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Abstract

MicroRNAs post-transcriptionally regulate gene expression in animals and plants. The aim

of this study was to identify new target genes for microRNA polymorphisms (miR-146aC>G

and miR-196a2T>C) in primary ovarian insufficiency (POI). We cloned and transfected miR-

146aC>G and miR-196a2T>C into human granulosa cells and used microarrays and qPCR-

arrays to examine the changes in the messenger RNA expression profile. We show miR-

146aC>G and miR-196a2T>C change the mRNA expression patterns in granulosa cell. In

each case, mRNAs were up or down-regulated after treatments with miR-146a C or G and

miR-196a2 T or C. We found that miR-146a led to a significantly altered regulation of the

mRNA levels of FOXO3, FOXL2 and CCND2 compared to controls. We also found that the

polymorphisms of miR-146a led to a significantly altered regulation of CCND2 and FOXO3.

Our results suggest that miR-146aC>G and miR-196a2T>C can regulate the levels of many

of their target transcripts. In addition, specific target genes of miR-146aC>G polymorphisms

may be involved in granulosa cell regulation.

Introduction

Primary ovarian insufficiency (POI), also known as premature ovarian failure (POF), is the

loss of ovarian function before age 40 [1]. A commonly cited triad for diagnosis is amenorrhea,

hypergonadotropism, and hypoestrogenism. If it has a genetic cause, it may be called gonadal

dysgenesis [2]. More than 90% of POI cases have unknown causes [3,4].

Recent studies indicate that microRNAs (miRNAs) are involved in ovarian pathologies,

such as POI and polycystic ovarian syndrome (PCOS) [5,6]. miRNAs are small, noncoding,

single-stranded RNA molecules bind a target messenger RNA (mRNA) [7]. Previous reports

showed that miRNAs bind the 3’ untranslated region (UTR) of target mRNAs and modulate
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their gene expression through deregulation or translational repression [8]. A single miRNA

may regulate multiple targets and thus acts as a master controller of gene expression [7,8]. Sin-

gle nucleotide polymorphisms (SNPs) or mutations occurring in the miRNA gene region may

affect the property of miRNAs by altering their expression and/or maturation [9]. miRNAs are

also involved in the entire process of ovarian follicle development, including follicle growth

and ovulation [10,11]. miR-146a is enriched in the oocyte. During bovine oocyte maturation

and preimplantation embryo development, miR-146a undergoes changes in expression level

[12]. The FAS gene, an inducer of oocyte apoptosis during folliculogenesis is an miR-146a tar-

get [13–15]. miR-196a2, which is expressed during oocyte maturation and early bovine embry-

onic development, regulates the expression of the newborn ovary homeobox (NOBOX) gene

during bovine early embryogenesis [16]. NOBOX gene mutations have been reported to cause

POI [12,17].

We previously reported the association between Recurrent Spontaneous Abortion (RSA)

and POI with polymorphisms of miR-146a, miR-196a2 [12,18]. These results suggest that

gene—gene interaction and transcriptional alterations between miR-146a and miR-196a2 may

be involved in POI development [12, 19]. Therefore, we hypothesized that transcriptional

alterations in miR-146aC>G and miR-196a2T>C might influence target gene expression and

downstream oocyte apoptosis during folliculogenesis.

To identify new target genes expressed in POI, we used a microarray gene expression analy-

sis and validation for novel targets regulated by miR-146aC>G and miR-196a2T>C in granu-

losa cells. We identified putative candidates for the genes regulated by the miR-146aC>G

polymorphism. Our data provide new insights into the potential targets of miR-146a in POI

regulation.

Materials and methods

Ethics statement

The study protocol was approved by the Institutional Review Board of CHA Bundang Medical

Center. All study subjects provided written informed consent to participate in the study. All

methods used in this study were carried out in accordance with approved guidelines.

Study participants

All participants were Korean. They were recruited from the Department of Obstetrics and

Gynecology of CHA Bundang Medical Center from March 1999 to February 2010. The study

group consisted of 113 women (age range, 21–43 years; mean age ± standard deviation [SD],

31.34 ± 4.97 years) who were diagnosed with POI (cessation of menstruation before 40 years

of age and two serum FSH levels >40 IU/L). Patients with a history of pelvic surgery, cancer,

radiation exposure, autoimmune disorder, or genetic syndromes were excluded. The control

group consisted of 227 women (age range, 23–43 years; mean age ± SD, 32.54 ± 3.88 years)

who had regular menstrual cycles and at least one live birth. All participants provided

informed consent.

