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Abstract

Flower-visiting bees collect large quantities of pollen to feed their offspring. Pollen deposited

in the bees’ transport organs is lost for the flowers’ pollination. It has been hypothesised that

specific body areas, bees cannot groom, serve as ‘safe sites’ for pollen transfer between

flowers. For the first time, we experimentally demonstrated the position, area and pollen

amount of safe sites at the examples of Apis mellifera and Bombus terrestris by combining

artificial contamination of the bees’ body with pine or sunflower pollen and the subsequent

bees’ incomplete grooming. We found safe sites on the forehead, the dorsal thorax and

waist, and on the dorsal and ventral abdomen of the bees. These areas were less groomed

by the bees’ legs. The largest amount of pollen was found on the waist, followed by the dor-

sal areas of thorax and abdomen. At the example of Salvia pratensis, S. officinalis and Bor-

ago officinalis, we experimentally demonstrated with fluorescent dye that the flowers’

pollen-sacs and stigma contact identical safe sites. These results confirm that pollen deposi-

tion on the bees’ safe sites improves pollen transfer to stigmas of conspecific flowers sti.

Future research will demonstrate the importance of safe sites for plant pollination under field

conditions.

Introduction

To enable sexual reproduction, plants normally use animals as pollen vectors, with their flow-

ers mostly offering nectar [1]. Bees, the most important group of pollinators [2,3], visit flowers

for nectar, but also collect large amounts of pollen mainly to feed their offspring [4–6]. Con-

trastingly, pollen is essential for the plants’ reproduction, serving as a vehicle for gametes. Pol-

len is expensive, and, unlike nectar, pollen supply is strictly limited [7]. As soon as pollen is

collected and groomed into the bees’ transport organs, it is mostly lost for the flowers’ pollina-

tion [7]. Bees collect pollen actively, e.g. by gathering pollen from anthers with their forelegs or

mouthparts, or in a passive way with their body which is groomed from time to time after con-

tamination with pollen [7]. Bees use specific structures (brushes, combs, scrapers) of their legs

to groom and collect pollen. After pollen collection, pollen grains are transferred to transport

organs which are the crop, the scopae (dense mass of elongated, often branched, birstles)
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onthe hindlegs or abdomen, or the corbiculae (cavity surrounded by a fringe of bristles) at the

tibia of the hindlegs for homeward transportation [8–10]. Pollen situated in the scopae and

particularly so in the corbiculae is more or less secure against being stripped off by floral struc-

tures including the flowers’ stigma [7,10]. In addition, especially for corbiculate bees (e.g.

Apis and Bombus spp.), pollen is often mixed with liquids, such as regurgitated nectar and

saliva, sticking the pollen grains together and improving their attachment to the bees’ pollen

basket. Moreover, these admixed liquids reduce pollen germination, resulting in reduced fruit

set [11]. Pollen collection by bees is often very effective that less than 1–4% of the flower’s pol-

len grains reach conspecific stigmas [4,12–16]. The bees’ need for pollen, their sole protein

source for provisioning the larval food, and the plants’ need for pollen to ensure sexual repro-

duction lead to a conflict for pollen between bee-pollinated plants and pollen-collecting bees

[7,17].

Consequently, plants benefit from an efficient handling of pollen and should filter out inef-

fective pollen vectors or pollen thieves and secure large proportions of their pollen for pollina-

tion. Flowering plants have evolved several mechanisms to reduce such pollen losses, for

example toxic pollen that cannot be digested or mechanical features that prevent pollen collec-

tion [15,18–20]. Preventing pollen collection is also be achieved by hiding pollen in poricidal

anthers, hiding anthers in the flower, as well as by displaying cryptic or inconspicuous pollen

and anthers [21–26]. Another strategy, not mutually exclusive with hidden pollen, is to guide

the bees in a specific position on flowers for optimal pollen placement on the bees and likewise

for optimal withdrawal of pollen from the stigmas. In this way, the pollen (or most of it) might

be deposited on spots of the bees’ body, so-called ‘safe sites’, where the bees cannot see, taste or

feel it, or where they are less capable to groom it off, [10,26–29].

