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Abstract

In Alzheimer’s disease (AD), dysregulation of intracellular Ca2+ signalling has been

observed as an early event prior to the presence of clinical symptoms and is believed to be a

crucial factor contributing to AD pathogenesis. Amyloid-β oligomers (AβOs) disturb the N-

methyl-D-aspartate receptor (NMDAR)-mediated postsynaptic Ca2+ signalling in response

to presynaptic stimulation by increasing the availability of extracellular glutamate as well as

directly disturbing the NMDARs. The abnormal Ca2+ response can further lead to impair-

ments in long-term potentiation (LTP), an important process in memory formation. In this

study, we develop a mathematical model of a CA1 pyramidal dendritic spine and conduct

computational experiments. We use this model to mimic alterations by AβOs under AD con-

ditions to investigate how they are involved in the Ca2+ dysregulation in the dendritic spine.

The alterations in glutamate availability, as well as NMDAR availability and activity, are

studied both individually and globally. The simulation results suggest that alterations in glu-

tamate availability mostly affect the synaptic response and have limited effects on the extra-

synaptic receptors. Moreover, overactivation of extrasynaptic NMDARs in AD is unlikely to

be induced by presynaptic stimulation, but by upregulation of the resting level of glutamate,

possibly resulting from these alterations. Furthermore, internalisation of synaptic NR2A-

NMDAR shows greater damage to the postsynaptic Ca2+ response in comparison with the

internalisation of NR2B-NMDARs; thus, the suggested neuroprotective role of the latter is

very limited during synaptic transmission in AD. We integrate a CaMKII state transition

model with the Ca2+ model to further study the effects of alterations of NMDARs in the CaM-

KII state transition, an important downstream event in the early phase of LTP. The model

reveals that cooperation between NR2A- and NR2B-NMDAR is required for LTP induction.

Under AD conditions, internalisation of membrane NMDARs is suggested to be the cause of

the loss of synapse numbers by disrupting CaMKII-NMDAR formation.
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Introduction

Alzheimer’s disease (AD) is characterised by progressive and irreversible loss of memory and

cognitive functions, but the exact pathophysiology and pathogenesis of the disease are still

unknown [1]. Calcium (Ca2+) dysregulation has been observed in the brains of AD patients

before the presence of overt clinical symptoms or the development of the classic biological hall-

marks of amyloid plaques and neurofibrillary tangles [2, 3]. Genetic studies have also revealed

altered levels of the genes and proteins related to intracellular Ca2+signalling pathways in AD

cells [4, 5]. The Ca2+hypothesis of AD, which was first proposed by Khachaturian, and many

subsequent experimental studies have suggested that the sustained disturbances in intracellular

Ca2+signalling contribute to the major symptoms of AD and may be the predominant cause of

the neurodegeneration in AD [6–8].

Amyloid-β oligomers (AβOs) have been reported to disturb neuronal Ca2+ by targeting var-

ious components of the Ca2+ signalling network, ranging from glutamatergic neurotransmis-

sion, membrane channels and pumps, to intracellular Ca2+ sources [9–11]. The overall effect

leads to abnormal intracellular Ca2+ transients, elevation in the basal level of cytosolic Ca2+

and, ultimately, intracellular Ca2+ [12]. Alteration of intracellular Ca2+ signalling is a key

upstream event in AD pathophysiology that initiates and accelerates other severe downstream

events, such as amyloid plaque deposition and neuronal apoptosis [9, 13].

There are two types of glutamate receptors in the pyramidal neurons of the hippocampus:

the N-methyl-D-aspartate receptor (NMDAR) and the α-amino-3-hydroxy-5-methyl-4-isoxa-

zolepropionic acid receptor (AMPAR) at the excitatory synapses [14]. NMDARs are located at

both the synaptic active zone and the extrasynaptic region [15] (Fig 1), which includes a perisy-

naptic zone, a membrane area that surrounds the synaptic zone, and an extrasynaptic zone

containing the dendritic spine neck, the dendritic shaft, and the neuron body. NMDARs play

roles in Ca2+ signalling as plasma membrane Ca2+ channels and in the formation of the Ca2+

/calmodulin-dependent protein kinase II (CaMKII)-NMDAR complex, a critical modulator in

long-term potentiation (LTP) induction in the postsynaptic density (PSD) [16, 17]. NMDAR

is a heterotetramer mostly composed of two NR1 subunits and two NR2 subunits [18, 19]. In

the hippocampus, NR2 subunits express dominantly as NR2A and NR2B [20]. The NR2 sub-

unit composition of NMDARs determines their key properties, such as glutamate affinity,

open probability and desensitisation rate [20–22] (see S1 Appendix for definitions and expla-

nations), which makes the ratio of NR2A to NR2B an important factor in the Ca2+ response

and synaptic plasticity [23]. In mature synapses, NR2A-containing NMDARs (NR2A-NM-

DARs) are predominant at the synaptic sites, and comprise of approximately 60% of the total

synaptic NMDARs [24]. In contrast, NMDARs located outside the synaptic region are mainly

NR2B-containing NMDARs (NR2B-NMDARs) [24]. Synaptic and extrasynaptic NMDARs

are proposed to play opposite physiological roles in mediating intracellular signalling and

death pathways: the activation of synaptic NMDARs is shown to promote cell survival, where-

as stimulation of the extrasynaptic NMDARs contributes to cell death (see [25] for a review).

AβO can affect glutamatergic synaptic transmission by increasing the availability of extra-

cellular glutamate as well as directly disturbing the NMDARs (Fig 1) (see Section 2 of S1

Appendix). Experimental observations, as discussed briefly in Section 2 of S1 Appendix, show

the paradoxical effects of AβOs on the Ca2+ dynamics of the postsynaptic neurons which lead

to different interpretations of disturbances in the downstream events that are mediated by the

cytosolic Ca2+ levels. Upregulation in the availability of glutamate to NMDARs may be the

major reason for the excitotoxicity and Ca2+ overload observed in AD, suggesting that AβO is

a factor in inducing the enhanced excitotoxicity [11, 26–29]. The loss of synaptic NMDARs

may inhibit NMDAR-dependent LTP [30, 31], contributing to the depression of glutamatergic
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transmission and reductions in memory formation. However, to some extent, the loss of syn-

aptic NMDARs may also be a neuroprotective mechanism against the glutamate-induced neu-

rotoxicity and excessive influx of Ca2+ [32, 33]. The effects of these alterations are studied

individually in transgenic animal models or by injecting a high concentration of Aβ into

healthy animals or cells [32, 34–40]. However, the use of different experiment materials or

experimental protocols from different research groups can lead to controversial results for

AβO disturbances (see reviews in [41–43]). A mathematical model of Ca2+ dynamics in the

dendritic spine with presynaptic stimulations as inputs, will provide useful insights into the

effects of the above disturbances at different levels in AD, both individually and collectively.

