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Abstract

The biogenic amine serotonin (5-HT) is an important neuroactive molecule in the central

nervous system of the majority of animal phyla. 5-HT binds to specific G protein-coupled

and ligand-gated ion receptors to regulate particular aspects of animal behavior. In Dro-

sophila, as in many other insects this includes the regulation of locomotion and feeding. Due

to its genetic amenability and neuronal simplicity the Drosophila larva has turned into a use-

ful model for studying the anatomical and molecular basis of chemosensory behaviors. This

is particularly true for the olfactory system, which is mostly described down to the synaptic

level over the first three orders of neuronal information processing. Here we focus on the 5-

HT receptor system of the Drosophila larva. In a bipartite approach consisting of anatomical

and behavioral experiments we describe the distribution and the implications of individual 5-

HT receptors on naïve and acquired chemosensory behaviors. Our data suggest that 5-

HT1A, 5-HT1B, and 5-HT7 are dispensable for larval naïve olfactory and gustatory choice

behaviors as well as for appetitive and aversive associative olfactory learning and memory.

In contrast, we show that 5-HT/5-HT2A signaling throughout development, but not as an

acute neuronal function, affects associative olfactory learning and memory using high salt

concentration as a negative unconditioned stimulus. These findings describe for the first

time an involvement of 5-HT signaling in learning and memory in Drosophila larvae. In the

longer run these results may uncover developmental, 5-HT dependent principles related to

reinforcement processing possibly shared with adult Drosophila and other insects.

Introduction

The biogenic amine serotonin (5-HT) exerts an essential role in a wide range of insect behav-

iors by its action as neurotransmitter, neuromodulator, and/or neurohormone (reviewed by

[1]). Accordingly, for the adult fruit flyDrosophila melanogaster it was shown that 5-HT signal-

ing is involved in chemosensation [2, 3], aggression [4, 5], mating [6], feeding [7, 8], and loco-

motion [7, 9].

As in vertebrates, 5-HT acts as natural ligand for a group of G protein-coupled receptors

and ligand-gated ion channels found in the central and peripheral nervous systems [10–12].
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5-HT receptors mediate both excitatory and inhibitory function. In the Drosophila genome

five different 5-HT G protein-coupled receptors have been previously identified, called

5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, and 5-HT7 [13–18]. 5-HT receptor expression was found in

distinct adult fly brain regions including the mushroom bodies (MB), central complex, optic

lobes and antennal lobes (AL) [19–24]. Consequently, differential 5-HT receptor requirement

was reported for aggression (5-HT1A and 5-HT2A), sleep (5-HT1A), feeding (5-HT1B and

5-HT2A), circadian entrainment and behavior (5-HT1B and 5-HT2A), and courtship and mating

(5-HT7) [8, 19–21, 23, 25, 26]. Moreover, 5-HT/5-HT receptor signaling was shown to be

required for learning and memory as 5-HT1A, 5-HT2A, and 5-HT7 were reported to be involved

in short and long term association [27]. Additionally, anesthesia-resistant memory formation

was supposed to be mediated through 5-HT1A receptors expressed in the mushroom body

[28].

At the larval stage only a few studies have addressed the anatomical organization and func-

tional relevance of 5-HT receptors. It was described that putative 5-HT1A, 5-HT1B, 5-HT2A, and

5-HT7 positive cells can be found in the larval central nervous system (CNS) [19, 21, 23, 29].

This allows 5-HT to specifically regulate certain aspects of larval physiology and behavior. In

detail, distinct larval 5-HT receptor function was reported for locomotion (5-HT1A, 5-HT1B,

5-HT2A, 5-HT2B, and 5-HT7), reduced light avoidance (5-HT1A), juvenile-to-adult transition

(5-HT7), feeding (5-HT2A), and modulation of heart rate frequency (5-HT2A and 5-HT2B) [13,

30–34].

However, these studies often focus on a single type of 5-HT receptor and thus miss a com-

prehensive side-by-side investigation of each receptor on the anatomical and behavioral level.

Accordingly, one emphasis of this study was to investigate the organization of several different

5-HT receptors within the larval brain in parallel. To this end we used the Gal4-UAS system

that allows for reproducible expression of effector genes in defined subsets of potential 5-HT

receptor cells [35–37]. Based on the limitation of available Gal4 lines we focused our analysis

on four of the five 5-HT receptors: 5-HT1A-Gal4, 5-HT1B-Gal4, 5-HT2A-Gal4 (also often called

5-HT2Dro-Gal4 [21]), and 5-HT7-Gal4. Please note that 5-HT2B was only recently identified

[13] and it is not part of this study. Thereby, we provide an initial analysis of larval 5-HT recep-

tor system based on genetic tools that are state of the art and widely used in the field. We want

to emphasize that it is not clear for all 5-HT receptor Gal4 lines if and how reliable the Gal4
expression reflects the endogenous receptor gene expression patterns. Due to technical limita-

tions antibody and in-situ information is almost completely unavailable. Consequently, in the

longer run, more sophisticated genetic tools have to be established and co-localization studies

have to be performed.

Here, we applied a two-part approach by analyzing the expression patterns and the behav-

ioral function of potential 5-HT receptor cells in Drosophila larvae. The behavioral assays

include measurements for naïve olfactory and gustatory preferences performed via simple

choice tests on agarose filled test plates [38]. In addition, a more advanced design allows to

study associative olfactory learning and memory [39–47]. Presenting an odor (the conditioned

stimulus (CS)) simultaneously with an aversive unconditioned stimulus (US) induces experi-

ence dependent avoidance of the CS. Conversely, if the same CS is paired with an appetitive

US, animals can be trained to develop a preference for the CS. Thus, depending on previous

experience, the same odor can trigger either avoidance or attraction [41]. Taken together, a

comprehensive set of behavioral assays to analyze larval chemosensory behavior is at hand that

allows investigating simple choice behavior and associative olfactory learning and memory in

Drosophila larvae.

In an earlier study, we could show that 5-HT positive cells are per se neither necessary for

naïve gustatory, olfactory, or light preferences nor for associative olfactory learning and

5-HT receptors in Drosophila larvae
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memory (using fructose and electric shock as positive and negative reinforcers, respectively)

[48]. However, this does not exclude a specific contribution of distinct 5-HT receptors for che-

mosensory behaviors. Different 5-HT receptors act antagonistically. 5-HT7 was shown to acti-

vate adenylyl cyclases and increases cAMP levels, whereas 5-HT1A and 5-HT1B receptors

inhibit cAMP production [14, 15, 18]. Thus, ablation of the entire 5-HT system can affect both

assisting and inhibitory functions of antagonistic 5-HT receptors at the same time. We have

therefore expanded our analysis on the role of 5-HT signaling on larval chemosensory behav-

ior by focusing on distinct 5-HT receptor functions.

Materials and methods

Flies

Flies were maintained on standard Drosophila medium at 25˚C or 19˚C under 12h light /dark

conditions. All 5-HT receptor specific lines, 5-HT1A-Gal4 [29], 5-HT1B-Gal4 [49] (Blooming-

ton Stock Center no. 24240), 5-HT2A-Gal4 [21, 50] (Bloomington Stock Center no. 19367),

5-HT7-Gal4 [23], were kindly provided by Charles Nichols. Note that the 5-HT2A-Gal4 con-

struct is an enhancer trap piggyBac construct in the 5-HT2A locus that reduces its expression

by nearly 90% [21]. TRH-GAL4 [78] was kindly provided by Serge Birman. For behavioral

experiments, wild type Canton-S (WTCS) flies and the effector lines UAS-hid,rpr [51, 52] and

UAS-shits [53] (Bloomington Stock Center no. 44222) were used. w1118 flies (kindly provided

by Martin Heisenberg) were crossed with UAS- and Gal4 lines to obtain heterozygous con-

trols. To visualize the Gal4 expression pattern, we used UAS-mCD8::GFP [54] (kindly provided

by Hiromu Tanimoto) and UAS-myr::tomato [55, 56] (Bloomington Stock Center no. 32221).

