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Abstract

The EMG signal indicates the electrophysiological response to daily living of activities, par-

ticularly to lower-limb knee exercises. Literature reports have shown numerous benefits of

the Wavelet analysis in EMG feature extraction for pattern recognition. However, its applica-

tion to typical knee exercises when using only a single EMG channel is limited. In this study,

three types of knee exercises, i.e., flexion of the leg up (standing), hip extension from a sit-

ting position (sitting) and gait (walking) are investigated from 14 healthy untrained subjects,

while EMG signals from the muscle group of vastus medialis and the goniometer on the

knee joint of the detected leg are synchronously monitored and recorded. Four types of

lower-limb motions including standing, sitting, stance phase of walking, and swing phase of

walking, are segmented. The Wavelet Transform (WT) based Singular Value Decomposi-

tion (SVD) approach is proposed for the classification of four lower-limb motions using a

single-channel EMG signal from the muscle group of vastus medialis. Based on lower-limb

motions from all subjects, the combination of five-level wavelet decomposition and SVD is

used to comprise the feature vector. The Support Vector Machine (SVM) is then configured

to build a multiple-subject classifier for which the subject independent accuracy will be given

across all subjects for the classification of four types of lower-limb motions. In order to effec-

tively indicate the classification performance, EMG features from time-domain (e.g., Mean

Absolute Value (MAV), Root-Mean-Square (RMS), integrated EMG (iEMG), Zero Crossing

(ZC)) and frequency-domain (e.g., Mean Frequency (MNF) and Median Frequency (MDF))

are also used to classify lower-limb motions. The five-fold cross validation is performed and

it repeats fifty times in order to acquire the robust subject independent accuracy. Results

show that the proposed WT-based SVD approach has the classification accuracy of 91.85%

±0.88% which outperforms other feature models.
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1 Introduction

The lower-limb motion is of vital importance in human daily living activities. It is frequently

difficult for physically weak persons (i.e., elderly, disabled, and injured persons) to perform

daily lower-limb activities. Recently, power-assisted robotic systems have been developed to

target these problems and assist people who need help in terms of their daily living [1–6]. Most

of these systems are originally activated by EMG signals as they can directly indicate the

electrophysiological responses to daily living activities. Therefore, the study of EMG-based

biofeedback and its relationship to lower-limb motions is significantly concerned with the

control of power-assisted robotic systems [7–10].

A motor unit usually includes a motor neuron and the skeletal muscle fibres innervated by

that motor neuron. The force of a muscle contraction is regulated by the number of activated

motor units. The measured single-channel EMG signal is a superimposed electrical activity

with the sum of activations from multiple motor units and a wide range of noise [11] [12]. For

an exercise motion, the physiological behaviours from the brain activity are intrinsic [13]. In

addition, the electric indications of the activated motor units for one muscle contraction

should be unique, and only vary due to brain activity. The single-channel EMG signal relative

to one particular muscle contraction is used to interpret the electrophysiological response

from one perspective [14, 15]. In this study, a single-channel-based EMG pattern classification

is developed in order to provide an easy-to-use condition for detections of lower-limb

motions.

As described in detail previously [10], Agonist-antagonist muscles exist in human joints

e.g., elbow, hip, wrist, knee, and ankle. These human joints are usually activated by either the

biarticular or uniarticular muscles. For instance, a flexion/extension motion of human knee

joint is actuated by the muscles of biceps femoris, semitendinossus, gastrocnemius, rectus

femoris, vastus lateralis and vastus medialis. Most of these muscles are biarticular muscles

except the uniarticular muscles of vastus lateralis and vastus medialis. In this study, the muscle

of vastus medialis is used since it is primarily associated with muscle fatigue and has the signif-

icance for the human-machine interface [16].

The EMG signal is contaminated with various artifacts, and its time series data is not practi-

cal for classification purposes [17]. The conventional methods are to apply the time-dependent

and the frequency-dependent properties to detect the EMG features across different knee exer-

cise patterns [10, 18, 19], such as Mean Absolute Value (MAV), Root-Mean-Square (RMS),

integrated EMG (iEMG), Zero Crossing (ZC)), Mean Frequency (MNF) and Median Fre-

quency (MDF). Since EMG signals vary in frequency content over time, the conventional anal-

ysis methods cannot accurately describe its time-dependent statistical properties. In order to

alleviate this problem, the following EMG feature extraction models of upper-limb activities

(specific to wrist motions) have been developed including Fourier Transform (FT), Wavelet