In this paper, we present an integrated mathematical model of an average CA1 pyramidal

dendritic spine that includes location- and NR2 subunit-specific characteristics of NMDARs

to understand the AβO–induced dysregulation of intracellular Ca2+ and its relationship to the

balance between synaptic and extrasynaptic NMDARs in the dendritic spine of pyramidal neu-

rons. We use the model to mimic several types of disturbances of AβO that have been pro-

posed to be critical to the pathogenesis of AD (see Section 2 of S1 Appendix). The model

shows that AβO-dependent disturbances on synaptic glutamatergic transmission mainly affect

Ca2+ signalling in the dendritic spine and have only minor effects on Ca2+ signalling in the

whole cell. In contrast, AβO-induced non-synaptic glutamate release and elevation in extrasy-

naptic glutamate concentration mainly affect the Ca2+ dynamics of the whole cell. Further-

more, the simulation results suggest that among all disturbances tested, the presynaptic release

Fig 1. Disturbances in glutamatergic synaptic transmission by AβO in AD. Referring to the arrow labels:

(1) AβO inhibits glutamate clearance by the glutamate transporters; and (2) and (3) AβO promotes glutamate

vesicle release from the presynaptic terminal and ambient astrocytes, respectively; and (4) AβO also

mediates in the internalisation of the surface receptors at the synaptic site. (1), (2) and (3) result in an increase

in the extracellular glutamate concentration and, ultimately, may lead to the over activation of synaptic

glutamate receptors or of receptors at distant locations from the release site. In contrast, (4) leads to a

decrease in functional synaptic receptors that may depress synaptic activity. This figure is produced using

Servier Medical Art (http://www.servier.com/Powerpointimage-bank).

https://doi.org/10.1371/journal.pone.0182743.g001
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of glutamate is the most sensitive disturbance for NMDAR activity and Ca2+ response in the

postsynaptic neurons.

We also extend our research on synaptic Ca2+ signalling to the downstream CaMKII state

transition to investigate the disturbances from alterations in synaptic NMDAR in the emergence

of LTP in AD: we integrate the Ca2+ model with a state transition model of CaMKII to study the

subunit-specific roles of NMDAR in the postsynaptic response and the formation of NMDAR-

mediated LTP. The model reveals that cooperation between NR2A- and NR2B-NMDAR is

necessary for NMDAR-LTP. Simulation results suggest that the internalisation of synaptic

NR2B-NMDAR observed in the experiments [31, 39] does not severely affect the synaptic Ca2+

responses, thus, it is not enough to protect against the glutamate-induced neurotoxicity in AD.

Instead, loss of synaptic membrane NR2B-NMDAR will inhibit LTP induction by disrupting

CaMKII-NMDAR formation.

Methods

Model overview

We construct a mathematical model of Ca2+ dynamics (denoted as Ca2+-Model) in the den-

dritic spine in response to presynaptic stimulation, which is carefully developed according to

the characteristics of the CA1 pyramidal dendritic spine. Ca2+-Model integrates three aspects:

(1) SubModel 1: action potential (AP)-induced presynaptic glutamate release and diffusion;

(2) SubModel 2: glutamate receptor activation; and (3) SubModel 3: Ca2+ dynamics within a

single dendritic spine and its parent dendrite shaft (Fig 2A–2C). To further study the effects of

NMDAR alterations in their roles in downstream events, we extend Ca2+-Model with a CaM-

KII state transition model (denoted as CaMKII-ST-Model) by He et al. [44] (Fig 2D). All simu-

lations are performed using Matlab software, with the built-in solver ode15.

Ca2+-Model development

SubModel 1: A model of glutamate release, uptake and diffusion. We simulate the glu-

tamate release from the presynaptic terminal, and its diffusion inside the synaptic cleft and in

the extrasynaptic space, based on the model by Rusakov and Kullmann [45]. A schematic of

SubModel 1 in two-dimensions is given in Figure A in S2 Appendix. The dendritic spine head

and the presynaptic terminal are configured as two opposite hemispheres with the same radius

and there is no glutamate diffusion within them. The synaptic cleft is a flat cylinder between

these two hemispheres, with a height of 20 nm. We take 0.1 μm3 as the volume of the spine

head to represent the average size of spine [46], which gives a radius of 363 nm for the synaptic

cleft and the two opposite hemispheres. The extrasynaptic space is a spherically isotropic

porous medium surrounded by the two hemispheric obstacles.

The concentration of glutamate in a glutamate vesicle is about 100 mM [47], which corre-

sponds to about 1500 glutamate molecules. Therefore, we assume that a presynaptic stimula-

tion pulse can induce the release of 1500 glutamate molecules from a point site in the centre of

the presynaptic terminal surface (see Section 1 of S2 Appendix). Once released, glutamate mol-

ecules diffuse through the flat cylindrical cleft with an effective glutamate diffusion coefficient

(DGlu), and then escape from the cleft into the extrasynaptic space, where DGlu is reduced by a

tortuosity factor λ (DGlu
� ¼

DGlu
l2 ). The uptake of glutamate is governed by glutamate transport-

ers in astrocytes in the extrasynaptic space. In the extrasynaptic space, glutamate transporters

are distributed homogeneously at a concentration (Btotal) of 0.5 mM [48] (see Section 1 of S2

Appendix). To track the glutamate after release at different locations, we define PSD or synap-

tic, perisynaptic and extrasynaptic sites as follows: the surface of PSD region and perisynaptic
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zone are set from 0 to 150 nm and 365 nm away from the centre of the postsynaptic surface,

respectively [49] (Figure A (1) and (2) in S2 Appendix). The extrasynaptic space is set beyond

the outside border of the perisynaptic zone and the extrasynaptic receptors are located at the

dendritic shaft.