In all cases five to six day old feeding third instar larvae were used.

Immunostaining

Experiments were performed as described before [57, 58]. Third instar larvae were put on ice

and dissected in phosphate buffered saline (PBS). Brains were fixed in 3.6% formaldehyde

(Merck, Darmstadt) in PBS for 30 min. After washing with PBT (PBS with 3% Triton-X 100,

Sigma Aldrich, St. Louis, MO), brains were blocked with 5% normal goat serum (Vector Labo-

ratories, Burlingame, CA) in PBT for one to two hours and then incubated for two days with

first antibodies at 4˚C. Before applying the secondary antibodies for one or two days at 4˚C,

brains were washed with PBT. Finally, brains were again washed, mounted in Vectashield

(Vector Laboratories) between two cover slips and stored at 4˚C in darkness. This protocol

was used for data presented in Figs 1A, 1AI, 1AII, 1B, 1BI, 1BVI, 1C, 1CIV and 2.

In addition we used a second protocol developed at the HHMI Janelia research campus

(https://www.janelia.org/project-team/flylight/protocols). Larval tissues were dissected, fixed

and washed as described above. After blocking with 3% normal goat serum (Vector Laborato-

ries, Burlingame, CA) in PBT for 1 hr, tissues were incubated for two days with first antibodies

at 4˚C. After multiple rinses in PBT, tissues were incubated 2 days at 4˚C in the cocktail of sec-

ondary antibodies. Nervous systems were then washed two to three times in PBT, mounted on

poly-L-lysine (Sigma-Aldrich) coated coverslips and then transferred to a coverslip staining jar

(Electron Microscopy Sciences) to dehydrate through a graded ethanol series. Afterwards tis-

sues were cleared in xylene, and mounted in DPX (Sigma). This protocol was used for data

presented in Fig 1AIII–1AVII, 1BII–1BV, 1BVII, 1CI–1CIII, 1CV and 1DVII.

Images were taken with Zeiss confocal laser microscopes LSM 550 and LSM 780. The

resulting image stacks were projected and analyzed with ImageJ (NIH; https://imagej.nih.gov/

ij/) software. Contrast and brightness adjustment as well as rotation and organization of

images were performed in Photoshop (Adobe Systems Inc., San Jose, CA).

5-HT receptors in Drosophila larvae
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Fig 1. Gal4 expression patterns of four potential 5-HT receptor lines. 5-HT1A-, 5-HT1B-, 5-HT7-, and 5-HT2A-Gal4 positive cells are shown in A, B,

C, and D, respectively. (A-C) Gal4 lines were crossed with UAS-mCD8::GFP to analyze their expression patterns (green; anti-GFP staining) in addition

to reference labeling of the central nervous system (CNS) (magenta; anti-ChAT/anti-FasII double-staining). In (D) 5-HT2A-Gal4 was crossed with UAS-

myr::tomato to visualize its expression pattern (green; anti-dsRed staining) within the larval CNS (magenta; anti-ChAT/anti-FasII double-staining). For

all four lines the first column shows a frontal view onto a z-projection of the entire CNS. In addition, for each line representative z-projections of close-

ups of the ventral nerve cord (VNC), one hemisphere (HEMI), the suboesophageal ganglion (SOG), one antennal lobe (AL), the calyx (CA) of the

mushroom body (MB), the lobes of the MB, and the larval optic neuropil (LON) are shown from left to right. Below each close-up only the GFP channel

5-HT receptors in Drosophila larvae
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Immunofluorescence antibodies

Anti-GFP (polyclonal/rabbit/A6455/Molecular Probes/1:1000), anti-GFP-FITC (polyclonal/

goat/ ab6662/abcam/1:1000) and anti-DsRed (polyclonal/rabbit/632496/Clonetech/1:200)

were used for visualizing Gal4 lines expression patterns. Two different mouse antibodies for

staining the neuropil (anti-ChAT (monoclonal/mouse/ChAT4B1/DSHB/1:100)) and the axo-

nal tracts (anti-Fasciclin II (monoclonal/1d4 anti-Fas/DSHB/1:50)) were applied to provide

landmarks within the larval CNS. 5-HT cells were visualized with anti-5-HT (polyclonal/rab-

bit/S5545/Sigma Aldrich /1:1000), dopaminergic cells with anti-TH (monoclonal/mouse/

22941/Immuno-Star/1:500), respectively.

As secondary antibodies goat anti-rabbit IgG Alexa Fluor 488 (polyclonal/A11008/Molecu-

lar Probes/ 1:200), goat anti-mouse IgG Alexa Fluor 647 (polyclonal/A21235/Molecular

Probes/1:200), goat anti-mouse IgG Alexa Fluor 405 (polyclonal/A31553/Molecular Probes/

1:200), goat anti-mouse IgG Cy3 (polyclonal/A10521/Molecular Probes/1:200), and goat anti-

rabbit IgG Cy5 (polyclonal/A10523/Molecular Probes/1:200) were used.

Behavioral experiments

Five to six day old feeding third instar larvae were used for all behavioral experiments. The

assays were performed either at 22˚C or at 35˚C using UAS-hid,rpr and UAS-shits effector

lines, respectively. In case of UAS-shits, larvae were additionally incubated for 2 min in a water

bath at 37˚C prior to behavioral experiments. For further details on experimental protocols we

added the following description and refer to earlier studies [38–40, 43, 57, 59–62].

Associative olfactory learning and memory

Experiments were conducted on test plates filled with a thin layer of 2.5% agarose containing

either pure agarose or agarose plus reinforcer. We used 1.5 M sodium chloride (SALT) and 2.0

M D-fructose (FRU). As olfactory stimuli, we used 10 μl amyl acetate (AM, diluted 1:250 in

paraffin oil) and benzaldehyde (BA, undiluted). Odorants were loaded into custom-made Tef-

lon containers with perforated lids. Learning and memory were tested by exposing a first

group of 30 animals to BA, while crawling on agarose medium containing sugar as a positive

reinforcer or high salt concentration as a negative reinforcer. After 5 min, larvae were trans-

ferred to a fresh test plate in which they were allowed to crawl on pure agarose medium for 5

min while being exposed to AM. A second group of larvae received the reciprocal training.

Immediately, after three training cycles, larvae were transferred onto test plates on which AM

and BA were presented on opposite sides. Please note that for aversive olfactory learning and

memory the test plate included the same high salt concentration as respective training plates.