Transform (WT), Autoregressive (AR), Power Spectral Estimation (PSE), and Smooth Local-

ised Complex Exponential (SLEX) [17, 20–23]. The recent review work in [17], where the clas-

sification accuracy rate of these feature vectors was evaluated by an Artificial Neural Network

(ANN) classifier, clearly show that the time-frequency analysis methods have high accuracy

rates, while the WT is much more efficient than the FT, as well as being better on the localisa-

tion of dominant subfrequency bands. In addition to Electroencephalogram (EEG) signals, it

has been reported in previous study [24] that WT was employed to handle the EEGs and form

a matrix, and then the singular value of the matrix is extracted. However, this method was lim-

ited to EMG-based classifications for lower limb activities.

The objective of this study is to propose the WT-based Singular Value Decomposition

(SVD) approach for classification of EMG-based lower limb activities using a single-channel
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EMG signal from the muscle group of vastus medialis. Although WT-based approaches have

been widely used for EMG signals, the combination of WT and SVD to comprise the feature

vector for classifications of lower limb activities, are not well documented. In addition, the

classification of those motions using only one single EMG channel is also nontrivial.

The experiment for data collections was approved by the University of Technology Sydney

(UTS) Human Research Ethics Committee. An informed consent was obtained prior to data

collection. The University of Electronic Science and Technology of China (UESTC) also

approved to use the databases obtained from UTS for publications. The databases of 14 healthy

untrained subjects are taken into the study. The subjects undergo three exercise programs

associated with the knee joint, leg extension from a sitting position (sitting), flexion of the leg

up (standing), and gait (walking), while EMG signals from the vastus medialis muscle of the

detected leg are monitored and recorded. Based on the EMG datasets, four types of lower-limb

motions including standing, sitting, stance phase of walking, and swing phase of walking, are

segmented.

The Support Vector Machine (SVM) is then configured to build a multiple-subject classifier

for which the subject independent accuracy will be given across all subjects for the classifica-

tion of four types of lower-limb motions. In order to effectively indicate the classification per-

formance, EMG features from time-domain and frequency-domain are also used to classify

lower-limb motions. The five-fold cross validation is performed and it repeats fifty times in

order to acquire the robust subject independent accuracy. By comparing outcomes from typi-

cal feature models with the one from the proposed WT-based SVD approach, the WT-based

SVD approach provide best subject independent accuracy for standing, sitting, stance phase of

walking, and swing phase of walking.

The remainder of the paper is organised as follows. Section ‘Method’ describes WT, SVD,

EMG features, classification and evaluation procedure. Section ‘Experiment’ introduces exper-

imental equipment, exercise procedures and protocols. Section ‘Results’ provides the outcomes

from time-domain features, frequency-domain features, as well as the SVD-WT approach. Sec-

tion ‘Discussions and Limitations’ clarifies the limitations and future directions of this study.

Section ‘Conclusion’ concludes this study.

2 Methods

The University of Technology Sydney (UTS) Human Research Ethics Committee (UTS HREC

2009000227) approved this experiment and collected the EMG datasets. The University of

Electronic Science and Technology of China (UESTC) also approved to use the databases

obtained from UTS for publications. A written informed consent was obtained from every

subject prior to the experiment. The University of Technology Sydney (UTS) Human Research

Ethics Committee (UTS HREC 2009000227) approved this consent procedure.

2.1 Time-domain features

The Mean Absolute Value (MAV) is used to calculate the average of the absolute value of all

time samples, which is essential for determining the baseline of single EMG channel during

daily lower-limb motions. The equation is given by Eq (1)

�X ¼
1

N

XN

k¼1

jxkj; ð1Þ

where xk is the potential at the kth sampling and the parameter N is the number of samples

[25].
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The Root-Mean-Square (RMS) is also employed as a feature extraction method of the EMG

signals in this study. The equation of RMS is written as Eq (2)

RMSi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

k¼1

x2

k

s

; for i ¼ 1; . . . ; I ð2Þ

where I is the number of segments.

The integrated EMG (iEMG) [26] is the mathematical integral of the absolute value of

EMG normalized candidate segments, where can be expressed as Eq (3)

iEMGi ¼
XN

k¼1

jxkj; for i ¼ 1; . . . ; I: ð3Þ

Zero Crossing (ZC) is a feature that tracks the number of times the waveform crosses zero,

switching from a positive signal to a negative one, and vice versa [27], which was combined

with the tone labels to detect the onset of movement during the procedure of data segmenta-

tion. Eq (4) is used for zero crossings

sgnð� xk � xkþ1Þ

jxk � xkþ1j � threshold
ð4Þ

(

where the sgn function returns a positive number if the threshold is exceeded, and the zero

crossing count is incremented [27, 28].