SubModel 2: A model of NMDAR and AMPAR activation. Glutamate receptors are

located at the synaptic, perisynaptic and extrasynaptic membrane surfaces with varying num-

bers (Table B in S2 Appendix). Each receptor is independent of each other and the local gluta-

mate concentration received by each receptor depends on its distance from the release site and

is calculated by SubModel 1. We simulate the state transition of a single NMDAR and AMPAR

using an NR2 subtype specific, eight-state kinetic model [50] and a seven-state model [51],

respectively (Figure B in S2 Appendix). The reaction rate constants are given in Table B in S2

Appendix.

Based on the experimental observations [24, 25, 49, 52, 53], the distributions of NMDARs

are: 12 synaptic NR2A-NMDARs, 8 synaptic NR2B-NMDAR, 3 perisynaptic NR2B-NMDAR,

Fig 2. Model conceptual framework. Ca2+-Model consists of three submodels: (A) SubModel 1: After

presynaptic stimulation, glutamate is released from the presynaptic terminal into the synaptic cleft. It is then

diffuses across the synaptic cleft and into the extrasynaptic space. Through diffusion, glutamate can bind to

the glutamate receptors at different locations; (B) SubModel 2: Glutamate receptor activation. NMDAR and

AMPAR are the most common ionotropic glutamate receptors. NMDAR is the major Ca2+ channel; Ca2+ influx

through NMDAR requires both the binding of glutamate to NMDAR and the removal of its Mg2+ blockage. The

latter can be achieved by membrane depolarisation after the activation of AMPARs; (C) SubModel 3: A four-

compartment model of the dendritic spine and its adjacent dendritic shaft that includes the mechanisms for

Ca2+ influx, extrusion and buffering in each compartment and diffusion between the two neighbouring

compartments; and (D) Schematics of the model integration of Ca2+-Model with CaMKII-ST-Model [44].

https://doi.org/10.1371/journal.pone.0182743.g002
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and 8 extrasynaptic NR2B-NMDAR. The number of AMPARs depends on the spine geometry

and is positively correlated with PSD size [49, 54]. We assume that the functional AMPARs

are homogeneously located in the membrane of PSD and at the dendritic shaft with different

densities, and there is no AMPAR in the rest of the spine membrane [55]. The number of

AMPARs per spine is critical for the generation of the temporary depolarisation of the post-

synaptic membrane potential after stimulation; this is also called the excitatory postsynaptic

potential (EPSP). Based on the experiments [56, 57], the EPSP amplitude at the synaptic site is

lower than 5 mV after a single synaptic stimulation. We estimate the number of synaptic

AMPARs based on the established experimental data [58, 59], to generate the expected EPSP

amplitude (see Section 5 of S2 Appendix). The neck conductance we use in the simulation is

157 MO, representing the resistance of a medium sized spine neck of CA1 pyramidal neurons

[59]. The number of extrasynaptic AMPARs (eAMPARs) at the dendritic shaft is low and sta-

ble, and is calculated based on the membrane surface area (see Section 5 of S2 Appendix) [55].

The removal of the Mg2+ blockage of NMDARs and the activation of voltage-dependent cal-

cium channel (VDCC) depend on the membrane depolarisation after stimulation. We build

an electrical model of a single spine and its adjacent dendritic shaft to capture the dynamics of

the membrane potential (see Section 3 of S2 Appendix for the model details).

SubModel 3: A compartmental model of a dendritic spine and shaft. We construct a

four-compartment model to represent a pyramidal neuron dendritic spine and its adjacent

dendritic shaft. The four compartments are PSD, cytosol, spine neck and dendritic shaft

(Figure D in S2 Appendix). The geometry of the spine is consistent with that of SubModel 1

and SubModel 2 (Table A in S2 Appendix). The spine head is assumed to be a hemisphere and

is divided into PSD and cytosol compartments. The PSD compartment is a cylinder attached

to the postsynaptic membrane and the rest of the spine head is in the cytosol compartment.

PSD occupies 10% of the total volume of the spine head [60, 61]. The spine neck is represented

as a long thin cylinder, which is coaxial with the spine head. The dendritic shaft is another cyl-

inder that is attached to the bottom of the spine neck with a radius of 0.5 μm and a length of

1 μm (details of this compartmental model are in Section 4 of S2 Appendix).

Parameter calibration and estimation

The simulation temperature used in this paper is 34˚C, a near-physiological temperature

widely used in experiments and computational simulations [46, 62]. All temperature-depen-

dent rate constants are adjusted according to their temperature coefficients (Q10), as listed in

Table 1.

The values of the ten uncertain parameters of Ca2+-Model are estimated using Markov

Chain Monte Carlo (MCMC) [64, 65]: the density for VDCC, the densities for two membrane

Ca2+ pumps, PMCA and NCX, the concentration of the endogenous immobile buffer and its

binding and unbinding rates in the dendritic and spine locations, respectively. The parameter

estimation is based on the experimental observations by Sabatini, Oertner et al. [46]. They esti-

mated the Ca2+dynamics at the dendritic spines of the CA1 pyramidal neurons and their

Table 1. Q10 values for biological processes. Q10 measures the degree of temperature dependence when increasing the temperature by 10˚C [63].

Biological processes Q10 Biological processes Q10

Diffusion 1.3 Glutamate transporter kinetics 3

NMDAR kinetics 3 NMDAR conductance 1.6

AMPAR kinetics 2.4 AMPAR conductance 1.5

VDCC gating kinetics 3 VDCC conductance 1.5

Pump kinetics 3 Buffer kinetics 2.15

https://doi.org/10.1371/journal.pone.0182743.t001
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parent dendrites by a single backpropagation of action potentials (bAP) in the absence of exog-

enous buffers (Ca2+ indicator) and the washout of mobile buffers. The results correspond to

spines and small dendrites with surface-to-volume ratios of 4–20 μm-1 and 1–4 μm-1, respec-

tively [46]. The geometry of our model lies well within these ranges. The details of MCMC esti-

mation are discussed in Section 6 of S2 Appendix.

Model performance. The control condition is defined as the condition without AβO-dis-

turbances and is simulated using standard values of parameters listed in Section 1–6 of S2

Appendix. We investigate the model performance in response to presynaptic stimulation (see

Section 7 of S2 Appendix for a detailed explanation) based on glutamate profile, the open frac-

tion of receptors at different locations and, consequently, the Ca2+ dynamics in the spine head

and its parent dendritic shaft. The model performance under control conditions in response to

various stimulation protocols is given in Section 8 of S2 Appendix.