Flower-pollinator interactions have been rarely investigated or discussed in view of this

fundamental plant-bee conflict of interest for pollen. It has been observed that honeybees have

difficulties in grooming some parts of their body, e.g. behind the head, the central dorsal part

of their first thoracic segment and the first two abdomen segments [30]. Field observations of

flower-visiting bees (Apis mellifera, different species of Bombus and other genera) at mainly

species of Orobanchaceae and Fabaceae have demonstrated that after pollen accumulation on

the bees’ bodies by the pollen-sacs) and subsequent grooming, residual patches of pollen

patches remain in specific areas of the bees’ body, mainly on the dorsal and ventral midline of

the head, thorax and abdomen [31–42]. These patches are restricted to the spots being dusted

with pollen by the flowers of the specific species and do not necessarily include all possible safe

sites. Therefore, to better identify safe sites and their importance for pollination, it is also nec-

essary to develop experimental settings.

At the example of the European honeybee, Apis mellifera Linné 1758 and the Buff-tailed

bumblebee, Bombus terrestris (Linné 1758) (both Apinae, Apidae), we developed a method to

exactly characterise safe sites on the bees’ body via artificial contamination with pollen and

subsequent grooming experiments, and quantification of pollen grains in ungroomed spots.

This method allows the determination of areas on the bees’ body that are not groomed by the

legs as well as the detailed documentation of the potential safe sites’ positions and sizes, and

the amount of pollen deposited. Selective contamination experiments enable to verify the exis-

tence of areas on the insect’s body that trigger grooming behaviour. Furthermore, we present a

simple, but efficient experiment with fluorescent dye as a pollen surrogate to investigate

whether the bees’ safe sites are used by flowering plants to ensure safer pollen transfer to the

conspecific flowers’ stigma. We demonstrate this at the example of specialised bee-flowers

with sophisticated pollen transfer mechanisms (Salvia spp.) and a species with rather unspe-

cific pollen release (Borago officinalis).

Ungroomed spots on the bee’s body and their importance for pollination
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Materials and methods

The study was conducted from August 2013 to November 2014 and from June to July 2015

(experiments with Salvia L. species, Lamiaceae) using successive laboratory colonies of Bombus
terrestris from Biobest (Westerlo, Belgium) and different colonies of Apis mellifera in the

Botanical Garden of the Heinrich-Heine-University Düsseldorf, Germany. Only worker bees

were used in the experiments.

Position, size and pollen amount of safe sites

In order to determine the safe sites on the insects’ body, the following procedure was carried

out in the laboratory. The insects were placed in transparent plastic jars (3.5 cm diameter, 8.0

cm height) whose floor was covered with pollen and which were sealed with a foam plug. Hand-

collected pollen of two plant species was used to exclude differences in the safe sites’ distribution

or area on the bees’ body due to different structure of pollen grains: spiny and pollenkitt-cov-

ered pollen of insect-pollinated sunflowers, Helianthus annuus L., Asteraceae (collected at the

farm ‘Gut zur Linden’, Wuppertal, Germany), and smooth, wind-distributed pollen of pines,

Pinus sylvestris L., Pinaceae [1,43] (collected at the Botanical Garden HHU, Düsseldorf), respec-

tively. Due to the bees’ repeated flight activity, the pollen grains were stirred up, thus contami-

nating the bee’s body evenly within a few minutes. The contaminated animals were transferred

into a clean jar, standing upside down, with the opening downward causing the bees sitting on

the foam plug. The plug was replaced from time to time to avoid recontamination with pollen.

During 30 minutes, the behaviour of the bees was observed to measure the time of grooming

(performing grooming movements) and to detect how grooming was performed and which

body parts were groomed and which not. Afterwards, the animals were kept in the fridge for

about ten minutes and then freeze-killed (at least 24 hours). The following day, the animals

were photographed with a dissecting microscope Leica EZ4D (Leica, Wetzlar, Germany)

together with scale paper to enable measuring areas. The area of each of the safe sites (areas with

residual pollen) on the animals’ body as well as the area of the whole insect body (exoskeleton

including projecting bristles of caput = head, thorax and abdomen) was measured from the

photos with the image processing software Fiji [44], calculating from the scale paper. Although

the insects have three-dimensional bodies, the plain areas of the photos were not corrected to

the third dimension as only percentages are important and as correction factors (ca. 2), calcu-