2.2 Frequency-domain features

Mean Frequency (MNF) [29] is the average frequency of an EMG segment representing the

lower-limb motion. MNF is calculated as the sum of the product of the amplitude spectrum

and the frequency, divided by the total sum of spectrum intensity. The mathematic expression

can be written as Eq (5)

MNFi ¼
XM

j¼1

Pijfij=
XM

j¼1

Pij; for i ¼ 1; . . . ; I ð5Þ

where Pij is the EMG power spectrum at the frequency bin j for the ith segment, fij is the fre-

quency value of EMG power spectrum at the frequency bin j for the ith segment, and M is the

length of frequency window.

Median Frequency (MDF) is the frequency at which the spectrum is divided into two

regions with equal amplitude. It can be calculated in the following two steps: [29]

a). The signal intensities in the whole spectrum are summed and then divided by two (see

Eq (6)),

MDFi ¼
1

2

XM

j¼1

Pij; for i ¼ 1; . . . ; I: ð6Þ

b). The MDF frequency is selected at which the cumulative intensity first exceeds MDFi.

2.3 Five-level wavelet decomposition

The frequency of human EMG signal is usually between 10–500 Hz [30, 31]. WT is a time-fre-

quency tool to analyse EMG signals. It can decompose signals into different scales and provide

more information from time and frequency domains. In this paper, a five-level wavelet
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decomposition is employed by using Daubechies4 algorithm [32]. Based on the decomposition

of EMG signals, the restricted frequency bandwidth for the components from cD1, cD2, cD3,

cD4, cA5 are 256 * 512 Hz, 128 * 256 Hz, 64 * 128 Hz, 32 * 64 Hz, and 16 * 32 Hz,

respectively. cAn(n = 1, 2, . . ., 5) is the coefficients for low-frequency components of the sig-

nals. cDn is the coefficients for the high-frequency components. At each level, only one param-

eter from cDn can be retained according to the SVD method which can compress cDn to one

parameter.

2.3.1 Singular Value Decomposition (SVD). According to Section 2.3, the EMG data of

four lower-limb motions above are decomposed by WT, and feature matrices (Mij = [cD1i;

cD2i; cD3i; cD4i; cD5i; cA5i], i = 1, 2, . . ., I) will be built. In order to pursue the simple and effec-

tive feature vector for the following classification by SVM, the singular value of Mij will be

obtained by SVD.

Let A, B 2 Cm×n, if there are m order unitary matrix U and n order unitary matrix V, UT

AV = B, then A and B are unitary equivalent. If A 2 Cm�n
r (r> 0), the eigenvalues of AT A

should have the following relation equation as Eq (7)

l1 � l2 � � � � � lr � lrþ1 ¼ � � � ¼ ln ¼ 0; ð7Þ

then si ¼
ffiffiffiffi
li

p
ði ¼ 1; 2; . . . ; nÞ are the singular values of A.

If A 2 Cm�n
r ðr > 0Þ, then there must be m order unitary matrix U and n order unitary

matrix V, they satisfy Eq (8)

UTAV ¼

P
0

0 0

" #

ð8Þ

where ∑ = diag(σ1, σ2, . . ., σr), and σi(i = 1, 2, . . ., r) are the nonzero singular values of A. Eq (8)

can be transformed to Eqs (9), (10) and (11)

A ¼ U

P
0

0 0

" #

VT ð9Þ

where

U ¼ AAT ð10Þ

V ¼ ATA ð11Þ

Eq (9) is called the SVD of A.

2.4 Support vector regression

Let fui; yig
N
i¼1

be a set of inputs and outputs data points (ui 2 U� Rd, yi 2 Y� R, N is the num-

ber of points). The goal of the support vector regression is to find a function f(u) which has the

following form

f ðuÞ ¼ w � �ðuÞ þ b; ð12Þ

where ϕ(u) is the high-dimensional feature spaces which are nonlinearly transformed from u.