Integration of Ca2+-Model and CaMKII-ST-Model

CaMKII-ST-Model developed by He et al. [44] simulates the formation of CaMKII-NMDAR

complex in PSD in response to presynaptic stimulation. It consists of a series of key events

induced by the Ca2+ influx through NMDAR after stimulation. Ca4CaM complex and postsyn-

aptic NR2B-NMDAR are two linking factors between Ca2+-Model and CaMKII-ST-Model

(Fig 2D). The details of the model integration are in Section 9 of S2 Appendix.

Results

We mimic the AβO-dependent disturbances on glutamatergic transmission on the following

aspects: the availability of glutamate to glutamate receptors and the distribution of synaptic

NMDARs. Based on the experimental protocols [44, 66], we apply three types of presynaptic

stimulation patterns as inputs to Ca2+ Model: (1) a single stimulus (1 pulse); (2) a low fre-

quency stimulation (LFS) at 10 Hz; and a (3) high frequency stimulation (HFS) at 100 Hz (see

Section 7 of S2 Appendix for the details of the stimulation protocols). To investigate the effects

of these alterations on the postsynaptic response, we compare the activities of NMDAR and

the dynamics of Ca2+ at different locations with those under the control condition.

Simulation of AβO-dependent disturbances on glutamate transmission

Effects of increases in presynaptic release. We first investigate the effects of the AβO-

induced release of glutamate vesicles from the presynaptic terminal [67–71]. We assume every

vesicle contains the same number of glutamate molecules, therefore, the number of vesicles

per release is represented by the total number of glutamate molecules. We vary the number of

glutamate molecules per release from 500 to 10000 and keep other parameters at the standard

values.

The simulation results show that glutamate concentrations ([Glu]peak) at three locations all

increase linearly with the number of glutamate molecules released (S1 Fig). To examine the

contribution of an increase in the presynaptic release of glutamate to the NMDAR transition,

we calculate the open time of each receptor and the number of Ca2+ ions entering through

each receptor after stimulation. We define the additional time for a receptor staying in a state

(tadd) as the difference between the total time in this state under the current condition and the

time under control condition. Similarly, the additional number of Ca2+ ions entering (Ca2+
add)

through a receptor is the difference between the total number of the Ca2+ ion flux under the

current condition and the one under control condition.

The simulation results show that multiple-vesicle releases have a negligible effect on the

total open time of synaptic NR2A-NMDARs (Fig 3A). Even though, Ca2+
add through all

Computational investigation of Amyloid-β-induced disturbances in Alzheimer’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0182743 August 24, 2017 7 / 22

https://doi.org/10.1371/journal.pone.0182743


synaptic NR2A-NMDARs still has made a large contribution to the total Ca2+
add into the spine

head (Fig 3B). This is because the number of synaptic NR2A-NMDARs is more than that of

the other receptors.

For synaptic and perisynaptic NR2B-NMDARs, multiple vesicle releases lead to increases

in tadd in the open state under a 1 pulse stimulation and LFS. Under HFS, in contrast, only

the perisynaptic NR2B-NMDARs show an increase in open time (Fig 3A). Consequently, total

Ca2+
add through all perisynaptic NR2B-NMDARs increases under LFS and HFS, whereas total

Ca2+
add through all synaptic NR2B-NMDARs only increases under LFS (Fig 3B).

Increases in open time and Ca2+ influx of synaptic and perisynaptic receptors lead to a

higher peak in Ca2+ concentration ([Ca2+]peak) in the spine head (Fig 3C). Specifically under

HFS, Ca2+ level rises to a peak of about 4.8 μM in 55 ms (almost a three-fold increase in Ca2+

level over the control condition) upon increasing the glutamate molecules per release to 10,000

(Fig 3C). After reaching the peak, Ca2+ levels then rapidly decrease and stay on a plateau after

around 40 pulses until the end of the stimulation. The decrease in Ca2+ level is because of the

desensitisation of NMDARs by repetitive stimulation. The plateau in Ca2+ level is in a range of

0.5 to 1.2 μM, and increases with the number of glutamate molecules per release.

The extrasynaptic NR2B-NMDARs are not (1 pulse stimulation and LFS) or slightly (HFS)

affected by the number of glutamate molecules released in response to presynaptic stimulation

(Fig 3A and 3B). In Fig 3C, the elevations in [Ca2+]peak in the dendritic shaft by high releases of

glutamate are largely the result of Ca2+ diffusion from the spine head, rather than Ca2+ influx

through extrasynaptic NMDARs.

Effects of inhibitions of the glutamate transporter. Experimental evidence suggests that

AβO may disturb glutamate clearance mechanisms by reducing the number of glutamate

transporters [34–38].To examine if the down-regulation of glutamate transporters contributes

to the abnormal opening of NMDARs, we simulate Ca2+-Model a total concentration of gluta-

mate transporters (Btotal) that ranges from 0.5 mM (0% reduction) to 0 mM (100% reduction).

Fig 4 shows that there is no effect on [Glu]peak at the postsynaptic site from reducing Btotal. In

Fig 3. Postsynaptic responses with various numbers of glutamate molecules released. Simulation

results are shown in comparison with the amount under control conditions (1500 molecules per release). (A)

tadd per receptor; (B) Ca2+
add through NMDARs; and (C) Ca2+ responses in the spine head and dendritic shaft.

Coloured lines represent different glutamate molecules per release. sNR2A: synaptic NR2A-NMDAR; sNR2B:

synaptic NR2B-NMDAR; pNR2B: perisynaptic NR2B-NMDAR; eNR2B: extrasynaptic NR2B-NMDAR.

https://doi.org/10.1371/journal.pone.0182743.g003

Computational investigation of Amyloid-β-induced disturbances in Alzheimer’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0182743 August 24, 2017 8 / 22

https://doi.org/10.1371/journal.pone.0182743.g003
https://doi.org/10.1371/journal.pone.0182743


contrast, at the perisynaptic and extrasynaptic sites, the reduction of Btotal to 0 mM (100%

reduction) increases [Glu]peaks by about 3 μM and 1.5 μM, respectively, while causing a slower

decay to baseline (Fig 4A). These increases lead to higher Ca2+
adds through perisynaptic

NR2B-NMDARs and extrasynaptic NR2B-NMDARs, especially under HFS (Fig 4B). Conse-

quently, inhibition in the glutamate uptake results in increases in [Ca2+]peak in the dendritic

shaft but not in the spine head (Fig 4C).