Hormone analysis

To measure FSH, luteinizing hormone (LH), and estradiol (E2) levels, blood samples were col-

lected on the second or third menstrual cycle day. The serum was separated as described previ-

ously [20], and hormone levels were measured using radioimmunoassay (E2; Beckman

Coulter, Inc, Fullerton, CA, USA) or enzyme immunoassay (FSH and LH; Siemens, Los Ange-

les, CA, USA) according to the manufacturer’s instructions.
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Genetic analysis of miRNA sequence polymorphisms

Genomic DNA was extracted from anticoagulated peripheral blood using a G-DEX blood

extraction kit (iNtRON Biotechnology, Seongnam, South Korea). Nucleotide changes were

determined using polymerase chain reaction—restriction fragment length polymorphism

(PCR-RFLP) analysis as previously described [21]. Primer sequences for PCR amplification of

each polymorphism were as follows: miR-146aC>G: forward 5’-CAT GGG TTG TGT CAG

TGT CAG AGC T-3’ and reverse 5’-TGC CTT CTG TCT CCA GTC TTC CAA-3’ (mismatch

sequence is underlined); miR-196a2T>C: forward 5’-CCC CTT CCC TTC TCC TCC AGA

TA-3’ and reverse 5’-CGA AAA CCG ACT GAT GTA ACT CCG-3’. For miR-146aC>G and

196a2T>C polymorphisms, we digested PCR products with SacI and MspI respectively (New

England BioLabs, Ipswich, MA, USA) at 37˚C for 16 hours, We confirmed the genotype of the

two sites by sequencing 10% of the samples.

miR-146a(C>G) and miR-196a2(T>C) expression vector construction

To amplify pre-miR-146aC or pre-miR-146aG from human genomic DNA previously deter-

mined to have the G or C genotype, we performed PCR using two primers 5’-GCCGAT GTG
TTA TCC TCA GCT TTG-3’ and 5’-ACG ATG ACA GAG ATA TCC CAG-3’were used to

amplify pre-miR-146a-C or pre-miR-146a-G from each type of human genomic DNA by PCR.

PCR products corresponding to pre-miR and its flanking regions (pre-miR-146aC, 322 bp;

pre-miR-146aG, 322 bp; pre-miR-196a2T, 345 bp; and pre-miR-196a2C, 345bp) were ampli-

fied and cloned into the pcDNA3.1 expression vector (Invitrogen, Carlsbad, CA, USA). The

sequences of the vectors were confirmed by direct sequencing; the only difference was in the

SNP.

Cell transfection

Human granulosa cells (KGN) [22] were plated at 1×105 cells per well in a 6-well plate and

transfected 24 h later using JetPRIME transfection reagent (Polyplus, Illkirch, France). Each

transfection reaction contained 500 ng of miR-146aG (in pcDNA3.1) or 500 ng of miR-146aC

(in pcDNA3.1). For controls, we performed mock transfection with scrambled plasmids (Cat

No: 1027271, Qiagen, Valencia, CA, USA) transfection with empty pcDNA 3.1 plasmid (Invi-

trogen, Carlsbad, CA, USA) and used untransfected cells. Total RNA was extracted 24 h after

transfection and used for real-time qRT-PCR.

RNA isolation and cDNA synthesis

Total RNA was isolated using TRIzol1 Reagent (Catalog No. 15596–026) and a miRNeasy

mini kit (Qiagen) with DNase treatment. cDNA was synthesized by using the miScript II RT

Kit (Qiagen). Manufacturers’ protocols were used for all kits. Isolated miRNA was quantified

using a Nanodrop ND 1000 (Thermo Fisher Scientific, Waltham, MA, USA), and 500 ng was

used for the subsequent cDNA preparation protocol.

Microarray analysis

The hybridized Human Genome U133A 2.0 Array (Affymetrix, Santa Clara, CA, USA) was

scanned and analyzed with the Affymetrix Microarray Analysis Suite version 5.0. The average

density of hybridization signals from three independent samples was used for data analysis,

and genes with signal density less than 300 pixels were omitted from the analysis. P-values

were calculated with two-sided t-tests with unequal variance assumptions. To correct for mul-

tiple hypothesis testing, the false discovery rate was calculated.
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Differentially expressed genes were selected using both a false discovery rate of less than

0.01 and a fold change greater than 1.5 or less than 21.5. A tree cluster was generated by hierar-

chical cluster analysis to classify the miRNA-transfected cells. For this analysis, we used aver-

age linkage metrics and centered Pearson correlations (Cluster 3.0). Java Tree view 1.1 (http://

sourceforge.net/projects/jtreeview/) was used for tree visualization.

qPCR array analysis

The ExProfile™ Gene qPCR Array 96-well-qPCR plate (CS-PAG-062515J1-96B6, GeneCopoeia

Inc, Rockville, MD, USA) was used for this study. Each array has a panel of validated, opti-

mized qPCR primers for 32 mRNAs associated with POI as well as the housekeeping genes

GAPDH and ACTB, which are used as references to normalize expression. Each well contains

a forward primer for the mRNA sequence cross-linked to the 96-well plate. The qPCR Primer

Array was performed using 20 μl reaction volumes per well containing 1 μl reverse transcrip-

tion product and detected using SYBR green, according to the manufacturer’s instructions.

The arrays were performed on a Bio-Rad iCycler iQ™ instrument (Bio-Rad, Hercules, CA,

USA).