lated for test purposes, were nearly identical for the different body parts and bee species. Only

those safe sites were measured whose outlines where clearly visible. As there was no difference

in the grooming process and the position or size of the safe sites between pine pollen or sun-

flower pollen treated animals in both bee species, the sunflower and pine data were merged to

document the safe sites. To count pollen grains (only pine pollen samples) in safe sites, pollen

was removed from each part of the insects’ bodies with adhesive tape and the tape with the pol-

len stuck on black cardboard. This procedure was repeated till no pollen remained on the

insects. To facilitate pollen removal from the mesosomal waist, first, pollen of all other areas was

removed and then the abdomen was separated from the rest of the body for the treatment with

tape. The tape on the cardboard was photographed with the Leica EZ4D and the pollen was

counted with the image processing software Fiji [44]. After segmentation of pollen from the

image background via thresholding, the number of pollen grains was calculated from the pixel

number of the total pollen area and the pixel number of different areas with known amount of

pollen. The accuracy of this method was verified by checking numerous pollen accumulations

of a known number of pollen grains related to a given pixel number.

To confirm the safe sites found, the autofluorescence of sunflower pollen was used. The

groomed insects were illuminated with a UV-LED torch (UVG3 Midlight of Labino, Solna,

Ungroomed spots on the bee’s body and their importance for pollination
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Sweden) in a dark room and photographed with a SLR Nikon D3000 and AF-S DX VR Nikkor

18-55mm lens (Nikon, Tokyo, Japan) in combination with 12 and 20 mm extension rings.

To be able to compare the pollen quantity of a defined area of the bee’s body after contami-

nation and after grooming, several areas of A. mellifera were selectively contaminated with

sunflower pollen. The bees passed a narrow transparent plastic tunnel (14 mm inner diameter)

equipped with sunflower pollen-contaminated paintbrush hairs positioned at the top, the bot-

tom, the right side and the left side, respectively (about 6mm extending into the tunnel). After

passing the tunnel and being contaminated with pollen, the bees entered a flight cage. As a

control, six bees per treatment were caught immediately after the treatment (without having

the possibility to groom themselves) and freeze-killed and pollen was removed and counted

(method see above). Ten other bee individuals per treatment were kept for one hour in the

flight cage in which about 15 minutes grooming activity took place. Afterwards the bees were

freeze-killed and pollen was removed and counted.

Statistical analyses were performed with SPSS 22 (IBM, Armonk, NY, USA).

Triggering grooming behaviour

To detect the insect’s body parts in which grooming is triggered, B. terrestris individuals were

placed in transparent plastic jars sealed with a foam plug. A yellow pipet tip (200μl), filled with

pine pollen, was inserted in the centre of the plug till positioned next to the bee. By gently

touching the pipette, pollen grains trickled onto specific sites of the bees’ body. The behaviour

of the bees, grooming or not, and the body parts groomed, were recorded within 60 seconds.

The behaviour of completely unmanipulated bees (without touching) was recorded as a con-

trol. 20 bees were tested per body part and the control, altogether 180 animals. Each animal

was used only once.

Interactions with flowers

In order to investigate whether plants use the bees’ safe sites to ensure pollen transfer, the fol-

lowing experiments were carried out in an indoor flight cage at the example of Salvia pratensis
L. and Salvia officinalis L. with laboratory B. terrestris as well as with Borago officinalis L. (Bora-

ginaceae) and managed A. mellifera caught in the Botanical Garden (HHU Düsseldorf). S. pra-
tensis and the two bee species occur naturally in the Botanical Garden and surrounding [45–

47]. S. officinalis and B. officinalis are cultivated in the Botanical Garden, but their distribution

area overlaps with that of B. terrestris and A. mellifera in the Mediterranean region [45–47]. As

the bumble-bees were flower-naïve, they had to be trained to visit Salvia flowers in a flight

cage. Therefore, surose solution (70% by weight, being more attractive than the Salvia nectar)

was added into the flower entrances. Bumblebees were released close to the flowers at which

the animals quickly detected the sugar solution. When the bees were familiar with the flowers

(after a few visits), five bees per plant species were observed visiting a flower with the anthers

(here called pollen-sacs) marked with white UV-active luminous pigment (GP280443, Boes-

ner, Witten, Germany). The pigment was added on the open anthers of the stamen exactly

where the pollen is presented. After one flower visit the bees were caught and freeze-killed.