We then increase the glutamate numbers per release from 1500 to 5000 to investigate if

there are any significant changes in the multi-vesicle releases. The results (S2 Fig) are consis-

tent with the single-vesicle release in the experiment above. Therefore, the down-regulation in

glutamate uptake does not directly affect the postsynaptic spine in response to the presynaptic

stimulations. In contrast, this down-regulation promotes a Ca2+ influx through the extrasynap-

tic receptors in the dendritic shaft, especially under HFS.

Effects of increases in the resting glutamate levels in the extrasynaptic space. Elevations

in the resting level of extrasynaptic glutamate ([Glu]rest) have been observed in the hippocampus

of AD transgenic mice that overexpress the human amyloid precursor protein [72]. In contrast

to a [Glu]rest of 0.25 μM in the control mice, Talantova et al. [72] reported 0.8 and 3.3 μM in

12-month-old and 22 to 24-month-old mice, respectively. To examine how [Glu]rest affects the

receptors at the resting state, we simulate SubModel 2 with [Glu]rests from 0.01 μM to 100 μM.

The results show both NR2A- and NR2B-NMDAR reach the maximum open fractions (0.08

and 0.02, respectively) when glutamate increases to about 10 μM (Fig 5A). The fraction of

NR2A- NMDAR and NR2B-NMDAR in the desensitised state approaches a maximum of 0.81

at the same time (Fig 5B). The background opening of NR2B-NMDAR by [Glu]rest causes a

persistent inward current and Ca2+ influx. When increasing [Glu]rest to 10 μM, the background

Ca2+ influx reaches a maximum of 580 (NR2A-NMDAR) and 160 (NR2B-NMDAR) Ca2+ ions

per second, which is 5–10 Ca2+ ions per second lower control conditions (Fig 5C).

When applying different presynaptic stimulations to Ca2+-Model, elevation in [Glu]rest

slightly reduces the open time of the synaptic and perisynaptic NMDARs but not extrasynaptic

Fig 4. Postsynaptic responses with a reduction in transporter levels. (A) Time course of glutamate

concentration at different locations. (B) Ca2+
add through NMDARs and (C) Ca2+ dynamics in the spine head

and dendritic shaft with the reduction in Btotal in response to three types of stimulation patterns. Percentages

denote the degree of reduction in total glutamate transporter concentration (Btotal) from the standard value,

0.5 mM (0: no reduction; 1: fully reduction and Btotal = 0). The glutamate number per release is 1500. sNR2A:

synaptic NR2A-NMDAR; sNR2B: synaptic NR2B-NMDAR; pNR2B: perisynaptic NR2B-NMDAR; eNR2B:

extrasynaptic NR2B-NMDAR.

https://doi.org/10.1371/journal.pone.0182743.g004
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NMDARs (Fig 6A). Consequently, the elevation in [Glu]rest leads to fewer Ca2+ ions entering

(Fig 6C) and decreases [Ca2+]peak in the spine head (Fig 6D).

In contrast, the elevation in [Glu]rest leads to a large increase in the desensitisation time of

the perisynaptic and extrasynaptic NR2B-NMDARs (Fig 6B). The high level of [Glu]rest results

Fig 5. Effects of [Glu]rest on receptor resting states. SubModel 2 is simulated with an increase in [Glu]rest,

from 0.01 μM to100 μM. Coloured lines denote (A) pen fraction, (B) desensitised fraction and (C) Ca2+ influx

for NR2A- and NR2B-NMDAR, respectively. Vertical dash lines indicate [Glu]rest = 2.5 μM (control condition).

https://doi.org/10.1371/journal.pone.0182743.g005

Fig 6. Postsynaptic responses with increasing [Glu]rest. (A) tadd in the open and (B) desensitisation

states per receptor and (C) Ca2+
add through NMDARs in response to presynaptic stimulation (a single

pulse stimulation, LFS and HFS) under the conditions of the increased [Glu]rest compared with those under

control condition. (D) Amplitudes of Ca2+ in the spine head and dendritic shaft at various [Glu]rest. (E) The

fraction of extrasynaptic NR2B-NMDAR in the open state during HFS. The resting extrasynaptic glutamate

concentrations are 0.25 μM in the control condition (blue line) and 0.8 μM, 2 μM and 3.3 μM, representing

different stages of the disease. sNR2A: synaptic NR2A-NMDAR; sNR2B: synaptic NR2B-NMDAR; pNR2B:

perisynaptic NR2B-NMDAR; eNR2B: extrasynaptic NR2B-NMDAR.

https://doi.org/10.1371/journal.pone.0182743.g006
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in a high fraction of background opening of the extrasynaptic NR2B-NMDAR and small

increases in response to presynaptic stimulation (Fig 6E).

Effects of non-synaptic release of glutamate. AβO has been found to induce glutamate

release from astrocytes in AD transgenic mice [72–75]. The astrocyte stays close to the den-

dritic shaft, which can potentially activate extrasynaptic glutamate receptors. We simulate the

astrocytic release of glutamate by applying a brief pulse (1 to 20 ms) of 1 mM glutamate to the

extrasynaptic sites. The glutamate concentration in the synaptic cleft and presynaptic site will

not be affected[47].

Fig 7A shows that the stimulation causes large numbers of Ca2+ to enter the dendritic shaft,

which increases with the length of the stimulation pulse. [Ca2+]peak in the dendritic shaft

ranges from 0.083 to 0.087 μM (Fig 7B). The dendritic shaft has larger volume and fewer recep-

tors than the spine head. Ca2+ ions entering through the extrasynaptic NR2B-NMDAR are

largely diluted in the dendritic shaft; therefore, [Ca2+]peak is much less than that in the spine

head in response to presynaptic stimulation. Moreover, extrasynaptic AMPARs activated by

the astrocytic glutamate release create a 4–6 mV depolarisation (Fig 7C). Even when increasing

the stimulation time to 20 ms, it still fails to create a larger depolarisation to activate other volt-

age-dependent Ca2+ channels in the dendritic shaft membrane. This is understandable because

of the low AMPAR density in the extrasynaptic site (20 receptor/μm2; in synaptic location up

to 1000 receptor/μm2) [55].