After 5 min, individuals were counted on the AM side (#AM), the BA side (#BA), and in a neu-

tral zone. By subtracting the number of larvae on the BA side from the number of larvae on

the AM side divided by the total number of counted individuals (#TOTAL), we calculated a

preference index for each training group:

PREFAMþ=BA ¼ ð# AM � # BAÞ = # TOTAL ð1aÞ

is shown as an inverted black and white image to visualize innervation patterns with higher contrast and no neuropil background. White arrows

highlight aspects of the expression patterns that are further described in the results. Additional abbrevations: VL vertical lobe, ML medial lobe, PED

peduncle; Scale bars: 50 μm (in A, B, C, D) and 20 μm (in all other panels).

https://doi.org/10.1371/journal.pone.0181865.g001
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PREFAM=BAþ ¼ ð# AM � # BAÞ = # TOTAL ð1bÞ

To measure specifically the effect of associative learning and memory we calculated the

associative performance index (PI) as the difference in preference between the reciprocally

Fig 2. Co-expression of 5-HT1A-, 5-HT1B-, and 5-HT7-Gal4 with anti-5-HT and anti-TH. Expression

patterns of 5-HT1A-, 5-HT1B-, and 5-HT7-Gal4 crossed with UAS-mCD8::GFP are visualized using a triple

staining protocol. Anti-GFP (green) was used to label Gal4 positive cells, anti-ChAT/anti-FasII (blue) was

used as a reference labeling for the CNS, and anti-5-HT (red, in A, C, E) or anti-TH (red, in B, D, F) was used

to identify 5-HT or dopaminergic cells, respectively. 5-HT2A-Gal4 was not included in this experiment due to

the low number of cell bodies inside the CNS (Fig 1D). There was no co-staining detected between 5-HT

receptor Gal4 expression patterns and anti-TH (B, D, F). The same is true for the co-expression analysis with

anti-5-HT (A, C, E); the only exception was a single pair of neurons in the terminal segment of the VNC

labeled by 5-HT1A-Gal4 (arrowhead in AII). (A-F) show frontal views onto z-projections of the entire CNS (left)

and representative z-projections of close-ups of one or both hemispheres and SOG (right top) and abdominal

ganglion (right bottom). Scale bars: 50 μm (left) and 20 μm (right top and bottom).

https://doi.org/10.1371/journal.pone.0181865.g002
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trained larvae:

PI ¼ ðPREFAMþ=BA � PREFAM=BAþÞ = 2 ð2Þ

Negative PIs thus represent aversive olfactory learning and memory, whereas positive PIs

indicate appetitive olfactory learning and memory. Division by 2 ensures scores are bound

within (-1; 1).

Chemosensory preference

For gustatory preference tests, 2.5% agarose (Sigma Aldrich Cat. No.: A5093, CAS No.: 9012-

36-6) solution was boiled in a microwave oven and filled as a thin layer into test plates (85 mm

diameter, Cat. No.: 82.1472, Sarstedt, Nümbrecht). After cooling, the agarose was removed

from half of the plate. The empty half was filled with 2.5% agarose solution containing sodium

chloride (SALT, Sigma Aldrich Cat. No.: S7653, CAS No.: 7647-14-5; 2.0 M and 1.5 M) and D-

fructose (FRU, Sigma Aldrich Cat. No.: 47740, CAS No.: 57-48-7; 2.0 M). Assay plates were

used at the same day shortly after preparation to avoid diffusion of the stimuli from one side to

the other. Groups of 30 larvae were placed in the middle of the plate, allowed to crawl for 5

min, and then counted on the stimulus containing side, the agarose only side, and a neutral

zone. The neutral zone covers 1 cm from top to bottom of the Petri dish between the left and

right sides. It thereby separates both halfs and covers the transition from pure agarose to aga-

rose plus gustatory stimulus. By subtracting the number of larvae on the pure agarose side

(#nS) from the number of larvae on the stimulus side (#S) divided by the total number of

counted larvae (#TOTAL), a preference index for the respective chemosensory stimulus was

calculated:

PREF ¼ ð# S � # nSÞ =# TOTAL

Negative PREF values indicate avoidance, whereas positive PREF values represent

attractiveness.

For olfactory preference tests, a similar assay was used except that olfactory stimuli were

presented in custom-made Teflon containers with perforated lids presented on only pure aga-

rose containing test plates. As olfactory stimuli amyl acetate (AM, Fluka Cat. No.: 46022; CAS

No.: 628-63-7; diluted 1:250 in paraffin oil, Fluka Cat. No.: 76235, CAS No.: 8012-95-1) and

benzaldehyde (BA, Fluka Cat. No.: 12010, CAS No.: 100-52-7; undiluted) were used.

Acutely blocking synaptic output with shibirets

To acutely block synaptic output of defined sets of cells we used UAS-shits1 [53]. Immediately

before the experiment, larvae were incubated for 2 min in a water-bath at 37˚C. The behavioral

experiments were then performed as described before, at a restrictive temperature of about

35˚C in a custom made chamber.

Statistical methods

Statistical analysis and visualizations were done with R (version 2.15.2), R studio (version

0.98.1028) and Adobe Photoshop (version CC 2015.5). Behavioral data are visualized as

box plots with medians (middle lines), 25% / 75% percentiles (box boundaries), and 10% /

90% percentiles (whiskers). Sample size in each case is n = 10–20. Kruskal-Wallis tests (KWT)

were performed and, in case of significance, followed by Wilcoxon rank-sum tests (WRT);

Bonferroni corrections were used for multiple comparisons as applicable (indicated with

BWRT). Likewise, Wilcoxon signed-ranked tests (WST) were used to compare values against

5-HT receptors in Drosophila larvae
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chance level. Visualization of statistical evaluations: if only n.s. is shown the initial KWT did

not suggest for a difference between the three groups (p� 0.05). When differences between

each group are shown this provides the results of the BWRT as the initial KWT suggested for

significance (p< 0.05). P values were rounded to three decimal places except for cases that

would have resulted in zero. Here additional decimal places are given. Further details includ-

ing raw data can be found in S1 Table.

Results

Expression patterns of four specific 5-HT receptor Gal4 lines in the larval

brain

To analyze the cellular anatomy of different 5-HT receptor Gal4 lines in the CNS of third instar

larvae of Drosophila, we crossed 5-HT1A-Gal4, 5-HT1B-Gal4, and 5-HT7-Gal4with UAS-

mCD8::GFP. We used an anti-GFP antibody to identify details of the cellular innervation and

morphology and anti-Fasciclin II (FasII) / anti-Choline Acetyltransferase (ChAT) background

staining (Fig 1), which label axonal tracts [63] and neuropils [64], respectively. The double

labeling approach thus allows us to map the different 5-HT receptor Gal4 expression patterns

into a common neuropil reference. This approach was hitherto not applied to all of these lines

at the larval stage. Please note, to clearly disentangle 5HT2A-Gal4 dependent expression from

marker expression we crossed 5-HT2A-Gal4with UAS-myr::tomato and labelled specifically

Gal4 positive cells via an anti-DsRed antibody [65]. This is necessary as the enhancer trap pig-

gyBac construct carries a “3xP3-EYFP” marker that is also recognized by the anti-GFP anti-

body [50, 66, 67]. The “3xP3-EYFP” marker is expressed under the control of the endogenous

Pax6 gene and thus on its own drives expression in the larval visual system and brain [68, 69].

5-HT1A-Gal4. 5-HT1A-Gal4 expression was found throughout the larval CNS including

both brain hemispheres and the ventral nerve cord (VNC) (Fig 1A). A closer inspection

revealed innervation of the protocerebrum (arrow in Fig 1AII and 1AVI), the AL (arrow in Fig

1AIV), to a lesser degree of the suboesophageal ganglion (SOG; Fig 1AIII), and mushroom

body calyx (CA; arrow in Fig 1AV). In contrast, the MB lobes and larval optic neuropil (LON)

were not labeled (Fig 1AVI and 1AVII). Characteristic for the 5-HT1A-Gal4 expression pattern

was a row of cell bodies localized close to the midline in each thoracic and abdominal segment,

(Fig 1A and 1AI) as well as a set of about 15 cell bodies dorsolateral of the CA innervating dif-

ferent protocerebral regions (Fig 1AV). In addition, several neurons were labled per thoracic

and abdominal segment that leave the brain and potentially target the peripheral system of the

larvae (arrows in Fig 1A). The obtained expression pattern is comparable to the ones described

before [15, 29].