Prior to the experiment, we made sure that the pigment is a good equivalent for pollen, having

very similar transfer characteristics (incl. area of deposition). Five other bees per plant species

were treated in the same way, visiting other flowers of the same species with the marked

stigma. The dead bees were illuminated with a UV-LED torch and photographed (equipment

and method see above). The position and area of the pigment deposited on the bees’ body was

compared with the position and area of an average safe site of 10 bumblebees (area was not

determined in the B. officinalis—A. mellifera experiment). The area of each safe site on the

Ungroomed spots on the bee’s body and their importance for pollination
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animals’ body was measured from the photos with the image processing software Fiji [44], cal-

culating from the scale paper. To determine the average safe site, all pictures were aligned as to

the bees’ body and overlayed. The average safe site contained all areas formed by overlapping

of at least five animals. Honeybees had not to be trained as they visited B. officinalis flowers in

the Botanical Garden. Due to the connivent (converging and touching) arrangement around

the style, the longitudinally deshiscent (introrse) anthers form a kind of scatter cone causing

pollen to be scattered on the insect [48]. As the pollen application is not localised, it could not

be imitated with pigment. Thus, in B. officinalis, only stigma contact was tested with luminous

pigment and pollen application onto the bee was observed directly.

Results

Position, size and pollen amount of safe sites

In Bombus terrestris, areas with residual pollen after grooming were found slightly above the

antennae on the head, in a triangular shaped area on the dorsal side of the thorax mainly

between the tegulae tapering towards the head, the petiole between thorax and abdomen

(waist including propodeum and the first abdominal segment), and the middle area of dorsal

part of the abdomen, being wedge-shaped narrowing towards the end of the abdomen (Fig

1A–1H, S1 Video). At the lateral parts of the bee, only few single pollen grains were found, but

no accumulations of pollen grains. Some pollen grains were also found on the legs and the ven-

tral side, but larger pollen accumulations were found only on the midline of the proximal ven-

tral abdomen. In Apis mellifera, the safe sites were similar to those of B. terrestris. They were on

the head between the antennae and on the dorsal side of the thorax (but mirror-inverted,

mainly at the caput-facing end, running as a stripe towards the tegulae and tapering towards

the abdomen). Other safe sites were similar to B. terrestris between the thorax and abdomen,

mainly the middle area of dorsal abdomen, and only few pollen grains were found on the legs

and the ventral side (here mainly on the abdomen near the thorax side) (Fig 1I–1N, S2 Video).

The safe sites found were confirmed by sunflower pollen accumulations visible under UV illu-

mination (Fig 1O and 1P). Autofluorescent sunflower pollen grains were also detected outside

the safe sites, but only in very small numbers. Contrary, the pollen accumulations within the

safe sites were more clearly visible because of strong autofluorescence.

The dorsal abdomen safe site of the B. terrestris workers was significantly larger than that of

the smaller A. mellifera workers (Mann-Whitney U-test: p< 0.001, Z = -3.4) whereas the safe

sites of the caput and thorax were similar in size in both species (Mann-Whitney U-test: caput:

p> 0.2, Z = -1.2, thorax: p> 0.3, Z = -0.94) (Fig 2A, S1 Table). Within the bee species, the safe

sites significantly differed in size (ANOVA, B. terrestris: F = 23.4, p< 0.0001; A. mellifera:

F = 37.6, p< 0.0001). In both species, the head safe site was the smallest one (all p< 0.0001

according to Tukey post-hoc tests, except not significantly smaller than the thorax in B. terres-
tris: p = 0.057, Fig 2A). In B. terrestris, the abdomen safe site was the largest (p< 0.0001

according to Tukey post-hoc tests). Contrary, in A. mellifera, the thorax and abdomen safe

sites were similar in size (p = 0.9 according to Tukey post-hoc test, Fig 2A). The safe sites com-

prised 24.5% of the dorsal projection of the body in B. terrestris (caput: 13.4%, thorax: 20.8%,

abdomen: 30.2%) and 23.5% in A. mellifera (caput: 9.7%, thorax: 41.0%, abdomen: 21.1%) (S1

Table).