Disturbances in NMDARs in AD

Effects of reductions in the surface expression of synaptic NMDAR. We next investi-

gate how inhibitions of AβO on the membrane surface expression of different receptors affect

the postsynaptic response. We mimic the reduction in surface expression by decreasing the

receptor number from the standard value (Table B in S2 Appendix) to zero.

The reduction in synaptic NR2A-NMDAR numbers shows negligible effects on [Ca2+]peak

under a 1 pulse stimulus and LFS, whereas, under HFS, the peak gradually decreases from

3 μM to nearly 0 μM (Fig 8A). The reduction in synaptic NR2B-NMDAR number only affects

the [Ca2+]peak in the spine head under HFS. There is about a 1 μM reduction in [Ca2+]peak

when the synaptic NR2B-NMDAR is fully removed (Fig 8B).

Effects of reductions in desensitisation of synaptic receptors. Under control conditions,

NMDARs undergo desensitisation in response to the prolonged presence of their agonists, to

prevent an excess Ca2+ influx [76]. A slow NMDA receptor desensitisation has been observed

in transgenic mice that overexpress large amounts of Aβ within neurons [77, 78]. To mimic

the inhibition of receptor desensitisation by AβO, we decrease the desensitisation related

parameters (kd1+ and kd2+ in Table B in S2 Appendix) of each receptor by 0% to 100% of the

standard.

Fig 7. Effects of extrasynaptic NR2B-NMDAR activation by the astrocytic release of glutamate.

Simulations are carried out in response a pulse of 1 mM glutamate at various time durations (1 ms, 4 ms, 7

ms, 10 ms and 20 ms). (A) Ca2+ ions enter through extrasynaptic NR2B-NMDARs in to the dendritic shaft.

The corresponding Ca2+ transient and membrane depolarisations are shown in (B) and (C), respectively.

https://doi.org/10.1371/journal.pone.0182743.g007
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The inhibition of desensitisation of synaptic NR2A-NMDAR and NR2B-NMDAR shows

no obvious effects on Ca2+ transients in the spine head under a 1 pulse stimulus and LFS.

Under HFS, [Ca2+]peak increases significantly from 2.9 μM to 17.9 μM, with an increase in the

inhibition level of synaptic NR2A-NMDAR desensitisation (Fig 8C). When desensitisation of

the synaptic NR2A-NMDAR is fully inhibited, the Ca2+ concentration in the spine head main-

tains a high level after reaching a peak during the stimulation period. The inhibition of synap-

tic NR2B-NMDAR desensitisation also positively affect the Ca2+ transients in the spine head

under HFS (Fig 8D). This leads to about a 2 μM increase in [Ca2+]peak when the synaptic

NR2B-NMDAR desensitisation is fully inhibited. However, the cytosolic Ca2+ concentration

fails to maintain a high level after reaching a peak.

Global sensitivity analysis

To identify the key players in AβO-induced Ca2+ dysregulation among the above factors, we

apply global sensitivity analysis to Ca2+-Model. We select 15 factors that have been tested in

previous sections (Table 2A) and eight outputs (Table 2B), which represent the postsynaptic

neuron responses to presynaptic stimulation. We use a partial rank correlation coefficient

(PRCC) to identify the most important or sensitive factors [79] (see Section 10 of S2 Appendix

for details).

Fig 9 shows that the number of glutamate molecules released after stimulation, G0, is the

most important factor in synaptic transmission. G0positively correlates with all outputs, except

Fig 8. Effects of disturbance in synaptic NMDARs. (A) and (B) show effects of reductions in synaptic

NR2A- and NR2B-NMDARs on the amplitudes of Ca2+ transient in the spine head, respectively. (C) and (D)

show the Ca2+ time course in the spine head under LFS and HFS, with desensitisation inhibition of (C)

sNR2A-NMDAR and (D) sNR2B-NMDAR, respectively. Percentages (%) denote the degree of reduction in

the receptor numbers (A and B) and the degree of inhibition in receptor desensitisation (C and D). sNR2A:

synaptic NR2A-NMDAR; sNR2B: synaptic NR2B-NMDAR.

https://doi.org/10.1371/journal.pone.0182743.g008

Computational investigation of Amyloid-β-induced disturbances in Alzheimer’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0182743 August 24, 2017 12 / 22

https://doi.org/10.1371/journal.pone.0182743.g008
https://doi.org/10.1371/journal.pone.0182743


Ca2+ by sNR2A. The correlation levels decrease under HFS in comparison with under LFS.

Moreover, [Glu]rest negatively contributes to Ca2+ by pNR2B under HFS but not LFS, sug-

gesting an elevation in [Glu]rest will cause a stronger desensitisation of perisynaptic NR2B-

NMDAR under HFS. [TP], De2B, DeAMPAR and #eAMPAR show no correlation with any

output. The membrane depolarisation in the spine head and dendritic shaft are determined

by G0 and #sAMPMR, but not by #eAMPAR. The results indicate that glutamate transpor-

ters and dendritic receptors are less involved in synaptic transmission than the synaptic

receptors.

In the spine head, [Ca2+]peak is the most sensitive to #sNR2A followed by #sNR2B. Under

HFS, the correlation to #sNR2B decreases, which suggests a relatively lower activity of synaptic

NR2B-NMDAR in HFS than under LFS. Ca2+ by sNR2A, but not Ca2+ by sNR2B, correlates

with #sAMPAR, which infers that only synaptic NR2A-NMDAR is sensitive to membrane

depolarisation. #sAMPAR becomes more important in HFS in comparison to LFS, indicating

that a larger depolarisation by HFS brings more Ca2+ ions into the spine head.

In the dendritic shaft, [Ca2+]peak is sensitive to #eNR2B under LFS and, surprisingly, it is

also sensitive to #sNR2A under HFS. This suggests that under HFS increasing synaptic

NR2A-NMDAR expression allows large numbers of Ca2+ ion influx and leads to more Ca2+

ions diffusing into the dendritic shaft.