5-HT1B-GAL4. 5-HT1B-Gal4 also showed expression in extended regions throughout the

whole larval CNS, including both hemispheres and the VNC (Fig 1B). A closer inspection

revealed innervation in cells at the tip and midline of the SOG (arrows in 1BIII). A small num-

ber of only about 20, likely embryonic-born Kenyon cells (KC) [70], innervate the entire MB

at the CA and at the surface of the MB peduncle, vertical and medial lobe (arrows in Fig 1BV

and 1BVI). No expression was found in the AL and LON (Fig 1BIV and 1BVII). Besides the pro-

nounced staining along the midline, a set of cells with somata in the lateral abdominal seg-

ments project to the terminal plexus of the VNC (arrows in Fig 1BI). These 5-HT1B positive

cells were reported to express the peptide hormone leucokinin and play a role in larval turning

behavior [71]. An additional characteristic of the 5-HT1B-Gal4 line is its massive expression lat-

erally in both hemispheres that give rise to the adult optic lobes after metamorphosis (arrows

in Fig 1BII and 1BVII) [72]. Our results are in line with earlier findings of the expression pat-

terns of 5-HT1B [19, 71].

5-HT receptors in Drosophila larvae
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5-HT7-Gal4. 5-HT7-Gal4 expression was detected throughout the whole larval CNS

including both hemispheres and the VNC (Fig 1C). We could not find innervation within the

MB lobes and the LON by potential 5-HT7 cells (Fig 1CVI and 1CVII). Yet, innervation was

detected in the VNC, SOG, AL and CA (arrows in Fig 1CI–1CV). Seven cells with somata in

close proximity to the AL densely innervate the AL (Fig 1CIV). These are likely projection neu-

rons as they follow the antennocerebral tract an innervate the CA (arrows in Fig 1CV). The

peduncle of the MB was weakly innervated by a MB extrinsic neuron called BL neuron (right

arrow in Fig 1CVI) [70]. In addition, 5-HT7-Gal4 shows dense innervation within the SOG

potentially co-localizing with the 5-HT positive SE0 clusters [34, 48, 73]. These cells were

reported to be involved in feeding and also in linking the external environment with the inter-

nal endocrine system [34, 73]. Overall, the observed expression is consistent with the one

reported before [23].

5-HT2A-Gal4. 5-HT2A-Gal4 showed an expression pattern that is remarkably different

when compared to the other three driver lines (Fig 1D). There are nearly no somata detectable

within the larval CNS (Fig 1DI–DVII). Yet, there is strong labelling within the SOG, likely by

axonal terminals from neurons of the peripheral nervous system that enter the brain via differ-

ent nerves (arrows in Fig 1DIII). However, due to technical limitations we were not able to

clearly localize these cells outside of the CNS. We are nonetheless convinced that these cells are

5-HT2A-Gal4 positive due to their initial description by Nichols [21] using the same Gal4 line.

In addition, we found a second type of brain innervation from the periphery, this time into the

LON (arrow in Fig 1DVII). Please note that the larval MB was not innervated. Detectable stain-

ing was limited to adjacent fiber bundles (lower arrow in Fig 1DVI) and weak innervation of

the dorsal protocerebrum (upper arrow in Fig 1DVI).

In summary, the four analyzed Gal4 expression patterns suggest that 5-HT receptors may

be expressed broadly throughout the brain in partially overlapping patterns including primary

olfactory and gustatory brain centers (AL and SOG). Distinct receptors may be limited to par-

ticular types of cells like peripheral sensory neurons that project to the SOG (5-HT2A-Gal4)

and MB Kenyon cells that are known to be involved in learning and memory (5-HT1B-Gal4).

Yet, these results are based on Gal4 expression patterns that may not represent the endogenous

gene expression patterns and therefore have to be handled with care.

Co-localization of 5-HT receptor Gal4 lines with serotonin and Tyrosine-

Hydroxylase

To examine if the larval 5-HT system is controlled in an auto-regulatory manner [74–76], we

crossed 5-HT1A-, 5-HT1B-, and 5-HT7-Gal4with UAS-mCD8::GPF, used the same primary

antibody mixture as before (anti-ChAT/anti-FasII and anti-GPF), but added anti-5-HT (Fig

2A, 2C and 2E). We did not analyze 5-HT2A-Gal4 due to the low number of stained somata

within the larval brain (Fig 1D), but rather afferent projections of peripheral neurons that have

their somata outside the CNS. All three driver lines exhibited no co-labeling of Gal4 positive

and anti-5-HT staining (Fig 2A, 2C and 2E). This indicates that 5-HT receptors may localize

mostly postsynaptically in the larva. This interpretation matches with earlier results that have

analyzed 5-HT/5-HT receptor co-localization [23, 29]. Yet, we also found one exception: con-

sistent with previous work [29] a single pair of 5-HT1A stained cells in the VNC co-localized

with 5-HT immunolabeling (Fig 2AII, arrowheads).

In addition, we also analyzed if potential 5-HT receptor cells are dopaminergic. It was

shown that different aminergic systems directly connect on each other. Octopaminergic neu-

rons for example signal a specific aspect of sugar reinforcement directly onto dopaminergic

neurons that express an α-adrenergic-like octopamine receptor called OAMB [77]. To address

5-HT receptors in Drosophila larvae
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if the larval serotonergic system can directly act on dopaminergic neurons we applied a triple

staining approach. We used anti-TH for the visualization of dopaminergic neurons, anti-GFP

to label 5-HT receptor positive cells and anti-ChAT/anti-FasII for a reference staining of the

larval CNS (Fig 2B, 2D and 2F). For the tested lines, 5-HT1A-, 5-HT1B-, and 5-HT7-Gal4, we

did not detect co-localization with dopamine synthesizing cells. Therefore, it is rather unlikely

that the 5-HT system directly signals as a neurotransmitter on dopaminergic neurons.

Ablation of 5-HT2A-Gal4 positive cells during development impairs

aversive associative olfactory learning and memory

To examine if larvae lacking potential 5-HT receptor cells are able to associate an odor with a

positive or negative gustatory stimulus, we utilized a well-established standard paradigm

(reviewed in [38]). As olfactory stimuli we used benzaldehyde (BA) and amyl acetate (AM). As

appetitive and aversive gustatory unconditioned stimuli we used fructose (FRU, 2.0 M) and

high sodium chloride concentration (SALT, 1.5 M), respectively. This is possible, because abla-

tion of potential 5-HT receptor cells did neither change naïve olfactory responses towards

amyl acetate (diluted 1:250 in paraffin oil), benzaldehyde (undiluted), heptanol (undiluted),

and nonanol (undiluted) (S1 Fig); nor gustatory responses to sodium chloride (2M and 1.5M

for 5-HT2A-Gal4), fructose (2M), arabinose (2M), and sorbitol (2M) (S2 and S3 Figs).