Gene ontology analysis

To analyze the function of those genes, we used the DAVID software (https://david.ncifcrf.

gov/)[23], which queries for biological activities according to Gene Ontology (GO)

annotations.

Real-Time RT-PCR detection of miR-146a and miR-196a2

To evaluate miR-146a and miR-196a2 expression, real-time RT-PCR was used. RNA (500 ng)

was used for RT-PCR reactions that were performed using an miScript II RT kit (Qiagen, Hil-

den, Germany) acording to the manufacturer’s protocol. When reverse transcription reactions

are performed, mature miRNAs as well as certain small nucleolar RNAs and small nuclear

RNAs are selectively converted into cDNA. Mature miRNAs are polyadenylated by poly(A)

polymerase and reverse transcribed into cDNA using oligo-dT primers. The oligo-dT primers

have a 3’ degenerate anchor and a universal tag sequence on the 5’ end, allowing amplification

of mature miRNA at the real-time PCR step. Real-time PCR was performed on the Roter-

Gene System. RNU6 RNA was used as an endogenous control. All primers were part of SYBR

green assays for miR-146a, miR-196a2, or RNU6 (Qiagen, Hilden, Germany). The cycle num-

ber at which the product level exceeded an arbitrarily Ct (Cycle threshold) was determined for

each target sequence, and the amount of each miRNA relative to RNU6 RNA was quantified

using the formula 2-deltadeltaCt.

Validation of miR-146a target gene expression

Using the TargetRank software (http://genes.mit.edu/targetrank/), the alternative mature

forms of miR-146a-3p and miR-196a2-3p were predicted to have several hundred target genes

(using a Target Rankscore�0.35, 214 and 166 genes were found for miR-146a-3pC and miR-
146a-3pG, respectively, (supplement information). Because each mature miRNA binds to a

distinct set of target genes, different target genes are affected by the miRNAs produced by G or

C homozygotes (miR-146a-3pC or miR-146a-3pG, respectively). We chose POI-related candi-

date target genes (FOXO3, FOXL2, DIAPH2, BDNF, CCND2, and FOXE1); however, there was

no distinct set of POI-related target genes produced by miR-196a2-3p T or C homozygotes. To

validate the regulation of miR-146a and miR-196a2 target gene expression, we used real-time
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qRT-PCR. Total RNA (500 ng) was used for RT reactions that were performed using the miS-

cript II RT kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol. Real-

time PCR was performed on the Roter-Gene system. For the quantitative analysis of predicted

target genes, the primers were designed using Primer Premier 3 software (Table 1). GAPDH

RNA was used as an endogenous control. All primers were part of SYBR green assays for miR-

146a or miR-196a2 target genes or GAPDH (Bioneer, Daejeon, Korea). The cycle number at

which the product level exceeded an arbitrarily Ct (Cycle threshold) was determined for each

target sequence, and the amount of each target gene relative to GAPDH RNA was described

using the formula2-deltadeltaCt.

3’-UTR reporter gene assay

To generate 3’-UTR luciferase reporter constructs, 3’-UTRs from CCND2, FOXL2, FOXO3,

and FOXE1 mRNAs were cloned downstream of the firefly luciferase gene in the

pGL4.13-Control Vector (Promega, Madison, WI, USA). For luciferase reporter assays, KGN

cells were plated at 1×105cells per well in 6-well dishes and co-transfected with jetPRIME

reagent 24h later (Polyplus, Illkirch, France). Each co-transfection reaction contained 200 ng

of pcDNA3::146aC or 200 ng of pcDNA3::146aG plus 200 ng of pGL4.13::3’-UTR of each tar-

get gene construct and 200 ng of pGL4.75 plasmid, which served as the normalization control

(Promega, Madison, WI, USA). After 24 h, cells were washed and lysed with Passive Lysis

Buffer (Promega, Madison, WI, USA), and firefly luciferase activity was measured using the

Veritas Microplate Luminometer (Turner Biosystems, Foster City, CA, USA) and normalized

to renilla luciferase activity. We ran all samples in triplicate and replicated the experiment

three times.

Western blot analysis

Proteins were separated using 10.0% SDS polyacrylamide gel electrophoresis and transferred

onto nitrocellulose membrane (Millipore, Bedford, MA, USA). The membrane was blocked

with 5% non-fat dried milk in TBST (20 mM Tris-HCl, 150 mM NaCl, and 0.1% Tween 20,

pH 7.5) for 1 h and incubated overnight at 4˚C with each primary antibody. After washing

Table 1. Sequence of primers used for validation of target genes with RT-qPCR.