The weight vector w and bias b are defined as the hyperplane by the equation hw � ϕ(u)i + b = 0.
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The hyperplane is estimated by minimizing the regularized risk function

1

2
kwk2 þ C

1

N

XN

i¼1

Lεðyi; f ðuiÞÞ; ð13Þ

The first term is called the regularized term. The second term is the empirical error measured

by ε-insensitivity loss function which is defined as

Lεðyi; f ðuiÞÞ ¼
j yi � f ðuiÞ j � ε; j yi � f ðuiÞ j> ε

0; j yi � f ðuiÞ j� ε
ð14Þ

(

This defines an ε tube. The radius ε of the tube and the regularization constant C are both

determined by user.

The selection of parameter C depends on application knowledge of the domain. Theoreti-

cally, a small value of C will under-fit the training data because the weight placed on the train-

ing data is too small, thus resulting in large values of MSE (mean square error) on the test sets.

However, when C is too large, SVR will over-fit the training set so that
1

2
kwk2 will lose its

meaning and the objective goes back to minimize the empirical risk only. Parameter ε controls

the width of the ε-insensitive zone. Generally, the larger the ε the fewer number of support

vectors and thus the sparser the representation of the solution. However, if the ε is too large, it

can deteriorate the accuracy on the training data.

By solving the above constrained optimization problem, we have

f ðuÞ ¼
XN

i¼1

bi�ðuiÞ � �ðuiÞ þ b; ð15Þ

As mentioned above, by the use of kernels, all necessary computations can be performed

directly in the input space, without having to compute the map ϕ(u) explicitly. After introduc-

ing kernel function k(ui, uj), the above equation can be rewritten as follows

f ðuÞ ¼
XN

i¼1

bikðui; uÞ þ b; ð16Þ

where the coefficients βi corresponding to each (ui, yi). The support vectors are the input vec-

tors uj whose corresponding coefficients βj 6¼ 0. For linear support regression, the kernel func-

tion is thus the inner product in the input space

f ðuÞ ¼
XN

i¼1

bihui; ui þ b; ð17Þ

For nonlinear SVR, there are a number of kernel functions which have been found to provide

good generalization capabilities, such as polynomials, radial basis function (RBF), sigmod.

Here we present the polynomials and RBF kernel functions as follows:

Polynomial kernel: k(u, u0) = ((u � u0) + h)p.

RBF Kernel: kðu; u0Þ ¼ expð�
ku � u0k2

2s2
Þ.

Details about SVR, such as the selection of radius ε of the tube, kernel function, and the reg-

ularization constant C, can be found in [33–36]. The origin of the SVM code applied in this

study was obtained from [37].
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2.5 Classification

For the classification of four knee exercises, the singular values of these matrices decomposed

by WF, Mij, are calculated as the time-frequency features of EMG signals in the vastus medialis

muscle. For the selected candidate segments, the formula is

Mij ¼

s11 s12 . . . s1j

s21 s22 . . . s2j

..

. ..
. ..

. ..
.

si1 si2 . . . sij

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

ð18Þ

where i is the number of singular values for each trial data, and j is the number of EMG candi-

date segments.

The values of RMS and iEMG (see Eqs (2) and (3), respectively) of the time-domain based

EMG signals are chosen as the time-domain features. In addition, the frequency based charac-

teristics inclusive of the values of MNF and MDF (see Eqs (5) and (6), respectively) across all

trials are calculated as the frequency-domain features.

For the testing sample, x, the discriminant function is

f ðxÞ ¼
XNs

i¼1

yiaiGðx; xiÞ þ b ð19Þ

where Ns is the number of the resulting support vectors, αi is the positive Lagrangian multipli-

ers and G(x, xi) is a kernel function. The vital regularization parameter in SVM is also deter-

mined by the five-fold cross-validation procedure that is repeated fifty times in order to avoid

the random errors.

2.6 Evaluation procedure

In order to indicate the classification performance in terms of standing, sitting, stance phase of

walking, and swing phase of walking, features from the time domain, the frequency domain,

and the WT-based SVD approach are tested separately through the predefined evaluation pro-

cedure shown in Fig 1. In the procedure, the raw EMG data is first filtered by a high-pass filter

with 20 Hz. The signals then are trial-by-trail segmented following the synchronized goniome-

try data. After preprocessing and segmentation of the raw EMG signals, the features repre-

sented by the analyses of the time domain, the frequency domain, and the WT-based SVD

approach are extracted to build the feature vectors. A SVM-based multiple subject classifier

was trained by the trials across all subjects and the trained classifier was then used for predict-

ing and accumulating of the discrimination evidence over features. The datasets of four types

Fig 1. The evaluation procedure for classification of four types of lower-limb motions.

https://doi.org/10.1371/journal.pone.0180526.g001
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of lower-limb motions from all subjects were randomly shuffled and then partitioned totally

five times. It then was divided into a training set (80% of dataset) or a testing set (20% of data-

set). The five-fold cross validation is used for the method evaluations and it is repetitively run

fifty times to avoid the random errors. The average of the total accuracy results for fifty-time

five-fold cross-validations is computed as the final accuracy result.