The amount of pollen grains was significantly larger in the safe sites of B. terrestris
(11208 ± 5779) than in those of A. mellifera (6240 ± 3135) (Mann-Whitney U-test: p< 0.007,

Z = -2.74). The pollen amount of the dorsal waist, dorsal abdomen and ventral safe site was sig-

nificantly larger in B. terrestris than in A. mellifera (waist: p< 0.03, Z = -2.3, dorsal abdomen:

p< 0.0001, Z = -4.1, ventral abdomen: p< 0.002, Z = -3.1). There was no significant difference
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between the number of pollen grains of the head and thorax safe sites (caput: p> 0.2, Z = -1.1,

thorax: p> 0.4, Z = -0.9) (Fig 2B, S2 Table).

Fig 1. Pollen accumulation in different safe sites of Bombus terrestris and Apis mellifera after contamination with pollen and subsequent

grooming. B. terrestris: overall view with arrow-shaped safe site on the thorax (A), safe site above the insertion of antennae on the head (B), dorsal thorax

(triangular) (C, D), waist (E), abdomen (F, G), and ventral abdomen (H), A. mellifera: overall view with broad safe site on the thorax and narrow safe site on

the abdomen (I), safe site between the eyes (J), dorsal thorax (K), waist (L), and abdomen (M), as well as ventral abdomen (N), dorsal thorax and abdominal

safe site under full spectrum illumination (O) and UV-illumination (P). All with pine pollen except D, G, O and P with sunflower pollen. Millimetre paper as

scale.

https://doi.org/10.1371/journal.pone.0182522.g001
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Fig 2. Dorsal safe site areas (A) and amount of pollen grains in safe sites (B) of Bombus terrestris and

Apis mellifera. Mean values that share same letters per bee species are not significantly different according

to Tukey post-hoc tests at p < 0.05 following ANOVA (*** indicates p < 0.0001). Safe site area (A): B.

terrestris: caput n = 19, thorax n = 32, abdomen n = 17, A. mellifera: caput n = 14, thorax n = 20, abdomen

n = 8. Pollen amount in safe sites (B): B. terresris: n = 12, A. mellifera: n = 12.

https://doi.org/10.1371/journal.pone.0182522.g002
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The number of pollen grains left in the safe sites significantly differed within the bee species

(ANOVA, B. terrestris: F = 13.96, p< 0.0001; A. mellifera: F = 12.16, p< 0.0001). The dorsal

waist contained the most pollen grains, followed by the dorsal abdomen (B. terrestris) and dor-

sal thorax (A. mellifera) safe sites (Fig 2B). Comparing the number of pollen grains on the hon-

eybees’ body before and after grooming shows that nearly all pollen (99.1%) was removed

from the lateral parts (remaining pollen on the right side: 0.7%, left side: 1.1%; Mann-Whitney

U-test: p = 0.000003, Z = -4.67), but that 19.6% of pollen was left in the safe sites on the dorsal

side (Mann-Whitney U-test: p = 0.0005, Z = -3.15) and 15.5% in the safe sites on the ventral

side (Mann-Whitney U-test: p = 0.0005, Z = 3.15; for all: before grooming: n = 6, after groom-

ing: n = 10) of the bee (S3 Table).

During the grooming process, the bees wiped their head and antennae with the forelegs

without reaching the area between their antennae. With their middle legs, the bees cleaned the

dorsal and lateral thorax, except the dorsal area between the tegulae (insertions of wings) in

Bombus terrestris and a large area right behind the head in Apis mellifera. The forelegs and

middle legs completely wiped the ventral thorax. The hindlegs groomed the abdomen, thereby

removing pollen mainly from the lateral part of the abdomen, whereas the bees could not

reach pollen in the middle of the dorsal abdomen. The bees used their hindlegs to clean the

wings and removed pollen left at the hindlegs by rubbing the legs against each other or by

transferring pollen into the corbiculae (S1 Video, S2 Video).

The time actually spent for grooming was longer when contaminated with sunflower pollen

as compared to contamination with pine pollen (significantly longer in Bombus terrestris: pine

pollen: 4.5 ± 2.8 min, n = 29, sunflower pollen: 8.3 ± 5.5 min, n = 15, Mann-Whitney U-test:

p< 0.004, Z = -3.0; not significantly longer in Apis mellifera: pine pollen: 10.5 ± 7.1 min,

n = 17, sunflower pollen: 15.2 ± 7.8 min, n = 14, Mann-Whitney U-test: p = 0.06, Z = -1.9).