miRNA target sequence of 3’UTR* Primers Amplicon(bp)

miR-146a FOXO3 F: TCAGTGAGCCAGACTTGCTT 516

R: CCTTGTCCCTTCCTCAGCTGTTT

CCND2 F: ATTGAACCATTTGGGATGGA 325

R: AAGGGAACAAAATGCCACAC

DIAPH2 F: AGGTGCAGCATTCAGAGA 243

R: AAGTCATGTTGTACCATCACCC

BBS9 F: TGCATAGAAAGAGGGGTTGG 242

R: AACTGGCAAAGGCATATTTTT

FOXE1 F: CCCCTTTCCCTTGAGAAATC 309

R: CCCATTTGGACTGAACCAAG

FOXL2 F: TCTTGGCCTTCTCTCACAGG 230

R: TGCCGGGTTTCACATTTCTC

Gapdh F: AGGTCGGAGTCAACGGATTT 325

R: ATCTCGCTCCTGGAAGATGG

* miR-146a target prediction: Target Rank (http://genes.mit.edu/targetrank/)

https://doi.org/10.1371/journal.pone.0183479.t001
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with TBST buffer, membranes were incubated for 1 h at room temperature. Protein bands

were visualized using an ECL chemiluminescence system (Amersham, Buckinghamshire, UK).

Equal loading of samples was verified by Western blotting for GAPDH. Band intensities were

quantified using Adobe Photoshop CS5 (Adobe Systems, San Jose, CA).

Statistical analysis

All experiments were conducted at least three times. Statistical significance between two

groups was evaluated using a two-tailed Student’s t test. This statistical analysis was performed

with GraphPad Prism software 4.0 (GraphPad Software Inc, San Diego, CA, USA). Differences

were considered statistically significant at P< 0.05. Associations between gene modulations

due to the two miRNAs were examined using a two-sided Fisher exact test. Associations

between modulations by any two miRNAs was statistically significant if P< 0.001. Correla-

tions between each genotype or allele and FSH, LH or E2 levels were assessed using Kruskal-

Wallis and Mann-Whitney tests and P< 0.05 was considered statistically significant. These

statistical analysis were performed using, MedCalc version 12.1.4 (MedCalc Software).

Results

Expression of miR-146aC>G and miR-196a2T>C in granulosa cells

Pre-miR-146a, mature-miR-146a, and mature-miR-146a-3p were expressed from C and G

alleles; however, the amount of expression differed between the alleles (Fig 1). The mean

expression of pre-miR-146a in G was 46% lower than in C (P = 0.005), expression of mature-
miR-146a with G was 47% lower than with C (P = 0.0004), and mature-miR-146a-3p with G

was 12% lower than with C (P = 0.005) (Fig 1C). The mean pre-miR-196a2 expression with

CC was not lower than with TT (P = 0.005) (Fig 1D).

Gene ontology analysis from the microarray data

To investigate the regulation of POI-related target genes of miR-146aC>G and miR-
196a2T>C, we used microarray data. To analyze the function of those genes, we used DAVID

software, which queries for biological activities according to GO annotations. The DAVID

functional analysis of miR-146aC>G (Fig 2A) showed that the main biological processes

altered between the wild-type C allele and the variant types were cell differentiation (22 and 4

genes, respectively), metabolism (30 and 17 genes, respectively), cell growth (22 and 4 genes,

respectively), and regulation of genes often involved in reproductive diseases 28 and 11 genes,

respectively). The cellular components altered between wild-type and variant-type miR-
146aC>G were intracellular (79 and 34genes, respectively) and extracellular (21 and 3 genes,

respectively) (Fig 2B). The main molecular functions of miR-146aC>G altered between wild

type and variant type were nucleic acid binding (61 and 24 genes, respectively), calcium ion

binding (12 and 2 genes, respectively), and protein binding (9 and 3genes, respectively) (Fig

2C). The DAVID functional analysis for miR-196a2T>C (Fig 2A) showed that the main bio-

logical processes altered between the wild-type T allele and variant type were regulation of

gene expression (23 and 55 genes, respectively), metabolism (35 and 70 genes, respectively),

and cell organization and biogenesis (16 and 31 genes, respectively). The main cellular compo-

nents altered between wild-type and variant-type miR-146aC>G were intracellular (76 and

145genes, respectively) and extracellular (12 and 18genes, respectively) (Fig 2B). The main

molecular function of miR-146aC>G altered between wild type and variant type were nucleic

acid binding (62 and 125genes, respectively), calcium ion binding (8 and 13genes,
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respectively), transferase (19 and 30genes, respectively), and transcription factors (13 and

34genes, respectively)(Fig 2C).

Validation of microarray data and POI-related miR-146a target gene

identification

To examine the reliability of the array data, we randomly selected eight mRNAs detected by

microarray (S1 Fig) to confirm their expression in a granulosa cell line using qPCR. The results

from the qRT-PCRs were consistent with the microarray data (S1 Fig). Using the TargetRank

software (http://genes.mit.edu/targetrank/), we found that the alternative mature forms of

miR-146a-3p and miR-196a2-3p were predicted to have several hundred target genes (data not

shown). Using a Target Rank score of�0.35, 214 and 166 genes were found for miR-146a-3pC

and for miR-146a-3pG, respectively (S1 Table).