3 Experiment

The University of Technology Sydney (UTS) Human Research Ethics Committee (UTS HREC

2009000227) approved this experiment and collected the EMG datasets. A poster was used to

introduce this experiment in order to recruit the participants from UTS campus, which was

publicly open during the summer holiday in 2012. An informed consent was obtained for each

participant prior to data collection. After the experiment, the remuneration was paid to the

participants. The University of Electronic Science and Technology of China (UESTC) also

approved to use the databases obtained from UTS for publications.

The EMG data collection process was carried out with one electrode placed on the muscle

group of vastus medialis and the goniometer on the knee joint. The Datalog device MWX8

(http://www.biometricsltd.com/datalog.htm) is used for EMG data acquisition including 8

digital channels and 4 analog channels. One of the digital channels is used for monitoring and

recording EMG signals and another for goniometry data of the knee joint of the detected foot.

The data are first acquired and memorized in the MWX8 internal storage with microSD card,

and then transmitted through the real-time Datalog software via Bluetooth adapter for the off-

line analyses for this study. The sampling frequency is 1 kHz [38].

Since the EMG signals repetitively obtained from one subject can vary from the emotional

state, food and caffeine intake, previous activity, fatigue, only healthy and untrained subjects

were invited in this experiment. Moreover, the participants were asked to have a light meal at

least two hours before the experiment and not to engage in intense or prolonged exercise for

24 hours prior to each experiment. Environmental conditions were the same for all

participants.

In order to minimize the impedance of the electrode-skin contact in-between, the hair and

dead skin cells on the target electrode placement location were shaved from the skin surface

before prior to experiment. Once shaved, the skin was cleaned with alcohol and the electrode

is then placed on the target skin after it comes to dry. The bipolar electrode (SX230) is used for

the experiment. A fixed electrode distance of 20 mm is offered. It offers an integral electrode

with fixed inter-electrode distance which gives consistent high quality results and effectively

limits the risk of inter-electrode cross-talk. The R506 compatible with Datalog device MWX8

has a standard 4mm snap connector, which could minimize the risk of simultaneously record-

ing similar signals. The input impedance of the EMG amplifier is more than 10,000,000 M

Ohms [38].

The databases of 14 healthy untrained subjects (age: 28±7.82 years old, height: 174±5.88

cm, mass: 67.64±11.35 kg) are taken into the study. The subjects undergo three exercise pro-

grams associated with the knee joint, leg extension from a sitting position (sitting), flexion of

the leg up (standing), and gait (walking), while EMG signals from the vastus medialis muscle

of the detected leg are monitored and recorded. Two experimental sessions are arranged, i.e.,

standing-sitting and walking, in which subjects are asked to randomly perform these exercise

programs. For both sessions, subjects are asked to start the onset of motions with a one-second

tone-paced timing with one-second interval, and follow a rest with five-second interval. Each

motion is repeated five times in order to avoid intra-subject variability. For the standing-sitting

motion, the order of performing both motions is randomly chosen. In addition, a fifteen-
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minute break is offered between two sessions. The details of exercise protocol are as follows in

Fig 2. During the experiments, a tone-paced timing is presented which follows an automatic

tone, pacing interval where the onset of each motion is matched with the onset of an auditory

tone in order to remind subject to start and stop their motions. Based on the EMG datasets

obtained from both sessions, four types of lower-limb motions including standing, sitting,

stance phase of walking, and swing phase of walking, are segmented, which will be used for the

classification evaluation of the proposed WT-based SVD approach. For the details of original

data, see S1 File.

4 Results

4.1 Time-domain analyses

In the preprocessing step, the raw EMG data is filtered by using a 20 Hz butterworth high-pass

filter. The filtered data is then segmented following the synchronized goniometry data. The

segmented trials include lower-limb motions for standing, sitting, stance phase of walking,

and swing phase of walking. The EMG time series of such types of trails are presented in Fig 3.

It can be found that for both standing and sitting motions the EMG strength increases

(decreases) along with the process of flexion (extension) of the detected leg; for swing and

stance phases the variations of the amplitudes of the swing phase are less affected compared

with those of the stance phase.