Ablation of 5-HT1A-Gal4, 5-HT1B-Gal4, and 5-HT7-Gal4 positive cells throughout develop-

ment did not change appetitive olfactory learning and memory (Fig 3B, KWT p = 0.061; Fig

3C, KWT p = 0.007; BWRT p = 0.189 compared to 5-HT1B-Gal4/+ and p = 0.052 compared to

UAS-hid,rpr/+; Fig 3D, KWT p = 0.061) as well as aversive olfactory learning and memory

(Fig 3F, KWT p = 0.233; Fig 3G, KWT p = 0.006; BWRT p = 1.000 compared to 5-HT1B-Gal4/

+ and p = 0.016 compared to UAS-hid,rpr/+; Fig 3H, KWT p = 0.303).

Yet, 5-HT2A-Gal4/UAS-hid,rpr experimental larvae showed impaired aversive olfactory

learning and memory (Fig 3I; WST p = 0.131), which was significantly different compared to

both genetic controls (Fig 3I; KWT p = 0.010; BWRT p = 0.021 compared to 5-HT2A-Gal4/+,

p = 0.034 compared to UAS-hid,rpr/+). Appetitive olfactory learning and memory did not dif-

fer among the three tested genotypes (Fig 3E; KWT p = 0.606). Repetition of the experiments

with increased sample size gave rise to the same results (S4 Fig).

In summary, we thus conclude that 5-HT1A-, 5-HT1B-, and 5-HT7-Gal4 positive cells were

not necessary for appetitive and aversive olfactory learning and memory. Yet, for 5-HT2A-Gal4
we got a different result; unlike appetitive olfactory learning and memory, aversive olfactory

learning and memory was impaired.

5-HT2A receptor function throughout development is necessary for

aversive olfactory learning and memory

To investigate if the memory impairment seen for 5-HT2A-Gal4/UAS-hid,rpr experimental lar-

vae was due to changes in the 5-HT2A receptor function, we next tested a homozygous hypo-

morphic 5-HT2A receptor mutant. In detail, Nichols [21] showed via quantitative real-time

PCR analysis for this line that 5-HT2A expression is reduced by about 90% compared to wild

type (Oregon-R) and w1118 flies.

Homozygous 5-HT2A mutant larvae showed a similar reduction for aversive olfactory

learning and memory when compared to wild-type control (WTCS) larvae (Fig 4B; WRT

p = 0.001). Again, the behavioral phenotype was specific for aversive olfactory learning and

memory and did not affect appetitive olfactory learning and memory (Fig 4C; WRT p = 1.000

compared toWTCS). In addition, we performed control experiments with 5-HT2A mutant

andWTCS larvae to test for proper olfactory and gustatory chemotaxis. This was necessary to
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exclude perturbing defects in task-relevant sensory-motor abilities. 5-HT2A receptor mutants

displayed olfactory AM and BA preferences as well as gustatory SALT and FRU preferences

that did not significantly differ from wild type controls (Fig 4D, 4E, 4F and 4G; WRT

p = 0.173, p = 0.154, p = 0.148, p = 0.516, respectively).

Based on these results we conclude that 5-HT2A receptor function throughout development

is necessary for aversive olfactory learning and memory using high salt concentration as a

unconditioned stimulus.

Fig 3. Ablation of potential 5-HT2A receptor cells throughout development impairs aversive olfactory

learning and memory. 5-HT1A-, 5-HT1B-, 5-HT7-, and 5-HT2A-Gal4 lines were crossed with UAS-hid,rpr to

genetically induce apoptosis in potential 5-HT receptor cells. In addition, Gal4 lines and UAS-hid,rpr were crossed

with w1118 to obtain heterozygous genetic control larvae. (A) provides a color scheme for the three different groups

used in each experiment. Appetitive olfactory learning and memory using fructose reinforcement is shown at the

top (B-E). Aversive olfactory learning and memory is shown at the bottom (F-I). In most cases, experimental larvae

and genetic control groups behaved similar. However, ablation of 5-HT2A-Gal4 positive cells specifically impaired

aversive olfactory learning and memory (I), while leaving appetitive olfactory learning and memory intact (E).

Sample size (n = 10–14) is indicated at the bottom of each box plot. Differences against zero are given at the top of

each box plot. Differences between all three groups or individual groups are shown at the bottom of the panel.

Visualization of statistical evaluations: if only n.s. is shown the initial Kruskal-Wallis test (KWT) did not suggest for a

difference between the three groups (p > 0.05). When differences between each group are shown this provides the

results of the Wilcoxon rank-sum tests with Bonferroni corrections (BWRT) as the initial KWT suggested for

singnificance (p < 0.05). *** (p < 0.001), ** (p < 0.01), * (p < 0.05), n.s. (not significant p� 0.05).

https://doi.org/10.1371/journal.pone.0181865.g003
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Fig 4. Impaired 5-HT2A receptor function throughout development impairs aversive olfactory learning

and memory. Homozygous 5-HT2A receptor gene mutants and wild-type control larvae (WT CS) were used

to analyze aversive (B) and appetitive (C) olfactory learning and memory, olfactory amyl acetate (AM, in D)

and benzaldehyde (BA in E) preferences and gustatory sodium chloride (SALT, in F) and fructose (FRU, in G)

preferences. (A) provides a color scheme for the two different groups used in each experiment. Whereas
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Ablation of the 5-HT/5-HT2A receptor system throughout development

specifically impairs aversive odor-salt learning and memory

In an earlier study we had shown that larvae lacking 5-HT cells are able to establish an associa-

tion between an odor and a punishing stimulus [48]. At first sight the behavioral phenotypes

shown in Figs 3I and 4B, therefore, appear to be contradictory. Yet, in our initial experiments

we used electric shock instead of high salt concentration as unconditioned stimulus. Thus, it is

possible that manipulation of the 5-HT system does not affect aversive olfactory learning and

memory in general but is rather restricted to gustatory high salt concentration. To investigate

whether this is the case we utilized the same approach as used in Huser et al. (2012). We

crossed the TRH-Gal4 line [78] that expresses in most of the larval 5-HT cells (Fig 5A; [48]) as

the tryptophan hydroxylase (TRH) gene was reported to catalyse the rate-limiting step of 5-HT

synthesis from tryptophan to 5-hydroxy-tryptophan [1]. Experimental TRH-Gal4/UAS-hid,rpr
larvae having most of their 5-HT cells ablated throughout development [48] did not show

aversive odor-salt learning and memory (Fig 5B; WST p = 0.762). The behavior was different

from both genetic controls (Fig 5B; KWT p = 0.002; BWRT p = 0.002 compared to TRH-Gal4/

+, p = 0.038 compared to UAS-hid,rpr/+). The specificity for the unconditioned stimulus is

further supported by a second experiment. Also 5-HT2A-Gal4/UAS-hid,rpr experimental larvae

that received odor-electric shock training performed similar as genetic controls and were not

impaired in learning and memory (Fig 5C and 5D; KWT p = 0.470). We thus conclude that

5-HT/5-HT2A receptor signaling throught development is necessary for aversive olfactory

learning and memory reinforced by high salt concentration.

Acute blockage of neuronal output of 5-HT and 5-HT2A receptor cells

does not impair odor-salt learning and memory

To address if 5-HT function is acutely required for odor-salt learning and memory we used

the temperature-sensitive dominant negative form of dynamin UAS-shibirets (shits) [53].

Thereby, we specifically disrupted synaptic vesicle recycling during training and testing but

not during development.