Despite the above mentioned difference in grooming times, in both bee species there was nei-

ther a difference in the grooming process nor the position or size of the safe sites between the

two tested pollen types (Mann-Whitney U-test: B. terrestris: p> 0.06, Z = -1.9, A. mellifera:

p> 0.5, Z = -0.7). The overall grooming time was longer in A. mellifera than in B. terrestris
(Mann-Whitney U-test: p< 0.001, Z = -4.3) (S4 Table).

Triggering grooming behaviour

When pollen contamination targeted the bumblebees’ head, 80% of the bees responded with

grooming their head and only very few bees cleaned other body parts (Fig 3, S5 Table). Pollen

application on all other body parts resulted in relatively low grooming responses of the con-

taminated area and other body parts as compared to the control animals that had not been

contaminated with pollen. Altogether, the grooming behaviour at the head after corresponding

triggering was significantly higher than that at other stimulated body parts in the tested bees

and in the control (Fisher’s exact test: p< 0.02).

Interactions with flowers

After flower visits of B. terrestris workers to Salvia flowers, the luminous pigment was trans-

ferred from the pollen-sacs (upper ones in S. pratensis, lower ones in S. officinalis) and the

stigma exclusively onto the thorax (S. pratensis) and the head (S. officinalis) (Fig 4A–4F). In all

cases, the transfer took place on the safe sites. 46% of the head safe site area in B. terrestris is

covered by pigment from S. officinalis pollen-sacs and 37% with pigment from stigmas. In S.

pratensis, 20% of the safe site area on the bumblebees’ thorax was contaminated by the pollen-

sacs and 9% by the stigmas. 30% of the total dorsal area on the bee (head or thorax, respec-

tively) covered by pigment from the pollen-sacs is congruent with the safe site, and 29% or

Ungroomed spots on the bee’s body and their importance for pollination
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33% of the total area covered by pigment from stigmas is consistent with the safe site of S. offi-
cinalis or S. pratensis, respectively. In the safe sites, in all cases, the area contaminated with

luminous pigment from the pollen-sacs overlapped with that contaminated with pigment

from the stigmas. Also in Borago officinalis the pigment was transferred from the stigma into

the safe sites of the head and the ventral abdomen of A. mellifera, whereas pollen was deposited

allover the ventral side (Fig 4G–4I).

Discussion

With the combination of experimental contamination of bees with pollen and subsequent

grooming by the bees we have been able to precisely characterise safe sites on the bees’ body.

The grooming behaviour and the resulting position of the safe sites on B. terrestris and A. melli-
fera were very similar and also independently from the pollen type (Pinus, Sunflower). Some

of the safe sites in B. terrestris and A. mellifera only slightly differ in shape or size. This could

either be caused by less effective or shorter grooming behaviour in B. terrestris, or, alternatively

by the different accessibility of the relevant safe sites due to differences in the hairiness and

mobility of legs and body.

In both bee species, the dorsal waist area of the mesosoma contained most pollen, followed

by the thorax and abdomen, whereas the head and ventral side of the bees had less residual pol-

len. While the disposition to grooming might only explain the superior grooming activity on

Fig 3. Triggering grooming behaviour of Bombus terrestris after contamination of different body parts with

pine pollen. Percentage of bee individuals (n = 20 bees per body part and control) showing grooming or wing

flapping behaviour including responses at the stimulated body parts (black) and at unstimulated body parts (grey).

Control animals were not stimulated.

https://doi.org/10.1371/journal.pone.0182522.g003
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the head (probably due to pollen on the eyes blocking the bumblebees’ view), the distribution

of pollen in safe sites is rather explainable by their different accessibility by the legs [8]. Thus,

grooming of the other body parts might rather aim at transferring the pollen into the corbicu-

lae for homeward transport than being a response to the stimulus of pollen deposition. It is not

surprising that the waist area, which is less accessible by the legs, contains the largest number

of pollen grains and that the flanks of the bees, which are easily accessible by the legs, lack any

safe sites.