The time-domain features for each trial across all subjects including MAV, RMS, iEMG,

and ZC, are calculated. Table 1 shows the mean and STD values of those time-domain features

for four lower-limb motions. Based on the segmented EMG data for all trials, the statistical

analysis for these four time-domain features is evaluated by one-way analysis of variance anal-

ysis, which shows that MAV, RMS, iEMGP, and ZC have means significantly different for

lower-limb motions (standing, sitting, stance phase of walking, and swing phase of walking)

(p< 0.05).

4.2 Frequency-domain analyses

In this study, the frequency-domain features of EMG segmentations are also investigated. The

raw data is filtered by 20 Hz high-pass filter and then segmented following the synchronized

goniometry data in order to obtain the specified EMG signals for lower-limb motions. The

Fig 2. The experiment protocol for EMG data collection in terms of standing-sitting and walking sessions.

https://doi.org/10.1371/journal.pone.0180526.g002

Single-channel EMG feature extraction for lower-limb knee exercises

PLOS ONE | https://doi.org/10.1371/journal.pone.0180526 July 10, 2017 9 / 18

https://doi.org/10.1371/journal.pone.0180526.g002
https://doi.org/10.1371/journal.pone.0180526


Welch’s averaged periodogram method [39] is utilized to demonstrate the Power Spectrum

Density (PSD) of the EMG segmented data. The PSD curves based on the different types of

lower-limb motions from one subject are shown in Fig 4.

The frequency-domain features such as MNF and MDF are calculated based on each trail

data. The averaged MNF and MDF results for all trials of each motions across all subjects are

provided in Table 2. Based on the calculated MNF and MDF values for all trials, the statistical

analysis for the frequency-domain features is evaluated by one-way analysis of variance analy-

sis, which shows that MNF and MDF have means significantly different for lower-limb

motions (standing, sitting, stance phase of walking, and swing phase of walking) (p< 0.05).

Fig 3. The EMG time series for the segmented lower-limb motions in terms of the swing phase, the stance phase, sitting, and

standing.

https://doi.org/10.1371/journal.pone.0180526.g003

Table 1. The mean and STD for temporal features based on experimental trails from all participants on the vastus medialis muscle.

MAV

Mean±STD%

RMS

Mean±STD%

iEMG

Mean±STD%

ZC

Mean±STD%

Swing 0.02±50 0.03±33.3 25.42±45.25 137.03±35.88

Stance 0.01±100 0.02±50 27.28±78.85 260.82±22.11

Standing 0.01±200 0.01±400 5.44±143.38 97.84±73.95

Sitting 0.01±300 0.02±300 11.65±188.24 132.82±56.99

STD% represents the percentage of the standard deviation over the corresponding mean.

https://doi.org/10.1371/journal.pone.0180526.t001
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Furthermore, paired t-test results indicate that there are significant differences between any

two of the four lower-limb motions for the calculated MNF and MDF values. Therefore, both

MDF and MNF are used to represent the frequency-domain feature.

4.3 Time-frequency features extracted by WT-based SVD analyses

In order to obtain the time-frequency features by using the proposed WT-based SVD

approach, the raw EMG data are also preprocessed through a 20 Hz high-pass filter. The fil-

tered EMG data are then segmented to establish the candidate datasets for classifications. As

mentioned in Section ‘Methods’, the five-level wavelet decomposition is applied to decompose

the candidate EMG segmentations into five different scales time series. The coefficients for

the high-frequency components (cD1, cD2, cD3, cD4, and cD5) and the coefficient for the

Fig 4. The PSD curves of the segmented EMG time series in terms of the swing phase, the stance phase, sitting, and standing.

https://doi.org/10.1371/journal.pone.0180526.g004

Table 2. The mean and STD for frequency-domain features based on experimental trails from all par-

ticipants on the vastus medialis muscle.

MDF

Mean±STD%

MNF

Mean±STD%

Swing phase 45.43±11.64 53.07±9.37

Stance phase 48.48±13.51 54.17±7.72

Standing 36.52±22.78 43.82±19.17

Sitting 38.38±22.64 45.25±19.51

STD% represents the percentage of the standard deviation over thecorresponding mean. The unit for mean

values of MDF and MNF is Hz.

https://doi.org/10.1371/journal.pone.0180526.t002
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low-frequency component at the fifth level (cA5) are given. The singular value of each compo-

nents is then computed by SVD. Table 3 shows the mean and STD values of the singular values

for each decomposed components. Based on these results, an one-way analysis of variance

analysis is also used, by which the statistical analysis results indicate that the six components

have means significant difference for lower-limb motions (standing, sitting, stance phase of

walking, and swing phase of walking) (p< 0.05).