An acute block of neurotransmission of 5-HT2A-Gal4 and TRH-Gal4 positive cells did not

affect odor-salt learning and memory (Fig 6C and 6D; WST p = 0.001 and p = 0.020). For both

experiments we did not observe a difference between the three particular genotypes (Fig 6C

and 6D; KWT p = 0.414 and p = 0.655).

In addition, experimental larvae were tested for olfactory AM and BA preferences and gus-

tatory SALT preference. 5-HT2A-Gal4/UAS-shits were attracted by both odors (Fig 6E and 6G;

WST p = 0.001 and p = 0.048) and avoided SALT (Fig 6I; WST p = 0.033). For all experiments

there was no difference between experimental and control larvae (Fig 6E, 6G and 6I; KWT

p = 0.560, KWT p = 0.660, KWT p = 0.127, respectively). The same results were observed with

TRH-Gal4 (Fig 6F, 6H and 6J; KWT p = 0.017; BWRT p = 0.029 compared to TRH-Gal4/+,

p = 0.622 compared to UAS-shits/+; KWT p = 0.597, KWT p = 0.251, respectively). We thus

conclude that acute blockage of neurotransmission of the 5-HT signaling system did not affect

odor-salt learning and memory reinforced by high salt concentration as well as tested naïve

chemosensory preferences.

mutant larvae showed olfactory and gustatory preferences as well as appetitive olfactory learning and

memory comparable to WT CS larvae, aversive olfactory learning and memory was significantly reduced.

Sample size (n = 11–17) is indicated at the bottom of each box plot. Differences against zero are given at the

top of each box plot. Differences between mutant and wild type larvae are shown at the bottom of the panel.

*** (p < 0.001), ** (p < 0.01), * (p < 0.05), n.s. (not significant p� 0.05).

https://doi.org/10.1371/journal.pone.0181865.g004
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Fig 5. 5-HT/5-HT2A signaling throughout development specifically impairs odor-salt learning and

memory. (A) The TRH-Gal4 line was crossed with UAS-mCD8::GFP to visualize its expression pattern

(green; anti-GFP staining) in addition to a reference labeling of the CNS (magenta; anti-ChAT/anti-FasII

double-staining). (B) The TRH-Gal4 line was crossed with UAS-hid,rpr to genetically induce apoptosis in 5-HT

cells. In addition, the Gal4 line and UAS-hid,rpr were crossed with w1118 to obtain heterozygous genetic

control larvae. Above the panel a color scheme describes the three different groups used in the experiment.

Ablation of 5-HT cells completely abolished aversive olfactory learning and memory reinforced by high salt

concentration. (C) shows an overview on the experimental procedure that was used in larvae to test for odor-

electric shock learning and memory. (D) Ablation of 5-HT2A-Gal4 positive cells via UAS-hid,rpr did not impair
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Discussion

Ablation of 5-HT/5-HT2A receptor signaling during development impairs

aversive olfactory learning and memory reinforced by high salt

concentration

Serotonin is a biogenic amine, an important neuroactive molecule within the CNS of several

insect species. Serotonin, dopamine, histamine, octopamine, and tyramine are amines which

have been extensively studied in Drosophila (reviewed in [1, 79, 80]. Each one of the five ami-

nergic neuronal systems—including the serotonergic system—exhibits a stereotypic pattern of

a small number of neurons that are widely distributed in the larval and adult CNS [1]. Aminer-

gic neurons have attracted much attention in recent years. Thus, the detailed anatomy and var-

ious behavioral functions for many aminergic neurons were identified—in numerous cases

even at single cell resolution (only focusing on the Drosophila larvae: [48, 57, 58, 62, 81]).

In contrast, much less is known on the receptor side. Due to the lack of specific antibodies

and genetic tools to anatomically describe and functionally manipulate aminergic receptor

cells only limited access and insight is given. Further, similar to vertebrates, for each amine dif-

ferent receptor genes were identified that in turn often couple to different signaling pathways

and thereby provide a substrate for complex multi-dimensional functions (reviewed in [1,

82]). This complexity is additionally complicated by differences in the nomenclature (5-HT7 or

5-HT7Dro was also called 5-HT-dro1; 5-HT1A or 5-HT1ADro was also called 5-HT-dro2A [10])

and the identification of new receptor genes (5-HT2B was only recently described [13]).

In this study we used state of the art Gal4 lines to anatomically describe and functionally

evaluate the role of 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT7 receptor cells with respect to larval

chemosensory behaviors [21–23, 26, 27, 29–32, 71]. Due to the lack of specific antibodies this

approach is limited as it is not possible to validate the correctness of each Gal4 expression pat-

tern. We found that putative 5-HT/5-HT2A receptor signaling during development is necessary

for odor-salt learning and memory. The finding is based on three mutually supportive results.

First, ablation of potential 5-HT2A receptor cells throughout development specifically impairs

odor-salt learning and memory (Fig 3). Second, 5-HT2A receptor mutant larvae show the same

impairment specifically for odor-salt learning and memory (Fig 4). Third, ablation of 5-HT

cells throughout development abolishes specifically odor-salt learning and memory (Fig 5),

while leaving appetitive odor-sugar and aversive odor-electric-shock learning and memory

intact [48]. Thereby, we describe for the first time a potential involvement of the 5-HT system

in larval nervous system development underlying learning and memory. The mode of action,

however, of the putative 5-HT/5-HT2A receptor signaling is related to the development of the

animal and independent of an acute neuronal function (Fig 6).

5-HT and 5-HT2A receptor cells are dispensable for most of the

chemosensory behaviors tested

In addition, we found that potential 5-HT1A, 5-HT1B, and 5-HT7 receptor cells are not neces-

sary for any of the tested chemosensory behaviors (Fig 3, S1 and S2 Figs). However, given the

odor-electric shock learning and memory. Sample size (n = 15) is indicated at the bottom of each box plot.

Differences against zero are given at the top of each box plot. Differences between the groups are shown at

the bottom of the panel. Visualization of statistical evaluations: if only n.s. is shown the initial KWT did not

suggest for a difference between the three groups (p > 0.05). When differences between each group are

shown this provides the results of the BWRT as the initial KWT suggested for significance (p < 0.05).

*** (p < 0.001), ** (p < 0.01), * (p < 0.05), n.s. (not significant p� 0.05). Scale bar: 50 μm.

https://doi.org/10.1371/journal.pone.0181865.g005
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missing verification for each of the three Gal4 lines expression patterns this result has to be

interpreted carefully. Moreover, 5-HT2A receptor cells were not required for olfactory and gus-

tatory preferences and appetitive olfactory learning and memory (Fig 3, S1, S2, S3 and S4

Figs). Overall, it is remarkable that the obtained behavioral phenotypes are limited, particularly

Fig 6. Acute blockage of synaptic output of 5-HT cells and potential 5-HT2A receptor cells does not affect

chemosensory behavior. The 5-HT2A-Gal4 and TRH-Gal4 lines were crossed with UAS-shits to genetically interfere with

synaptic transmission only during training and testing but not during development. In addition, the Gal4 lines and UAS-hid,

rpr were crossed with w1118 to obtain heterozygous genetic control larvae. (A) provides a color scheme for the different

groups used in each experiment. (B) shows the temperature regime that was applied to block synaptic output at the

restrictive temperature of 35˚C specifically during training (30 min) and testing (5 min). Immediately before the experiment,

larvae were incubated (2 min) in a water-bath at 37˚C. Aversive olfactory learning and memory reinforced by high salt

concentration (C and D), olfactory preferences for AM and BA (E–H) and gustatory preferences for SALT (I and J) were

analyzed. In none of the cases experimental larvae behaved significantly different compared to both genetic control groups.