Because each mature miRNA bound to a distinct set of target genes, different target genes

were affected by the miRNAs produced by G or C homozygotes (miR-146a and miR-146a-3pC

or miR-146a-3pG, respectively). We chose POI-related target genes from micro array data

(FOXO3, FOXL2, DIAPH2, BDNF, CCND2, and FOXE1) (Table 1, S2 Table). No distinct set of

POI-related target genes produced by miR-196a2-3p T or C homozygotes were found. To

Fig 1. Expression of miR-146aC>G and miR-196a2T>C. (A) Levels of mature miR-146a and (B) Levels of mature miR-196a2 in

cells transfected with pri-miR-146a-GG, pri-miR-146a-CC or pri-miR-196a2TT, pri-miR-196a2CC by reverse transcription

quantitative polymerase chain reaction. (C) Real-time quantitative PCR was used to detect the expression levels of pre, mature, and

mature-3p in miR-146aC>G (rs2910164) and (D) miR-196a2T>C (rs11614913). Data are reported as means (±SD) from three

independent experiments. Data are normalized to the reference RNU6. P<0.05 was considered statistically significant. PR: Pre-form,

Mature: mature form, -3p: mature form of passenger strand.

https://doi.org/10.1371/journal.pone.0183479.g001

miRNA polymorphisms and their target gene regulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0183479 August 25, 2017 7 / 18

http://genes.mit.edu/targetrank/
https://doi.org/10.1371/journal.pone.0183479.g001
https://doi.org/10.1371/journal.pone.0183479


Fig 2. Gene Ontology for 2×up and down-regulated genes by miR-146a and miR-196a2. The expression of

miR-146a and miR-196a2 in granulosa cells was assessed by microarray. (A) Target gene frequency for miR-146a

[Wild type (C): black, variant (G): silver] and miR-196a2 [Wild type (T): black, variant (C): silver] in biological

process, (B) cellular components, and (C) molecular function.

https://doi.org/10.1371/journal.pone.0183479.g002
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examine the reliability of the POI-related target gene expression, we selected six mRNAs

detected by microarray (Fig 3A–3F). Six individual target mRNAs were further examined in

an independent set of RNA samples using the qPCR-array and Real time PCR. As shown in

Fig 3, individual expression using the micro array confirmed the result of the Real time PCR

(Fig 3A–3F) and qPCR-array (Fig 3G–3L) analysis for all six genes.

Regulation of 3’-UTR of target genes from the miR-146a polymorphisms

To analyze the effect of miR-146aC>G on mRNA levels of six putative target genes (FOXO3,

FOXL2, DIAPH2, BDNF, CCND2, and FOXE1) identified from microarray and qPCR-array

data, we constructed an expression vector system and quantified the abundance of candidate

mRNAs reported to be regulated by miR-146a using real-time PCR (Applied Biosystems,

Fig 3. Expression of POI-related miR-146aC>G target genes. Validation of the expression of down-regulated genes from

microarrays (A-F) and qPCR-arrays (G-L). Transient transfection of pGL4.13 plasmids with FOXO3, FOXl2, ESR1, BBS9, DIAPH2,

and FOXE1 in the KGN cell line. mRNA expression levels were normalized to those of GAPDH expression. The data indicate the

mean values with the standard deviation relative to miR-mimic negative expression from three independent experiments. Control

(miR-scrambled + pGL4.13–3’UTR of each target gene). *P<0.05 was considered statistically significant.

https://doi.org/10.1371/journal.pone.0183479.g003
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Foster City, CA, USA)(Fig 4). We observed a significant reduction in mRNA expression in the

cells co-transfected with both pcDNA3.1-miR-146aC and pGL-4.13–3’UTR(FOXO3),

pGL4.13–3’UTR(CCND2), or pGL4.13–3’UTR(FOXL2) compared to the cells co-transfected

with both pcDNA3.1-miR-146aG and pGL4.13–3’UTR(FOXO3), pGL4.13–3’UTR(CCND2),

or pGL4.13–3’UTR(FOXL2), indicating miR-146aC>G could regulate the 3’UTRs of FOXO3,

CCND2, and FOXL2 mRNAs in the Human granulosa cell line (Fig 4).

To experimentally confirm the interaction between miR-146aC>G and FOXO3 and

CCND2, we applied reporter gene assays. We cloned fragments of 3’UTR segments of FOXO3
or CCND2 into the pGL4.13 expression reporter vector (Promega, Madison, WI, USA). Then,

we transfected pGL-4.13–3’-UTR (FOXO3) and pGL-4.13–3’UTR (CCND2) into KGN cell

lines with or without pcDNA3.1-miR-146a. Either C or G alleles of miR-146a were used in the

analyses. After 24 hours, we observed a significant reduction of luciferase activity in the cells

transfected with both pcDNA3.1-miR-146a and pGL-4.13–3’UTR(FOXO3) or pGL-4.13–

3’UTR(CCND2) compared to the cells transfected with pGL-4.13–3’UTR(FOXO3) or pGL-

4.13–3’UTR(CCND2) alone or with scrambled miRNA (Fig 5C and 5D), indicating miR-
146aC>G could bind to the 3’UTRs of FOXO3 and CCND2mRNAs in vitro.