4.4 Classification results

Based on the proposed evaluation procedure, the SVM is used to build a multiple-subject clas-

sifier for which the subject independent accuracy will be given across all subjects for the classi-

fication of four types of lower-limb motions. The five-fold cross validation is performed and it

repeats fifty times in order to acquire the robust subject independent accuracy.

There were 260 EMG trials collected from three subjects participating in the lower-limb

motion experiment, and for all subjects they were set into four sets of 40 segments for standing,

40 for sitting, 90 for the swing phase and 90 for the stance phase. The datasets are then ran-

domly partitioned into five equal sized subsets. Of the five subsets, a single subset is retained as

the validation data for testing, and the remaining four subsets are used for training. The evalu-

ation procedure is then repeated fifty times, with each of the five subsets used exactly once as

the validation data. The averaged results from the fold are then used to produce the subject

independent accuracy across all subjects’ trails.

Three different features are used as the feature vectors to train the SVM-based multiple-

subject classifier, i.e., time-domain features (MAV, RMS, iEMG, and ZC), frequency-domain

feature (MNF+MDF), and WT-based SVD features (cD1, cD2, cD3, cD4, cD5, and cA5). In

order to evaluate the classification performance, there are five different feature vectors estab-

lished for training and testing the lower-limb motions, including time-domain features (MAV

+RMS+iEMG+ZC), frequency-domain feature (MNF+MDF), combined time and frequency

features (MAV+RMS+iEMG+ZC+MDF+MNF), WT-based SVD features (cD1+cD2+cD3

+cD4+cD5+cA5), and combined time, frequency, and WT-based SVD features (MAV+RMS

+iEMG+ZC+MDF+MNF+cD1+cD2+cD3+cD4+cD5+cA5). The classification results are

demonstrated in Table 4

The WT-based SVD features are demonstrated in Fig 5, where the WF-based SVD coeffi-

cients for all trials with four lower-limb motions are plotted. Based on this feature vector, the

classification results show that the proposed WT-based SVD approach has the classification

accuracy of 91.85%±0.88% which outperforms the time-domain features (66.96%%±3.12%),

the frequency-domain features (77.1%%±0.01%), the combined time and frequency features

Table 3. The mean and STD results of time-frequency features by WT-based SVD approach based on experimental trails from all participants on

the vastus medialis muscle.

Stance

Mean±STD%

Swing

Mean±STD%

Standing

Mean±STD%

Sitting

Mean±STD%

cD1 0.22±68.18 0.25±48 0.26±430.77 0.26±315.38

cD2 0.44±40.91 0.35±71.43 0.23±213.64 0.48±274.47

cD3 0.85±40 0.65±78.46 0.24±216.67 0.4±231.71

cD4 0.54±62.96 0.42±66.67 0.1±150 0.16±168.75

cD5 0.21±55 0.16±68.75 0.04±125 0.06±150

cA5 0.11±70 0.08±75 0.02±100 0.03±100

STD% represents the percentage of the standard deviation over the corresponding mean.

https://doi.org/10.1371/journal.pone.0180526.t003
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(55.11%%±0.02%), and the combined time, frequency, and WT-based SVD features (53.36%%

±0.02%).

Discussions and limitations

It has been clearly shown that either time-domain features or frequency-domain features can-

not completely depict the differences among those motions. Results also confirmed that the

combined features (combined time and frequency features and combined time, frequency,

and WT-based SVD features) also cannot give a better classification accuracy compared to the

WT-based SVD features. It is the fact that the combined features cannot maximize the dis-

criminative power of EMG features for classifying lower-limb motions with a single EMG

channel placed on the vastus medialis.

The contribution of this work is to introduce the SVD-based WT approach for the single-

channel-based classification of lower limb activities. In the first step, it was natural to first

explore the recognition accuracy of such proposal. In order to find discriminative features, the

statistical analysis was employed in this study. The databases of 14 healthy untrained subjects

are taken into the study. The subjects undergo three exercise programs associated with the

knee joint, leg extension from a sitting position (sitting), flexion of the leg up (standing), and

gait (walking), while EMG signals from the vastus medialis muscle of the detected leg are mon-

itored and recorded. Based on the EMG datasets obtained from both sessions, four types of

lower-limb motions including standing, sitting, stance phase of walking, and swing phase of

walking, are segmented, which will be used for the classification evaluation of the proposed

WT-based SVD approach.