We thus reason that blockage of synaptic output of 5-HT cells and 5-HT2A-Gal4 positive cells does not impair all tested

chemosensory behaviors. Sample size (n = 12–18) is indicated at the bottom of each box plot. Differences against zero are

given at the top of each box plot. Differences between all three groups or individual groups are shown at the bottom of the

panel, except for SALT, where it is placed above the box plots. Visualization of statistical evaluations: if only n.s. is shown

the initial KWT did not suggest for a difference between the three groups (p > 0.05). When differences between each group

are shown this provides the results of the BWRT as the initial KWT suggested for singnificance (p < 0.05). *** (p < 0.001),

** (p < 0.01), * (p < 0.05), n.s. (not significant p� 0.05).

https://doi.org/10.1371/journal.pone.0181865.g006
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as several studies revealed that 5-HT receptors are essential for different aspects of larval

behavior. For locomotion, for instance, 5-HT1B function was required within a small set of

abdominal leucokinin positive neurons to suppress rearing [71]. RNAi-dependent knock-

down of 5-HT1B, 5-HT2A, and 5-HT7 receptors within the MB Kenyon cells increased the dis-

tance larvae crawled within 140 seconds [32]. Furthermore, 5-HT2A and 5-HT7 receptor

mutant larvae showed a reduced number of body-wall contractions [31]. Thus, it seems that

larval locomotion requires the entire set of 5-HT receptors within the CNS to organize differ-

ent aspects of the motor program. Nevertheless, 5-HT receptor function is not limited to

locomotion. Pan-neuronal overexpression of 5-HT1A, but not 5-HT1B, 5-HT2A, and 5-HT7,
increased the time larvae spend in the light [33]. In addition, 5-HT2A mutants and pan-neuro-

nal knock-down of 5-HT2A reduces larval feeding [13]. This means that individual 5-HT recep-

tors are also important for different kinds of larval behavior. For 5-HT2A this at least includes

locomotion, feeding, and odor-salt learning and memory. Future work needs to address

whether different sets of cells regulate distinct behavioral outputs or if a single set of cells has

multiple functions. Interestingly, in our hands genetic interference with 5-HT receptor func-

tion did not affect olfactory and gustatory preferences nor appetitive olfactory learning and

memory (Fig 3, S1, S2, S3 and S4 Figs). Thus, defects in certain aspects of locomotion did not

prevent larvae from making chemosensory choices, at least within the test interval of 5 minutes

that we have applied. Loss or knock-down of 5-HT receptor function does not completely

compromise larval crawling and therefore still allows larvae to orientate within their chemo-

sensory environment over longer time periods. In the future, recently established automated

locomotion tracking techniques can be implemented that allow to reconstruct and evaluate

larval runs and turns with high spatial and temporal resolution [83–87]. This will allow to eval-

uate if 5-HT receptor function is necessary for immediate chemosensory responses or if partic-

ular aspects of the chemosensory behavioral output are changed (for example turn rate and

run distance).

Interestingly, although 5-HT2A function is required for feeding [13], larvae with missing

5-HT2A cells or reduced 5-HT2A expression are able to associate an odor with a food reward

(Figs 3 and 4 and S4 Fig). This might suggest that at least two different systems process gusta-

tory information in the larval CNS: one pathway modulates feeding and depends on 5-HT

function, a second pathway is important for appetitive learning and memory and independent

of 5-HT and its receptors. Indeed, it was shown that 5-HT function affects all feeding related

motor patterns, including head tilting, mouth hook movement, and pharyngeal and esophagus

movements [73, 88]. Whether the processing of the sweetness and/or the nutritional value of

sugars contributes differently to these proposed pathways is not clear [45]. A similar dual sys-

tem was recently also found for the processing of bitter quinine [89].

The developmental effect of 5-HT/5-HT2A receptor signaling is specific

for odor-salt learning and memory

We have shown that 5-HT cells and 5-HT2A receptor function is necessary for odor-salt learn-

ing and memory during development. During learning olfactory stimuli are sensed by only 21

olfactory receptor neurons, which are housed in a single sensillum at the head of the larva, the

dorsal organ [90–95]. The olfactory information from a given olfactory receptor neuron is fur-

ther conveyed by 21 uniglomerular and 14 multiglomerular projection neurons from the AL

to the lateral horn and the CA region of the MB [93, 96–99]. Here, intrinsic MB Kenyon cells

provide a substrate for synaptic plasticity as olfactory information converges with gustatory

reward and punishment signals from different sets of dopaminergic neurons [57, 62, 100, 101].
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Further downstream only a limited number of about two dozen MB output neurons [70]

transfer the information onto premotor centers to trigger learned behavior.

Given that 5-HT cells and 5-HT2A receptor function is dispensable for appetitive olfactory

learning and memory (Figs 3 and 4 and S4 Fig) and given that 5-HT cells [48] as well as

5-HT2A-Gal4 positive cells (Fig 5) are not necessary for aversive odor-electric shock learning

and memory, we assume that 5-HT/5-HT2A receptor signaling is specifically necessary for salt

reinforcement processing. Otherwise, due to the overlapping neuronal circuits (including the

olfactory circuit, the mushroom body, and the premotor and motor centers), more general

impairments in learning and memory would have occurred.

Where in the reinforcing pathway does 5-HT/5-HT2A receptor signaling become effective?

Unfortunately, very little is known about the neuronal pathways signaling aversive salt rein-

forcement. In Drosophila larvae there is no evidence for direct 5-HT input onto the MB [48].

In adults, however, 5-HT positive neurons innervate the MB lobes and CA, termed DPM (dor-

sal paired medial) and CSD (contralaterally projecting serotonin-immunoreactive deutocereb-

ral) neuron [102, 103]. Yet, the DPM neuron is not present at the larval stage [70] and the CSD

neuron only innervates both AL and the lateral protocerebrum but misses the adult specific

innervation of the CA and lateral horn [103].

Instead, 5-HT2A-Gal4 line expression nearly exclusively innervates the SOG (Fig 1). Most of

the innervation comes from cells having their somata outside the CNS. Unfortunately, due to

technical limitations we were not able to clearly localize them. However, TRH-Gal4 has a pro-

nounced expression within the SOG (Fig 5 [48]). Thus, although we favor the hypothesis that

5-HT/5-HT2A receptor signaling, which is necessary for salt reinforcement can be attributed to

the SOG, future work is needed for validation. In addition, we cannot exclude that the 5-HT2A
receptor Gal4 expression pattern may be misleading, given that we were able to show that

acute blockage of 5-HT/5-HT2A receptor neurotransmission does not impair odor-salt learn-

ing and memory (Fig 6). Thus, neuromodulatory or developmental processes may underlie

5-HT/5-HT2A receptor function. Indeed, 5-HT2A receptor gene expression pattern markedly

changes over larval development [21]. Therefore, it is possible that the impairment of odor-salt

learning and memory is based on cellular functions, which are no longer included in the

expression pattern of third instar larvae that we used for our analysis. This renders a localiza-

tion of the cellular effects rather difficult.