Table 2. Fifteen factors and eight outputs selected for PRCC. (A) Factors and their biological meaning, standard values and ranges for PRCC; (B) Out-

puts and their biological meaning for PRCC.

A

Factor Biological meaning Standard value PRCC ranges

G0 Glutamate number per release 1500 500–10000

[Glu]rest Rest extrasynaptic glutamate concentration 0.25 uM 0–1 uM

[TP] Glutamate transporter concentration 0.5 mM 0–1 uM

Ds2A Inhibition on desensitisation of synaptic NR2A-NMDAR 0 0–1

Ds2B Inhibition on desensitisation of synaptic NR2B-NMDAR

DsAMPAR Inhibition on desensitisation of synaptic AMPAR

Dp2B Inhibition on desensitisation of perisynaptic NR2B-NMDAR

De2B Inhibition on desensitisation of extrasynaptic NR2B-NMDAR

DeAMPAR Inhibition on desensitisation of extrasynaptic AMPAR

#sNR2A Synaptic NR2A-NMDAR number 12 6–18

#sNR2B Synaptic NR2B-NMDAR number 8 4–12

#sAMPAR Synaptic AMPAR number 85 43–130

#pNR2B Perisynaptic NR2B-NMDAR number 3 1–5

#eNR2B Extrasynaptic NR2B-NMDAR number 8 4–12

#eAMPAR Extrasynaptic AMPAR number 20/μm2 15–30 /μm2

B

Output Biological meaning

Ca2+ by sNR2A Ca2+ ions enteringthrough synaptic NR2A-NMDAR

Ca2+ by sNR2B Ca2+ ions entering through synaptic NR2B-NMDAR

Ca2+ by pNR2B Ca2+ ions entering through perisynaptic NR2B-NMDAR

Ca2+ by eNR2B Ca2+ ions entering through extrasynaptic NR2B-NMDAR

[Ca2+]peak @ spine Peak concentration of Ca2+ transient in spine head

[Ca2+]peak @ shaft Peak concentration of Ca2+ transients in dendritic shaft

Vpeak@spine Peak membrane potential in spine head

Vpeak@shaft Peak membrane potential in dendritic shaft

https://doi.org/10.1371/journal.pone.0182743.t002
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Effect of disturbances of synaptic NMDAR numbers on CaMKII state

transition

Synaptic NMDARs are suggested to have a dual role in the formation of NMDAR-mediated-

LTP by acting as Ca2+ channels (NR2A- and NR2B-NMDAR) and as a scaffold in PSD

(NR2B-NMDAR) to anchor CaMKII [16, 17]. To further investigate how disturbances in syn-

aptic NMDARs affect such a dual role, we integrate our Ca2+-Model with CaMKII-ST-Model

by He et al.[44] (see Methods for model integration). We simulate the degree of reduction in

the availability of a particular NMDAR type in PSD by decreasing the receptor number from

the standard value (Table B in S2 Appendix) to zero. The stimulation protocols applied for the

computational experiments are 1 s of pairing HFS [66] and 4 trains of pairing theta-burst stim-

ulation (4 TBS), respectively, which are used for triggering LTP in vivo [80] (see Section 7 of S2

Appendix for a detailed explanation).

We investigate the Ca2+ elevation in the spine head and four chosen outputs: (1) numbers

of Ca4CaM complexes; (2) numbers of autophosphorylated CaMKII subunits; (3) numbers of

CaMKII in PSD; and (4) numbers of CaMKII-NMDAR complex in PSD. These outputs are

the key factors from downstream events that determine the amount of CaMKII to be activated,

autophosphorylated, translocated and anchored in PSD [81].

The reduction in the numbers of NR2A-NMDAR in PSD greatly reduces [Ca2+]peak in

response to pairing HFS (Fig 10A) and 4 TBS (S3A Fig). The decrease in [Ca2+]peak further

reduces all four outputs. During both stimulation protocols, a 50% reduction (6 NR2A-NM-

DAR left in PSD) can block all downstream events (Fig 10A and S3A Fig). In particular, the

formation of CaMKII-NMDAR is mostly sensitive to the NR2A-NMDAR reduction. Even an

Fig 9. Heat maps of PRCC results for the model in response to (A) LFS and (B) HFS. The PRCC values

for 15 factors against eight outputs are represented by colours, with the corresponding PRCC values written in

white. Red and blue denote the positive and negative correlations, respectively. Only PRCCs greater than 0.5

and with a p-value < 0.05 are shown in the figures. The white colour means that there is no statistically

significant relationship between the corresponding factor and the output.

https://doi.org/10.1371/journal.pone.0182743.g009
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8% reduction (11 NR2A-NMDAR left) can reduce the level of CaMKII-NMDAR formation by

60% (pairing HFS; Fig 10A) and 75% (4 TBS; S3A Fig), respectively. A 25% reduction (9

NR2A-NMDAR left in PSD) can lead to no production of CaMKII-NMDAR.

In contrast, a reduction in NR2B-NMDAR numbers in PSD affects the Ca2+ responses and

all outputs less than the reduction in NR2A-NMDAR numbers (Fig 10B and S3B Fig). Even when

reducing the NR2B-NMDAR from 8 to 1 (88% reduction), [Ca2+]peak only decreases by about

35%. This decrease is not able to fully block most chosen downstream events, except for the for-

mation of CaMKII-NMDAR complex. The formation of CaMKII-NMDAR complex is largely

reduced by the reduction in NR2B-NMDAR numbers. A reduction of the NR2B-NMDAR

numbers by 50% leads to over a 75% reduction in the final level CaMKII-NMDAR complex at

t = 300 s.

Experimental evidence suggests that NR2A- and NR2B-NMDAR may contribute differ-

ently to the postsynaptic Ca2+ response and CaMKII activation. Both receptors are required in

NMDAR-induced LTP [17]. The ratio of synaptic NR2A- to NR2B-NMDAR (NR2A/NR2B

ratio) is precisely regulated by the production, trafficking and degradation of NMDARs. Dif-

ferent ratios regulate the preferences in the induction of different types of synaptic plasticity

[82]. Therefore, we investigate the effects of disturbances on the NR2A/NR2B ratio in the

CaMKII-NMDAR complex formation. We simulate the disturbance by varying the NR2A/

NR2B ratio from 1: 19 to 19:1 while keeping the total number of NMDARs in PSD constant

(20 NMDARs).