Fig 3 explicitly shows that the amplitudes between sitting, standing stance phase of walking,

and swing phase of walking, are distinctively different. The multivariate analysis is utilized by

the one-way analysis of variance where the time-domain features, MAV, RMS, iEMG and ZC,

have means significantly different. Thus, those are used for the analysis of time features in rela-

tion to knee exercise pattern recognition. Secondly, Mean Frequency (MNF) and Median Fre-

quency (MDF) are used to indicate the frequency-domain characteristics of the EMG trails

(see Fig 4). Based on these statistical results, MNF is selected as frequency-domain features due

to the significant difference between any two of lower-limb motions.

Based on the classification results, it has been clearly shown that either time-domain fea-

tures or frequency-domain features cannot completely depict the differences among those

motions. Following this reason, the time-frequency features extracted by using the proposed

SVD-WT approach are used in this study. The results present time-frequency features by

using SVD-WT outcomes is better than ones by using either time-domain features or fre-

quency-domain features (see Fig 5 and Table 4). However, this study has not addressed an

Table 4. The subject independent accuracies for standing, sitting, stance phase of walking, and swing

phase of walking.

Feature vectors Accuracy(%) STD(%)

MAV+RMS+iEMG+ZC 66.96 3.12

MNF+MDF 77.1 0.01

MAV+RMS+iEMG+ZC+MDF+MNF 55.11 0.02

cD1+cD2+cD3+cD4+cD5+cA5 91.85 0.88

MAV+RMS+iEMG+ZC+MDF+MNF+cD1+cD2+cD3+cD4+cD5+cA5 53.36 0.02

STD represents the percentage of the standard deviation over the corresponding accuracy.

https://doi.org/10.1371/journal.pone.0180526.t004
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Fig 5. The WT-based SVD features for all trials with four lower-limb motions.

https://doi.org/10.1371/journal.pone.0180526.g005
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optimal feature model described by the specified wavelet components that might achieve a bet-

ter accuracy performance compared to the feature vectors with all wavelet components. In the

next step of this study, Fisher-Markov selector will be applied in this study and quantitatively

optimize the proposed WT-based SVD feature model [40] [41].

Conclusion

In this study, the single-channel EMG signals from the muscle group of vastus medialis were

recorded. 14 subjects participated in the three exercise programs, while EMG signals from the

muscle group of vastus medialis and the goniometer on the knee joint of the detected leg were

synchronously monitored and recorded. Four types of lower-limb motions including standing,

sitting, stance phase of walking, and swing phase of walking, were segmented. Based on the

experimental data, the SVM is then configured to build a multiple-subject classifier for which

the subject independent accuracy will be given across all subjects for the classification of four

types of lower-limb motions. In order to effectively indicate the classification performance,

EMG features from time-domain (e.g., Mean Absolute Value (MAV), Root-Mean-Square

(RMS), integrated EMG (iEMG), Zero Crossing (ZC)) and frequency-domain (e.g., Mean Fre-

quency (MNF) and Median Frequency (MDF)) were also used to classify lower-limb motions.

The five-fold cross validation was performed and it repeats fifty times in order to acquire the

robust subject independent accuracy. Three different features were used as the feature vectors

to train the SVM-based multiple-subject classifier, i.e., time-domain features, frequency-

domain feature, and WT-based SVD features. In order to evaluate the classification perfor-

mance, there are five different feature vectors established for training and testing the lower-

limb motions, including time-domain features (MAV+RMS+iEMG+ZC), frequency-domain

feature (MNF+MDF), combined time and frequency features (MAV+RMS+iEMG+ZC+MDF

+MNF), WT-based SVD features (cD1+cD2+cD3+cD4+cD5+cA5), and combined time, fre-

quency, and WT-based SVD features (MAV+RMS+iEMG+ZC+MDF+MNF+cD1+cD2+cD3

+cD4+cD5+cA5). Based on this feature vector, the classification results show that the proposed

WT-based SVD approach has the classification accuracy of 91.85%±0.88% which outperforms

other feature models.

Supporting information

S1 File. Original EMG datasets. The EMG orignial data of the vastus medialis muscle of the

detected leg from 14 healthy subjects were collected and recorded in the file while performing

three exercise programs, i.e., leg extension from a sitting position (sitting), flexion of the leg up

(standing), and gait (walking).
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