5-HT and 5-HT2A receptor signaling regulate developmental processes

Before adopting their roles as neurotransmitters in the mature CNS, neuroactive substances

function in the establishment of neural networks [104]. This is also true for 5-HT that can

serve as a neurotransmitter and a neuromodulator in all animal phyla studied (reviewed in

[105]). In vertebrates it was shown that 5-HT modulates different developmental events,

including neuronal migration, cell differentiation, and synaptogenesis (reviewed in [106]). In

invertebrates 5-HT regulates—among other processes—cell division in mollusca and the

development of the AL during metamorphosis in moths [107, 108]. For Drosophila larvae it

was shown that dopa decarboxylase mutants that are devoid of 5-HT and dopamine increase

the extent of branching of 5-HT projections to the proventriculus and midgut, similar to larvae

in which neuronal 5-HT synthesis was constitutively knocked-down [76, 109]. In addition,

constitutively knocked-down 5-HT synthesis showed an increased number and size of varicos-

ities in 5-HT fiber projections to the proventriculus [76]. This kind of autoregulation for the

organization of 5-HT varicosities was also described in the larval CNS in 5-HT neurons of the

A7 segment of the abdominal ganglion [76, 110].
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Developmental functions of 5-HT signaling are not limited to larval stages but also include

embryonic development. High levels of 5-HT2A receptor expression occur already at 3 hours of

embryonic development and match with the seven-stripe pattern of the pair-rule gene Fushi
tarazu [16]. 5-HT signaling through the 5-HT2A receptor triggers changes in cell adhesiveness

that are necessary for normal germband extension during gastrulation [111, 112].

In summary, there is good evidence that 5-HT/5-HT2A receptor signaling serves several

developmental functions, including the regulation of neuronal connectivity in addition to

their classic role in synaptic transmission. Future work needs to address how this might affect

unconditioned stimulus processing using high salt concentration. In the longer run this may

uncover 5-HT dependent organizational principles of reinforcement processing shared with

adult Drosophila and other insects.

Supporting information

S1 Fig. Ablation of potential 5-HT receptor cells does not alter olfactory preferences

towards four different odors. 5-HT1A-, 5-HT1B-, 5-HT7-, and 5-HT2A-Gal4 lines were crossed

with UAS-hid,rpr to genetically induce apoptosis in potential 5-HT receptor cells. In addition,

Gal4 lines and UAS-hid,rpr were crossed with w1118 to obtain heterozygous genetic control lar-

vae. (A) provides a color scheme for the three different groups used in each experiment. Naïve

olfactory preferences for amyl acetate (AM, in B, C, D, E), benzaldehyde (BA, in F, G, H, I),

heptanol (HEP, in J, K, L, M), and nonanol (NON, in N, O, P, Q) were analyzed. In none of

the cases experimental larvae behaved significantly different from both genetic control

groups. We thus reason that ablation of potential 5-HT receptor cells does not impair the

ability of the larvae to detect olfactory cues. The sample size (n = 11–16) is indicated under

each box plot. Differences against random distribution are given at the top of each box plot.

Differences between all three groups or individual groups are shown at the bottom of the

panel. ��� (p< 0.001), �� (p< 0.01), � (p< 0.05), n.s. (not significant p� 0.05).

(TIF)

S2 Fig. Ablation of potential 5-HT receptor cells does not alter gustatory preferences

towards four different tastants. 5-HT1A-, 5-HT1B-, 5-HT7-, and 5-HT2A-Gal4 lines were

crossed with UAS-hid,rpr to genetically induce apoptosis in potential 5-HT receptor cells. In

addition, Gal4 lines and UAS-hid,rpr were crossed with w1118 to obtain heterozygous genetic

control larvae. (A) provides a color scheme for the three different groups used in each experi-

ment. Naïve gustatory preferences for sodium chloride (SALT, in B, C, D, E), fructose (FRU,

in F, G, H, I), arabinose (ARA, in J, K, L, M), and sorbitol (SOR, in N, O, P, Q) were analyzed.

In none of the cases experimental larvae behaved significantly different to both genetic control

groups. We thus reason that ablation of potential 5-HT receptor cells does not impair the abil-

ity of the larvae to detect gustatory stimuli. Sample size (n = 13–20) is indicated under each

box plot. Differences against random distribution are given at the top of each panel. Differ-

ences between all three groups or individual groups are shown at the bottom of the panel,

except for SALT, where it is placed above the box plots. ��� (p< 0.001), �� (p< 0.01),
� (p< 0.05), n.s. (not significant p� 0.05).

(TIF)

S3 Fig. Ablation of potential 5-HT2A receptor cells does not alter gustatory preferences

towards 1.5 M sodium chloride. 5-HT2A-Gal4was crossed with UAS-hid,rpr to genetically

induce apoptosis in potential 5-HT2A receptor cells. In addition, the Gal4 line and UAS-hid,rpr
were crossed with w1118 to obtain heterozygous genetic control larvae. Naïve gustatory prefer-

ences for 1.5 M sodium chloride (SALT) was analyzed. Experimental larvae behaved at the
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same level as both genetic control groups. We thus reason that ablation of potential 5-HT2A

receptor cells does not impair the ability of the larvae to detect 1.5 M sodium chloride. Sample

size (n = 15) is indicated under each box plot. Differences against random distribution are

given at the top of each panel. Differences between all three groups or individual groups are

shown above the box plots. n.s. indicates that the initial KWT did not suggest for a difference

between the three groups (p> 0.05). ��� (p< 0.001), �� (p< 0.01), n.s. (not significant

p� 0.05).

(TIF)

S4 Fig. Ablation of potential 5-HT2A receptor cells throughout development impairs aver-

sive olfactory learning and memory. 5-HT2A-Gal4was crossed with UAS-hid,rpr to geneti-

cally induce apoptosis in potential 5-HT2A receptor cells. In addition, the Gal4 line and UAS-

hid,rpr were crossed with w1118 to obtain heterozygous genetic control larvae. (A) provides a

color scheme for the three different groups used in each experiment. (B) Appetitive olfactory

learning and memory using fructose reinforcement is shown at the top. (C) Aversive olfactory

learning and memory is shown at the bottom. (B) For appetitive olfactory learning experimen-

tal larvae and genetic control groups behaved similar. Yet, ablation of 5-HT2A-Gal4 positive

cells throughout development specifically impaired aversive olfactory learning and memory

(C). Sample size (n = 17–20) is indicated at the bottom of each box plot. Differences against

zero are given at the top of each box plot. Differences between all three groups or individual

groups are shown at the bottom of the panel. Visualization of statistical evaluations: if only n.s.

is shown the initial KWT did not suggest for a difference between the three groups (p� 0.05).

When differences between each group are shown this provides the results of the BWRT as the

initial KWT suggested for significance (p> 0.05). ��� (p< 0.001), �� (p< 0.01), � (p< 0.05),

n.s. (not significant p� 0.05).

(TIF)

S1 Table. Raw data behavior.

(XLSX)

S1 File. Supplemental material and methods.

(PDF)

S2 File. Movie 1: 5-HT1A-GAL4 expression.

(AVI)

S3 File. Movie 2: 5-HT1A-GAL4 expression (GFP).

(AVI)

S4 File. Movie 3: 5-HT1B-GAL4 expression.

(AVI)

S5 File. Movie 4: 5-HT1B-GAL4 expression (GFP).

(AVI)

S6 File. Movie 5: 5-HT7-GAL4 expression.

(AVI)

S7 File. Movie 6: 5-HT7-GAL4 expression (GFP).

(AVI)

S8 File. Movie 7: 5-HT2A-GAL4 expression.

(AVI)
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S9 File. Movie 8: 5-HT2A-GAL4 expression (dsRed).

(AVI)
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