To our knowledge, there is no published experimental evidence for safe sites on bees. The

identification of safe sites is restricted to the description of patches of pollen grains remaining

after the bees’ grooming behaviour following pollen deposition by pollen-sacs during flower vis-

its. The safe sites of A. mellifera identified in our study are similar to those on the dorsal and

ventral midline of honeybees pollinating different Pedicularis L. species (Orobanchaceae) in

China [38] (S6 Table), indicating the safe sites’ relevance in a natural context. The non-groomed

body areas on the dorsal and ventral midline identified here for B. terrestris correspond to the

areas found on other Bombus species in China and North America visiting different plants [32–

35,38,41] (S6 Table). Similar safe sites have been observed on Xylocopa sp. (dorsal thorax) [26],

Megachile ericetorum (dorsal thorax) [48] and Euglossa imperialis (anterior face and between

thorax and abdomen) [42] (S6 Table). Safe sites on body areas not found in our study are the

cervical groove (neck) (Bombus spp.) [36,37,49], the proboscidial fossa (groove on the underside

of the head into which the proboscis folds) and other parts of the ventral head (Bombus spp.,

Anthophora, Eucera, diverse Euglossini and other bees) [31,40,50,51] and the area between the

head and the thorax (Bombus spp., Anthophora) [40], the ventral thorax (Bombus spp. and other

bees) [31,36,37], the gular region of the head (throat) (Euglossa imperialis) [42], the ventral head

(Habropoda laboriosa) [39] and the incision between head and thorax (Xylocopa violacea) [52]

(S6 Table). The discrepancies between these areas and the safe sites found in our study might be

due to different grooming behaviour/capabilities in the different bee species.

Thus, in general, residual pollen accumulates mainly on the dorsal and ventral bees’ mid-

lines, where the bees probably do not groom at all, groom only less intense, or later in the

course of the grooming procedure. With fluorescent dye we could show that the relevant safe

sites of Salvia pratensis and S. officinalis were used by the pollen-sacs for pollen deposition and

also by the stigma for pollen uptake similar to the observations in the studies mentioned above

[31,32,34–40, 50, 52]. This also applies to the transfer of pollen surrogate in Borago officinalis.
With the complex staminal lever mechanism of thespecialised bee-flowers S. pratensis and S.

officinalis, pollen would be deposited rather precisely onto the safe sites of B. terrestris. In con-

trast, due to the scatter cone mechanism, pollen of B. officinalis was transferred less precisely

onto A. mellifera. Thus, in B. officinalis more pollen might be wasted due to the bees’ grooming

action.

The larger the congruence between the area contaminated with pollen by the pollen-sacs or

that has been contacted by the stigma and the respective safe site of the corresponding pollina-

tor, the lower is the probability of losing pollen according to the bees’ grooming activity. Less

pollen loss results in increased pollination efficiency [26].

Fig 4. Pollen transfer simulation with luminous pigment on Bombus terrestris and Apis mellifera.

Salvia pratensis flower visited by B. terrestris with the dorsal thorax touching the pollen-sacs (see arrow) (A)

and the stigma (see arrow) (B), B. terrestris under UV-illumination with luminous pigment on the thorax

deposited by the pollen-sacs (C) and the stigma (D) of Salvia pratensis, and on the head deposited by the

pollen-sacs (E) and the stigma (F) of S. officinalis. A. mellifera under UV-illumination with luminous pigment

deposited by the stigma of Borago officinalis on the head (G) and the ventral abdomen (H), A. mellifera visiting

a Borago officinalis flower with the stigma of the red style touching the ventral abdomen and the anthers

situated above the ventral abdomen (I). Photos C-D: Sofia Marazopoulou, E-F: Leopold Flasch.

https://doi.org/10.1371/journal.pone.0182522.g004
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The safe sites of B. terrestris are larger and contain more pollen than those of A. mellifera
resulting in an increased probability to get in contact with the pollen-sacs or stigmas. However,

other features determining pollination efficiency are the bees’ motivation to collect pollen or

groom pollen into the corbiculae (including thoroughness and frequency of grooming). In

addition, the bees’ pollen collecting behaviour and morphology of grooming and storing

devices affect the number of pollen grains left over for pollination. Also the morphological fit

between flowers and visitors (size, shape, functionality, location where pollen gets deposited or

stigma collects pollen) as well as the visitors’ physical and mental capabilities to trigger poten-

tial floral mechanisms might influence pollen transfer. The ability of flowers to manoeuvre the

bees into specific positions on the flower for precise pollen transfer might play a key role for

the precision of pollen transfer within safe sites.