Fig 4. Validation of POI-related miR-146aC>G target genes. Validation of the expression using qRT-PCR. Transient transfection

of pGL4.13 plasmids with FOXO3, FOXl2, ESR1, BBS9, DIAPH2, and FOXE1 in the KGN cell line. mRNA expression levels were

normalized to those of GAPDH expression. The data indicate the mean values with the standard deviation relative to miR-mimic

negative expression from three independent experiments. Control (miR-scrambled + pGL4.13–3’UTR of target gene). *P<0.05 was

considered statistically significant.

https://doi.org/10.1371/journal.pone.0183479.g004
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Endogenous regulation of target proteins from the miR-146a

polymorphisms

Endogenous FOXO3, CCND2, FOXE1 and FOXL2 expression levels were detected by per-

forming Western blots of KGN cells transfected with miR-146aC, miR-146aG or control

(pcDNA3.1 and a miRNA-mimic off-target control) (Fig 5E and 5F and S2 Fig). FOXO3 pro-

tein level was significantly diminished when cells were transfected with miR-146aC compared

with miR-146aG or off-target control, By contrast, CCND2 protein level showed no marked

difference when cells were transfected with miR-146aC compared with miR-146aG or off-tar-

get control (Fig 5E and 5F).

Clinical characteristics

FSH, LH, and E2 levels of POI patients and controls are summarized in Table 2. Patients with

POI had significantly increased FSH and LH levels (p<0.0001, p<0.0001) and Patients with

POI had decreased E2 levels compared with control women (p<0.0001). However, hormonal

Fig 5. Effects of miR-146aC>G on the luciferase reporter gene with the 3’-UTR of FOXO3 and CCND2. Schematic

representation of target genes 3´-UTRs that have presumed miR-146a-3p-C and miR-146a-3p-G binding sites in conserved regions

(A and B). Transient transfection of pGL4.13 plasmids with FOXO3 (C) and CCND2 (D) into the KGN cell line with miR-146aC>G in

pcDNA3.1. Luciferase expression levels were normalized using renilla luciferase expression. Western blot was used to detect

FOXO3 and CCND2 protein levels in each group (E and F). KGN cells were transfected with miR-146aC or miR-146aG in pcDNA3.1

or controls. Protein expression levels were normalized using GAPDH expression. The expression data are the mean ± standard

deviation of three independent experiments normalized to the miR-mimic (off-target) negative control. Control: miR-

scrambled + target construct + pGL4.75, 146aC: miR-146aC + target construct + pGL4.75, 146aG: miR-146aG + target

construct + pGL4.75. P<0.05 was considered statistically significant.

https://doi.org/10.1371/journal.pone.0183479.g005

miRNA polymorphisms and their target gene regulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0183479 August 25, 2017 11 / 18

https://doi.org/10.1371/journal.pone.0183479.g005
https://doi.org/10.1371/journal.pone.0183479


levels were not significantly different between POI patients and control subjects with miR-
146aC>G and miR-196a2T>C (Table 3).

Discussion

Increasing evidence supports the role of microRNAs in reproductive disorders [24–27]. In this

context, evidence supporting the role of miR-146a and miR-196a2 in oocyte maturation and

preimplantation embryo development [13, 28] has also been accumulating, which led us to

investigate whether these miRNA SNPs (miR-146aC>G and miR-196a2T>C) influence the

risk of POI-related genes in Korean woman.

We previously showed that the combined genotypes and haplotypes of miR-146aC>G,

miR-196a2T>C could be associated with POI in Korean women [12]. We also found that the

expression of pre, mature, and mature-3p miR-146a with the G allele was significantly lower

(P<0.05) than that of miR-146a with the C allele (Fig 1C), [19]. These results suggest that the

polymorphisms in miR-146a could change their target gene expression [19]. The recent identi-

fication of miRNAs as an important posttranscriptional gene regulator elucidated the role of

posttranscriptional gene regulation in reproductive disease [24,25]. In addition, miRNAs are

involved in crucial cell processes, such as apoptosis, differentiation, and oncogenesis by regu-

lating signal transduction pathways [29]. To investigate regulation of the POI-related target

genes of miR-146aC>G and miR-196a2T>C, we used microarray data and prediction tools.

To analyze the function of those genes from the microarray data, we used DAVID software

[30], which provides a comprehensive set of functional annotation tools for investigators to

Table 2. Clinical variables of Korean participants in the primary ovarian insufficiency (POI) patients and control groups.

Characteristics Controls POI patients P value

Age mean ± SD (range) 33.34 ± 5.70 (23–43) 31.34 ± 4.97 (21–43) NS

FSH (mIU/ml) mean ± SD 8.12 ± 2.85 66.46 ± 14.11 <0.0001

LH (mIU/ml) mean ± SD 3.32 ± 1.761 26.23 ± 10.68 <0.0001

Estradiol (pg/ml) mean ± SD 26 ± 14.75 7.93 ± 2.59 <0.0001

Abbreviations: SD, standard deviation; NS, not significant; FSH, follicle-stimulating hormone; LH, luteinizing hormone; P value by t test.

https://doi.org/10.1371/journal.pone.0183479.t002

Table 3. FSH, LH and E2 levels of control and POI participants based on miRNA polymorphic genotype.