Fig 10C and S3C Fig show that [Ca2+]peak stimulated by both pairing HFS and 4 TBS

increases with the NR2A/NR2B ratio. The productions of the other four outputs are blocked

when the NR2A/NR2B ratio is below 6:14. When a further increase in the NR2A/NR2B ratio

occurs, the normalised peak levels of all outputs, except the production of CaMKII-NMDAR

Fig 10. Effects of alterations in synaptic NMDAR numbers in response to pairing HFS. Effects of (A)

reduction in synaptic NR2A-NMDAR number, (B) reduction in NR2B-NMDAR number and (C) alteration

in the NR2A/NR2B ratio on selected typical outputs. (D) Effect of variation in the NR2A/NR2B ratio on

the level of CaMKII-NMDAR complex production. The results are normalised to those under control condition

(NR2A-NMDAR = 12, NR2B-NMDAR = 8; indicated by the dash lines).

https://doi.org/10.1371/journal.pone.0182743.g010
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complex, rise with different slopes in response to a pairing HFS (Fig 10C and S3C Fig). In con-

trast, the normalised final levels of CaMKII-NMDAR after stimulation increase to maximum

levels of 1.69 (pairing HFS) and 2.04 (pairing TBS), respectively, at the NR2A/NR2B ratio of

15:5, and decreases afterwards (Fig 10D). Therefore, our results indicate the existence of an

optimal NR2A/NR2B ratio in the generation of the CaMKII-NMDAR complex.

Discussion

In this work, we present computational models of Ca2+ dynamics in the dendritic spine and its

parent dendrite shaft to investigate the effects of AβO-dependent disturbances on synaptic

transmission. These disturbances are related to the availability of both glutamate and recep-

tors. In particular, we include NMDARs with different subunit compositions and at different

locations. Using simulations under different conditions, we study the activation patterns of

specific NMDARs and the Ca2+ response at different locations.

Our results demonstrate that the increased glutamate release from the presynaptic terminal

will promote Ca2+ responses mainly in the spine head. Global sensitivity analysis suggests a

great sensitivity of the postsynaptic response to the number of glutamate molecules released

during presynaptic stimulation. This confirms that the Aβ-induced increase in synaptic

glutamate release plays a major role in the over-excitation and Ca2+ overload of postsynaptic

neurons. The glutamate spillover from the synaptic cleft shows a much lower effect on the acti-

vation of extrasynaptic NMDARs than perisynaptic NMDARs. This is because of the fast diffu-

sion of glutamate molecules and their uptake by glutamate transporters in astrocytes before

they reach extrasynaptic NMDAR [47]. Therefore, Aβ-induced multiple vesicle releases from

the presynaptic terminal alone are not sufficient to cause an overactivation of the extrasynaptic

receptors.

Inhibition of glutamate uptake by glutamate transporters only affects the peri- and extrasy-

naptic receptors. On a longer time scale, this inhibition will cause a glutamate accumulation in

the extrasynaptic space and lead to a gradual increase in [Glu]rest. We have shown that eleva-

tion in [Glu]rest reduces the sensitivity of the postsynaptic neurons to the presynaptic signals,

as a result of increased background opening of extrasynaptic NMDARs under the resting con-

dition. Moreover, the AβO-induced astrocytic glutamate release also leads to a high-level Ca2+

ion influx in the absence of presynaptic stimulation. This finding is consistent with experimen-

tal observations [83], which show excitotoxicity results from Aβ-induced over-activation of

the extrasynaptic NMDAR, but not the synaptic NMDAR. The overactivation can, in turn,

promote Aβ production [84]. Even though these abnormal Ca2+ influxes have failed to induce

large Ca2+ transients in the dendritic shaft, they still can potentially induce downstream path-

ways by affecting proteins located close to the receptors. Over a long time, this will contribute

to the Ca2+ overload and neuronal death in AD [85]. Therefore, monitoring the extracellular

glutamate concentration using precise measuring technology [86] could be useful for early

diagnosis of AD, and therapeutic research can be carried out to investigate controlling the

extracellular glutamate level to avoid excess activation of the extrasynaptic NMDARs.

Our simulation shows that synaptic NR2B-NMDAR contributes less to the synaptic Ca2+

transient compared to synaptic NR2A-NMDAR, in agreement with the simulation results

from [87, 88]. Therefore, internalisation of synaptic NR2B-NMDAR disturbs the synaptic

transmission [31, 39] not by affecting Ca2+ entry but, possibly, by disturbing interactions with

other key players. Specifically, synaptic NR2B-NMDARs bind to CaMKII and are involved in

mediating synapse strength and plasticity [89].

Simulation of the internalisation of synaptic NR2A- and NR2B-NMDAR shows negative

effects on the activation of CaMKII and the formation of CaMKII-NMDAR complexes, to
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different degrees. Both types of NMDAR are necessary for LTP formation but they contribute

to LTP induction and maintenance in different ways. Specifically, the role of NR2A-NMDARs

is to allow a sufficient Ca2+ influx to trigger downstream Ca2+-CaM interactions, which deter-

mines the activation of CaMKII. NR2B-NMDAR contributes less as a Ca2+ channel than

NR2A-NMDAR; however, it is required to function as a scaffold to anchor CaMKII in PSD.

This result is consistent with the experimental findings and the hypothesis that the opening of

NR2B-NMDAR is not necessary for LTP induction [23, 90]. Therefore, the internalisation of

synaptic NR2B-NMDARs disturbs the synaptic functions without affecting the Ca2+ dynamics.

Simulation with different NR2A/NR2B ratios provides a clearer picture showing that

NMDAR-LTP requires cooperation between the NR2A- and NR2B-NMDAR. AβO-induced

internalisation of synaptic NMDAR in AD [31, 39] could underlie some of the critical alter-

ations in the pathology of the disease. For instance, in AD transgenic mice, AβO has been

observed to alter CaMKII distribution and reduce the synaptic CaMKII level [91]. Conse-

quently, internalisation of synaptic NMDAR is suggested to contribute to the deficits of LTP

and loss of synapses in AD [92, 93]. Therefore, selective inhibition on the internalisation of

synaptic NR2B-NMDARs in AD (such as modifying key proteins in the NMDAR trafficking

pathway [94]) could be a useful therapeutic approach that may prevent the loss of synapses

and memory decline.
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