In general, since safe sites are on the midline of the bees’ body, specialised, often zygomor-

phic bee flowers, usually place pollen specifically on the dorsal (nototriby, e.g. in labiate flowers

such as many Labiatae including most Salvia species) or ventral (sternotriby, e.g. in keel flow-

ers such as many Fabaceae) side of the bee [25,26]. The preferred distribution of the safe sites

on the midline of the insects’ body explains why only few bee-pollinated plant species, often

with asymmetric flowers, place pollen on the lateral side of the bee (pleurotriby, see also [53]),

which is more easily to reach by the grooming legs. Less pollen loss resulting in increased polli-

nation efficiency enables the reduction of costly pollen production and of the number of

anthers/thecae (e.g. two thecae per flower in Salvia or even only one theca in Canna L., Canna-

ceae) [26].

Altogether, we have experimentally demonstrated safe sites on the bees’ body and their

usability by plants to improve safe transportation of pollen grains for pollination. To be able to

evaluate the ‘safety’ of the safe sites, experiments should be carried out under field conditions,

in which the flowers’ and bees’ shapes and sizes vary and pollen collection and grooming

might be influenced by a variety of factors. Then the percentage of saved pollen grains in safe

sites should be calculated in relation to the total pollen amount transferred within a flower

visit to estimate the importance of pollen transfer in safe sites. This includes pollen that is

removed or collected by the bee via grooming and the pollen that gets lost e.g. during flight

activity or touching non-stigmatic floral parts or stigmas of interspecific flowers. Additionally,

as bees and bumble bees are said to usually groom during flight between flowers [16,41], it

should be examined whether grooming behaviour–and thus pollen distribution in safe sites–

differs when bees groom during flight as our study is mainly limited to grooming during

perching. Also, as grooming activity might differ in bees completely or not fully covered with

pollen as in our experiment, the grooming behaviour–and pollen distribution in safe sites–of

flower visiting bees (possibly only partially covered) should be examined. It also should be ver-

ified whether there are differences in grooming activity and pollen deposition in safe sites of

bees searching for nectar as well as in those of bees actively collecting pollen. Moreover, the

importance of safe sites could be evaluated by measuring the proportion of safe site pollen

delivered onto a conspecific stigma of one or more flowers as compared to the amount of pol-

len from outside the safe sites. However, pollination is a dynamic process in space and time.

Success of pollination and fertilisation is influenced not only by the amount of pollen trans-

ferred to a stigma of a conspecific flower [54–57], but also by the time the pollen is exposed to

temperature, humidity and UV-radiation, and other factors reducing the ability of pollen grains’

germination [58,59]. The dynamics of pollen turnover in safe sites due to subsequent flower vis-

its, causing both pollen export to stigmata and pollen import onto the bees’ body [29,60], might

affect the outcrossing distance [28, 61]. Additionally, the shape, stiffness and position of the

style and stigma could determine whether outer (distal) pollen, probably deposited recently, or

pollen from lower (proximal) layers, probably deposited earlier, of the safe sites gets transferred
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[29,62]. Beside the quality of conspecific pollen (e.g. outcross pollen), also interspecific pollen,

which might clog the stigma and thus prevent attachment of conspecific pollen, affects the suc-

cess of pollination [63]. Thus, the study of safe sites on the bees’ bodies and the pollen grains’

ride in space and time and their role in pollination still remains a challenge.

The concept of safe sites for pollen transfer on bees’ bodies does not put the major role of

bees as pollinators into question, but might focus future research to guidance of bees on flow-

ers to take favorable positions for safe pollen transport by means of floral filtering of suitable

pollinators [26], morphological match between pollinators and flowers [54] and floral guides

[55] as well as potential strategies of flower visitors to bypass the flowers’ restrictions (e.g. bees

with specialised hairs for pollen collection from specialised bee-flowers) [26] or strategies of

plants via shifting to non-pollen collecting pollinators (e.g. birds) [56–57,64–66].
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