk-

ing. In an ideal case, such approaches should be adaptable to a range of farm and animal types

through machine learning algorithms, as used here. On the other hand, the runs tests used

here were enough to detect changes in 11 days but, considering field conditions, i.e. longer

periods in farms, it could be more effective the monitoring through quality control techniques.

Likely important to the success of our approach is filtering out animal motion largely or

entirely induced by veterinarians and technicians visiting the pen, as well as movement of

these workers mistakenly recorded as animal motion during the experiment. While in practice

only a fraction of daily motion in our study was human-related, this motion occasionally pro-

duced false spikes and so needed to be removed. Future work should examine the possibility of

extending Optical flow through the implementation of animal tracking and recognition algo-

rithms [22, 23] in order to eradicate definitely human-related motion and to enhance the indi-

vidual animal monitoring. Therefore, our results with an SD resolution camera suggest that

future work should focus on high definition (HD) cameras, which can automatically adjust

contrast and brightness and so which may further reduce background noise and blurring.

The technology developed here has been tested in an experimental environment with 8 ani-

mals during a short period. Studies related with ASF infected animals do not usually consume

long periods nor use high herd sizes. But in field conditions, different issues may vary the

motion scores such as the increment of the number of animals monitored, the apparition of

any other animal interaction, climatic factors that may alter the light intensity, etc. All these

factors should be considered in future works to verify that this system is useful to detect disease

outbreaks in field conditions.

Our results illustrate the promise of video processing for early detection of ASF. Many

other livestock diseases might present slowdown in motion caused by fever in animals, such as

foot-and-mouth disease, classical swine fever, Rift Valley fever, African horse sickness or blue-

tongue. The possibility to extend the technology presented here to detect rapidly other diseases

might improve the current surveillance protocols substantially. In fact, we showed that four

days after inoculation, the system launched an alert of ASF-suspicion that, under real farm

conditions, probably could be interpreted for the veterinary services to take blood test and

confirm an outbreak three days before the first clinical signs.

Supporting information

S1 File. Tables and scripts. Files containing raw data, main processed data and main scripts

in Matlab.
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López, Ángel Manuel Ramos.

References
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