FSH(mIU/mL) mean ± SD LH(mIU/mL) mean ± SD E2(pg/mL) mean ± SD

Genotypes control patients control patients control patients

miR-146aC>G

CC 8.46 ± 3.53 61.29 ± 13.52 3.3 ± 1.75 26.01 ± 7.19 25.75 ± 12.34 7.91 ± 2.97

CG 8.05 ± 2.44 62.05 ± 14.44 3.44 ± 1.84 26.70 ± 13.98 26.95 ± 16.08 7.62 ± 1.73

GG 7.45 ± 2.39 65.44 ± 14.78 2.88 ± 1.23 25.26 ± 3.78 22.6 ± 15.34 8.93 ± 3.63

P 0.511 0.533 0.567 0.856 0.61 0.144

miR-196a2T>C

TT 7.8 ± 2.17 62.09 ± 13.38 2.67 ± 1.22 28.80 ± 17.71 23.52 ± 10.63 8.50 ± 3.40

TC 8.57 ± 3.16 63.58 ± 15.63 3.40 ± 1.99 25.85 ± 9.05 27.60 ± 15.61 7.74 ± 2.24

CC 7.23 ± 2.20 60.30 ± 12.01 3.51 ± 1.26 25.12 ± 5.77 23.70 ± 14.70 7.82 ± 2.51

P 0.101 0.501 0.239 0.343 0.383 0.412

Abbreviations: SD, standard deviation; FSH, follicle-stimulating hormone; LH, luteinizing hormone; POI, Primary ovarian insufficiency; P value by ANOVA

test.

https://doi.org/10.1371/journal.pone.0183479.t003
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understand biological meaning behind large list of genes according to GO annotations [30].

The functional analysis of miR-146aC>G and miR-196a2T>C showed that the main biological

processes altered between wild type and variant type were cell differentiation, metabolism, cell

growth, and regulation of genes often involved in reproductive diseases (Fig 2).

Using TargetRank (http://genes.mit.edu/targetrank/), we found that the alternative mature

forms of miR-146a-3p and miR-196a2-3p were predicted to have several hundred target genes

(using a Target Rank score of�0.35, 214 and 166 genes were found for miR-146a-3pC and

miR-146a-3pG, respectively, and 55 genes were found for miR-196a2-3p T or C; data not

shown). Of those genes, we selected the POI-related miR-146aC>G target genes FOXO3,

FOXL2, DIAPH2, BDNF, CCND2, and FOXE1. Previously, our work suggested that the gene—

gene interaction between miR-146a and miR-196a2could be involved in POI development

[12]; however, we did not observe any expression changes associated with miR-196a2 polymor-

phisms (Fig 1C), [19].

To further determine the function of the differentially expressed target genes of miR-146a-

C>G, we investigated transcriptional regulation of FOXO3, FOXL2, DIAPH2, BBS9,CCND2,

and FOXE1 as target genes of miR-146aC>G polymorphisms. We found that miR-146a leads

to a significant regulation of the mRNA levels of FOXO3, FOXL2, and CCND2 compared to

controls (Fig 4). Of note, FOXO3 is targeted by miR-146a-3pC. Because Foxo3 functions as a

master regulator and potent suppressor of primordial follicle activation, loss of function in the

mouse leads to POI due to global follicle activation [31]. The FOXO3 gene encodes the fork-

head family of transcription factors, which is characterized by a distinct forkhead domain [32].

FOXO3 likely functions as an apoptosis trigger by activating genes necessary for cell death

[33]. Numerous studies report that FOXO3-deficient ovaries exhibit defects in oocyte apoptosis

[34–36]. In addition, mutations in FOXO1 and FOXO3 have been identified in women with

POI [37].

We also found that CCND2 is regulated by miR-146aC>G. CCND2 involved in Wnt signal-

ing, cell-cycle pathways, and adhesion molecule formation [38]. In addition, Wnt signaling

and cell-cycle pathways are crucial in POI patients [39]. CCND2 plays an important role in ini-

tiating the early-to-mid G1 phase transition and is required for granulosa cell proliferation

during ovarian folliculogenesis [40]. These results raise the possibility that miRNA polymor-

phisms may contribute to dysregulation and/or functional variations of the CCND2, FOXO3.

Because FOXL2 is suggested to play a role in ovarian development and function [41], it may be

an important mediator of ovarian development through miR-146a. However, it remains

unknown whether FOXL2 is a target of miR-146a activity.

To experimentally confirm the interaction between miR-146aC>G and FOXO3 or

CCND2, we used reporter gene and Western blot assays. We observed a marked luciferase

level reduction in cells co-expressing miR-146aC and the 3’-UTR of FOXO3-luc. or the 3’-

UTR of CCND2-luc. However, luciferase levels were not reduced as efficiently in cells co-

expressing miR-146aG and the 3’-UTR of FOXO3-luc. or the 3’-UTR of CCND2-luc. (Fig 5C

and 5D).

These findings suggest that miR-146a polymorphisms differentially affect CCND2 and

FOXO3 expression. We observed that miR-146a directly binds the 3’UTR of the target gene

potentially regulating the expression of target gene mRNA. More interestingly, we observed

that the binding capacity of miR-146a to the 3’-UTR of target genes was significantly stronger

in cell lines transfected with the wild-type C allele compared with those transfected with the G

allele. This observation indicates that the binding capacity was significantly different between

common and variant alleles (C and G type). We also confirmed that FOXO3 was decreased by

western blot (Fig 5E). These results are consistent with our observation that the wild-type C

allele had higher levels of mature miR-146a than the mutant G allele.
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A recent study showed that miR-146a, miR-27a, miR-23a, and miR-126 were highly

expressed in plasma from POI patients compared with controls; fold change was 5.19, 2.98,

2.75, and 2.29 respectively [42]. Furthermore, in isolated ovarian granulosa cells from patients

with POI, the expression of miR-146a was markedly increased [43]. These results suggest that

miR-146a is significantly upregulated in POI patients compared with normal controls. In addi-

tion, numerous studies have implicated miR-146a in cell apoptosis [44–46]. miR-146a has been

reported to contribute to granulosa cell apoptosis [47]. These results indicate that miR-146a
plays an important role in the apoptosis of ovarian granulosa cells in patients with POI. Our

previous association data also indicated that the miR-146aC allele in combination with the

miR-196a2T allele increased POI risk. By contrast, the miR-146aG allele in combination with

the miR-196a2T allele reduced POI risk. (OR: 0.193, 95% CI: 0.037–1.002, P<0.05) [12]. Thus,

the C-allele type of miR-146a interacts more effectively with target genes (FOXO3 and
CCND2) than the G-allele type, increasing the negative effects of POI. A previous report

showed that targeted disruption of FOXO3 in granulosa cells leads to the production of ovar-

ian-derived factor(s) that potently suppresses pituitary FSH biosynthesis [48]. Therefore, we

examined if polymorphisms of miR-146aC>G influence FSH, LH and E2 levels via regulation

of FOXO3. We used ANOVA to determine if there are any statistically significant differences

between hormonal levels (FSH, LH, E2) and miR-146aC>G. While no significant difference

was found, there was a trend of increasing FSH levels with the miR-146aG polymorphic

variant.

Taken together, our data suggest a model where miR-146a might play a role in the regula-

tion of FOXO3 and CCND2, and a functional genetic variant in miR-146a can alter the expres-

sion of mature miR-146 and thereby affect POI-related target gene expression. Therefore, it is

biologically plausible that the miR-146aC>G genetic variant may influence POI susceptibility

by altering the expression of miR-146a target genes (e.g., FOXO3, FOXL2 and CCND2).

In this work, the miRNA target sites of interest in the 3’-UTR of (FOXO3 and CCND2) were

cloned downstream of a reporter gene (luciferase). Transfection of wild-type and variants of

miR-146a resulted in altered expression of luciferase and FOXO3 proteins, indicating that

polymorphisms of miR-146aC>G could be responsible for the differential translation in this

in vitro system. However, the 30-UTRs may contain multiple targeting sequences and other

regulatory elements. Further assays to test each miRNA targeting sequence are needed. One

limitation of our study is that we could not compare expression levels of miRNAs and target

genes in ovary samples collected from patients with POI who had been miRNA genotyped

because we had limited access to these samples. While we have not identified the underlying

mechanisms by which miR-146aC>G polymorphisms affect the development of POI, the data

suggest that miR-146aC>G polymorphisms could contribute to regulation of POI-related tar-

get genes, specifically FOXO3. Further studies of other pre-miRNA polymorphisms in diverse

ethnic populations will advance our understanding of the role of miRNA polymorphisms in

POI and POI target gene regulation.

Conclusion

Several genetic studies using the candidate gene approach have now been undertaken, and

many potentially causal gene variants have been identified in POI [4, 49,50]. However, there

are no examples that show how the SNP polymorphisms at the miRNA level affect the 3’-UTR

of miRNA target genes in POI. We found evidence that the genetic polymorphism in miR-
146aC>G regulated several POI-related target genes. Previous reports showed that polymor-

phisms in the miR-146a precursor (rs2910164) altered the expression of pre- and mature miR-
146a [51–53]. To the best of our knowledge, this is the first report to evaluate POI-related gene
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regulation by miR-146a polymorphisms. As more experimental information about transcrip-

tional regulation of miRNA genes themselves and their target genes is reported, we could

extend the current study to have a deeper understanding of miRNA target gene regulation and

the relationship between the regulation of miRNA genes and that of their targets in POI.
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